Real-Time Video Capture for Illumination Reconstruction in Augmented Reality Applications

S.Heymann_{1.2}, A. Smolic₁, K. Müller₁ and B. Fröhlich₂

Fraunhofer Institute for Telecommunications – Heinrich-Hertz-Institut ₁ Image Processing Department Einsteinufer 37, 10587 Berlin, Germany

1. Project Goals

- Reconstruction of a real environment for illumination of virtual object in a most realistic manner
- Real-time usage should be possible to keep up the augmented-reality illusion
- Interactive illumination-reconstruction

3. Pre-Processing

- Pre-Processing is essential to get real-time results
- Occlusion Information and cosine weighting are pre-processed

Examples for the pre-processing:

- Taking a simple cube object
- Results are stored as textures for later usage

5. Rendering

 The Pre-Processing image and the unwrapped environment cubemap are multiplied using multi-texturing abilities of modern graphics hardware.

*
Panorama repeated n times by using GL_REPEAT

unwrapped and aligned spherical panorama

- All pixels of each segment are then summed up to one value
- The resulting value is the color of one of the models vertices
- · The summation is also done on the graphics hardware
- We use vertex-texture capabilities of the GeForce6 chipsets to map the colors the corresponding vertices.
- Finally the object has to be rendered using the computed lightvalues.

- Every operation of the illumination process has been done on the GPU using off-screen buffers and fragment / vertex shaders
- Slow CPU-to-CPU read-backs have been avoided which results in a realtime performance of the system

Bauhaus University Weimar₂ Professorship for Virtual Reality Bauhausstrasse 11, 99423 Weimar, Germany Contact: heymann@hhi.de

2. Basic Concept

- Smooth shading and convincing diffuse Illumination
- Simplifications of global illumination concepts to provide real-time results
- Simplified Assumptions:
 - 1. Static objects
 - 2. No interreflections
 - 3. Environmental reconstruction using one lightsample instead of reconstructing the whole environment

4. Sphere Capturing

- A mirror sphere is used to capture the environment
- AR-Toolkit markers can be used to calculate the screen / video-position
 of the sphere
- The separated sphere is unwrapped and transformed into a cube-map
 of the environment
- This cube-map fits the pre-processing cube-maps in size and orientation

Calibration Mode

AR-Toolkit Marker and the general assembly

Automatically separated sphere

The captured sphere is then texture mapped onto a sphere to calculate the environment cube-map

• The resulting cube-map is stored in a texture, too.

6. Results

- Our sample implementation provides real-time integration of high resolution meshes into arbitrary low-frequency lighting environments
- · It features soft shadowing and color bleeding effects
- The Buddha model (as seen below) has 32k vertices and runs at 40 frames per second
- The system could also be used to integrate objects into complex virtual scenes with pre-computed lighting

AR-Toolkit Marker and the genera assembly

Fraunhofer _{Institut} Nachrichtentechnik Heinrich-Hertz-Institut

Bauhaus-Universität Weimar