

The GlobeFish and the GlobeMouse

Two New 6-DOF Input Devices

for Graphics Applications

Bernd Fröhlich Jan Hochstrate Verena Skuk Anke Huckauf

> Virtual Reality Systems Group Faculty of Media

> www.uni-weimar.de/medien/vr

6-DOF Desktop Devices

Returned of the term

Returned of the term

Returned of term</

SpaceMouse [1x6DOF] elastic

Dimentor [3DOF+2DOF+1DOF] isotonic

Dialbox [6x1DOF] isotonic

Other 6-DOF Devices

- CAT [Hachet et al. 2002]
- Tracking sensor based
 - Fingerball [Zhai 1995]
 - Cubic Mouse [Froehlich et al. 2000]
 - • •

Task Analysis Driven Design

[Jacob et al. 1994]

- Device compatible to separate and integral attributes of task
- [Masliah and Milgram 2000]
 - 6 DOF docking task
 - Which DOF are used simultaneously?
 - Rotational and translational DOF as separate subsets!
- Conclusion
 - Integrated 6 DOF controller for 6 DOF docking task might not be necessary
 - [3 DOF + 3 DOF] design might perform better

[3DOF+3DOF] Design

[3DOF+3DOF] Design

3 DOF Trackball

- Isotonic rotation
- 2 trackball sensors

[3DOF+3DOF] Design

- **3 DOF Trackball**
 - Isotonic rotation
 - 2 trackball sensors
- **3 DOF spring frame**
 - Elastic translation
 - Based on SpaceMouse

[3DOF+3DOF] Design

- **3 DOF Trackball**
 - Isotonic rotation
 - 2 trackball sensors
- **3 DOF spring frame**
 - Elastic translation
 - Based on SpaceMouse

[3DOF+3DOF] Design

- Fast switching
- Separation by force / no force
- Fine manipulation
- Uniform handling of translations

Other GlobeFish Designs

First prototype

55mm trackball

The GlobeMouse

- 3 DOF trackball
- SpaceMouse socket

User Study: Methods

- **Stimuli**
 - Zhai's docking task
 - Stereoscopic monitor
 - Negative parallax
- Participants
 - 16 volunteers
 - Only right-handed
 - Stereo vision
- Hypothesis
 - [3DOF+3DOF] >[1x6DOF]

User Study: Design and Procedure

- Within-subjects design
- Latin square design
 - Order of the devices balanced
- 4 blocks of 12 trials per device
- Questionnaire after each device
 - Ease of translations/rotations
 - Manual motor fatigue
 - Directness of control
 - Device preference

User Study: Devices

Small GlobeFish

GlobeMouse

Large GlobeFish

?

User Study: Devices

Small GlobeFish

GlobeMouse

Large GlobeFish

SpaceMouse

User Study: Devices

Small GlobeFish

GlobeMouse

SpaceMouse

Results: TCTs

Task Completion Time (sec)

- 3x4 ANOVA
- Order of devices no main effect
 - Transfer similar
- Significant performance differences of 20%-30%
- Decrease of TCTs similar
 - Learning similar

Block

Translations vs. Rotations

Trackball Rotations vs. Mental Rotation Test

Subjective Preferences

Subjective Preferences

Recent Developments

The Yoyo Family [2x6DOF] + Tracking

A. Simon, B. Fröhlich: Interact 2003 Huckauf et al. : Interact 2005

Summary

[3 DOF + 3 DOF] design

- GlobeFish: elastic translation vs. isotonic rotation
- GlobeMouse: + grip change

Performs better than the SpaceMouse

- TCTs
- Subjective ratings
- Most likely due to
 - Facilitation of rotations
 - Separation of translation and rotation

Use of the GlobeFish sensor for other devices

- Handheld
- One-handed vs. two-handed

Future Work

Evaluation for other tasks

- Navigation
- Navigation + object manipulation
- Combination of 3D and 2D tasks
- Compare to standard mouse
- Redundant DOF
 - GlobeMouse
 - Rotation through trackball or SpaceMouse
 - Use devices for 2D applications
- Application domains?
- Explore the design space!

End