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Efficient and Anti-aliased Trimming for
Rendering Large NURBS Models

Andre Schollmeyer, Bernd Froehlich

Abstract— In Computer-Aided Design (CAD), Non-Uniform Rational B-Splines (NURBS) are a common model representation for
export, simulation and visualization. In this paper, we present a direct rendering method for trimmed NURBS models based on their
parametric description. Our approach builds on a novel trimming method and a three-pass pipeline which both allow for a sub-pixel
precise visualization. The rendering pipeline bypasses tessellation limitations of current hardware using a feedback mechanism. In
contrast to existing work, our trimming method scales well with a large number of trim curves and estimates the trimmed surface’s
footprint in screen-space which allows for an anti-aliasing with minimal performance overhead. Fragments with trimmed edges are
routed into a designated off-screen buffer for subsequent blending with background faces. The evaluation of the presented algorithms
shows that our rendering system can handle CAD models with ten thousands of trimmed NURBS surfaces. The suggested two-level
data structure used for trimming outperforms state-of-the-art methods while being more precise and memory efficient. Our curve
coverage estimation used for anti-aliasing provides an efficient trade-off between quality and performance compared to multisampling
or screen-space anti-aliasing approaches.

Index Terms—Trimming, NURBS, Anti-Aliasing, Adaptive Tessellation.
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1 INTRODUCTION

N Computer-Aided Design (CAD), software applications are
Iused to design industrial products, e.g. cars or aircraft. The
models are created using a set of tools and modeling operations
which result in a proprietary internal data representation. The
boundary representation is a popular and well-established data
representation used for the exchange, visualization, simulation and
manufacturing export of these models. A model typically consists
of a set of faces. Each face is defined by a base surface and a set
of trim curves, in CAD applications both commonly represented
using Non-Uniform Rational B-Splines (NURBS). The final shape
of the face is determined by applying the set of trim curves in the
parametric domain of the base surface.

For mechanical engineers and designers, it would be desirable
to display an artifact-free, sub-pixel precise visualization of the
model in real-time. However, most CAD applications accomplish
interactive rendering by computing a triangular approximation of
the trimmed NURBS model based on a given object-space error
tolerance. The resulting triangle meshes may become very large,
but close-up views may still reveal cracks or other visual artifacts
caused by geometric approximations. Some research suggests
improved model representations such as T-Splines [27] or trim
surfaces [12] to avoid these artifacts already in the model repre-
sentation. On the other hand, modern graphics hardware supports
the on-the-fly tessellation of parametric surfaces and recent work
shows that cracks in the boundary representation can be efficiently
repaired in most cases [5].

In this paper, we present a high-quality rendering algorithm
for large trimmed NURBS models based on adaptive tessellation.
The main focus of our work is an efficient and sub-pixel precise
trimming algorithm. It was motivated by the fact that many trim
curves originate from surface-surface intersections that are very
hard to compute [29]. In practice, these trim curves need to be
approximated which may result in cracks between the intersected
surfaces. In order to control this error CAD applications often
use a piecewise sequence of many short trim curves. For exist-
ing trimming algorithms, a large number of trim curves either

results in a memory overhead for partitioning the domain [6],
[25] or represents a bottleneck for updating view-dependent data
structures [10], [33]. In contrast, the storage requirements of our
partitioning scheme rather depend on the features of the trim
loops instead of the number of trim curves which also results in a
more efficient run-time performance. The sub-pixel precise, direct
trimming method is integrated into an adaptive rendering system
for trimmed NURBS with the following main contributions:

o A three-pass rendering pipeline that allows for a highly
accurate visualization

« A memory-efficient and cache-coherent domain-space par-
titioning algorithm

e A direct trimming approach based on a fast in-search point
classification

e A coverage estimation of trimmed edges for anti-aliasing

o Blending of trimmed edges and order-independent trans-
parency using A-Buffer routing

Our results show that the proposed trimming method works
up to 25% faster than our former approach, while requiring only
about 50% of the memory. In addition, the coverage estimation of
trimmed edges offers a more accurate anti-aliasing solution than
screen-space techniques and performs better than multi-sampling.
Our system is not limited by hardware tessellation limits, inher-
ently supports rendering of order-independent transparency and
can handle complex real-world models at high resolutions.

2 BACKGROUND

Over the last decades, many rendering methods for trimmed
NURBS have been proposed. In general, rendering can be divided
into two major tasks: mapping the base surface onto the screen
and the trimming, which needs to be applied to the surface either
before or after the mapping. Since there is no hardware support
for the direct rasterization of parametric surfaces, most approaches
are either based on ray casting or the generation of a triangular
approximation (tessellation).
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2.1 Ray Casting

Most early works are based on ray casting, e.g. [4] [14] [13].
Finding intersections between a ray and a NURBS surface requires
a numerical method. In most cases, subdivision or an iterative
approach is used.

A popular subdivision method is Bézier Clipping [19] which
recursively subdivides the parameter domain until the clos-
est intersection is found. If degenerate cases are handled cor-
rectly [7], Bézier Clipping is a robust and numerically stable
algorithm. However, it is computationally expensive and even
latest works [30] do not achieve interactive frame rates for non-
trivial CAD models.

In contrast, most interactive ray casting approaches employ
iterative root-finding, e.g. Newton’s method, to find ray-surface
intersections. The robustness of Newton’s method may be im-
proved by providing close starting points based on tight proxy
geometry [8], by splitting highly-curved surfaces [1], [17] or
interval arithmetic [31], but convergence to the closest intersection
cannot be guaranteed.

Furthermore, ray casting has also been used for the inter-
active rendering of subdivision surfaces using lazy tessellation
caching [3], however, the conversion from a trimmed NURBS
representation into subdivision surfaces [28] is quite intricate and
involves additional approximations.

2.2 Tessellation

Most CAD applications use a tessellation of the model for in-
teractive rendering. In general, the generation of a high-quality
full-model tessellation is a time-consuming offline process. First,
the trim curves need to be converted into a piecewise linear
approximation [22] in order to partition the parametric domain into
a set of triangles. Each of the triangles is required to approximate
the corresponding part of the model within a predefined object-
space error tolerance. In most cases, the resulting mesh is either
too fine or too coarse for the current view which results in
increased storage requirements or visual artifacts.

Therefore, Balasz et al. [2] suggest to compute a level-of-
detail tessellation based on a maximal screen-space approximation
error. This error tolerance may result in cracks between adjacent
patches which they fill using additional geometry. While in their
approach the CPU-based re-tessellation is limited to a fixed time
budget for each frame, GPU-based adaptive on-the-fly tessellation
methods have been shown for untrimmed bi-cubic Bézier surfaces
using CUDA [26] or latest graphics hardware tessellation capa-
bilities [34] [33]. Furthermore, Yeo et al. [34] suggest to use a
view-space error metric based on piecewise-linear enclosures.

Our system follows the idea of adaptive tessellation based on a
different metric and a pre-tessellation stage to overcome hardware
limitations. The rasterized patches are then trimmed during frag-
ment processing using a novel sub-pixel precise trimming method.

2.3 Trimming

In general, the trimming of the base surfaces can either be applied
directly while generating the corresponding tessellation [22] or
for each pixel of the surface’s projection [10] [8] [25] [33]. The
generation of a trimmed tessellation involves a linear approxima-
tion of the trim curves in accordance to a predefined object-space
error threshold and the treatment of many degenerate cases [22].
In most CAD applications, the chosen error threshold allows for
an interactive rendering of the resulting mesh. Crack artifacts can
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be amended by drawing fat borders [2] or using other filling
methods [5], but close-up views on curved boundaries still reveal
piecewise linear edges. Instead, most recent approaches apply the
trimming during fragment processing which is more efficient as it
scales with the rendering resolution and is mainly fill-rate limited.

In general, per-fragment trimming approaches have to provide
an efficient 2D point classification scheme. For each pixel, the
domain coordinates of the projected base surface need to be
classified with respect to the trim curves. Trimmed fragments are
discarded.

For a fixed resolution, using precomputed textures is probably
the fastest method. However, insufficient texture resolutions result
in jagged edges which can be improved using signed-distance
fields [9], but the storage requirements remain very high. Adaptive
texture-based approaches [10] are more memory efficient, but
updating the textures during run-time remains a potential perfor-
mance bottleneck.

In contrast, most recent trimming approaches use the point-in-
polygon algorithm for a direct classification based on the curved
boundary [8]. The slim parametric description of the trim curves is
precise and generally also has a much smaller memory footprint.
The number of ray-curve intersections can be minimized using
a domain partitioning scheme, e.g. horizontal slabs [25] or quad
trees [6]. Furthermore, the costs for ray-curve intersections can
be reduced by using quadratic curve approximations [6], precom-
puted intersection tables [33] or a binary search on bi-monotonic
curve segments [25]. In particular, Wu et al. [33] generate sam-
ples along the trim curves in correspondence to the estimated
tessellation level and insert them into trim tables. In contrast to
precomputed textures, the tables are quite slim. However, view
changes require the update of many trim tables which is quite
expensive for large CAD models containing hundreds of thousands
trim curves.

In comparison to existing work, our system also performs the
trimming per fragment, but does neither rely on view-dependent
updates of auxiliary data structures nor on further curve ap-
proximations. Instead, we organize the trim curves by domain
partitioning with small memory overhead. In addition to the point
classification, we estimate the trim curve’s pixel coverage to allow
for anti-aliasing of trimmed edges.

3 SYSTEM OVERVIEW

Initially the trimmed NURBS model is converted into an equiv-
alent rational Bézier representation using knot insertion [21].
In most cases, the trim curves are already in this represen-
tation because most CAD kernels approximate surface-surface
intersections using piecewise Bézier curves. In our system, the
conversion is a pre-process, but partial updates during run-time
are conceivable, if interactive modeling capabilities are required.
Since each Bézier surface (patch) corresponds to a single knot
span of the NURBS representation, they can be rendered with
individual tessellation levels or trimmed entirely before rendering.
Our rendering pipeline is based on an adaptive tessellation
of the surfaces. After the rasterization, the trimming is applied
during fragment processing. For an efficient and sub-pixel precise
trimming, a domain partitioning is generated for each patch. The
partitioning scheme, its usage and the corresponding coverage
estimation of trimmed patch edges are described in Section 4.
After pre-processing, the parametric description of the sur-
faces, the domain partitioning and the trim curves are passed
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Fig. 1. This illustration gives an overview of our system.
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to the GPU for rendering. Our rendering pipeline consists of
three passes: the estimation pass, the tessellation pass and the
compositing pass. Figure 1 gives an overview of our system.

In the estimation pass, each patch is prepared for the actual
rendering which includes frustum culling and the estimation of
appropriate tessellation parameters. If the determined tessellation
level exceeds hardware limits, the patches are pre-tessellated such
that the tessellation pass can perform the desired level. The output
of this pass are intermediate patches that are not rasterized,
but stored in a feedback buffer and then passed to the actual
tessellation pass.

In the tessellation pass, the intermediate patches are tessellated
in correspondence to the determined tessellation factors. After
the rasterization, the domain coordinates of each fragment are
classified with respect to the trim curves using the proposed
trimming algorithm (see Section 4). In contrast to other trim-
ming methods, we avoid aliasing artifacts by estimating the pixel
coverage of the trimmed patch. For each pixel, there are three
possibilities: a patch covers it (a) entirely, (b) partially or (c) not
at all. In dependence of this classification, fully covered fragments
are stored in a fullscreen render target (G-Buffer) while partially
covered fragments are routed into per-pixel linked lists (A-Buffer)
in order to allow for correct blending. The blending is performed
in the subsequent compositing pass.

In the compositing pass, for each pixel, partially and covered
fragments are blended together. However, tiny cracks cannot be
avoided due to the approximations typically performed during the
generation of the boundary representation [29]. Therefore, a crack-
filling algorithm is applied to the G-buffer before compositing.
After this step, the fragments stored in the A-Buffer and G-Buffer
are composited in front-to-back order.

A detailed description of these rendering passes is given in
Section 5. The evaluation of our algorithm, its limitations and a
discussion is given in Section 6.
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Fig. 2. (a) This example shows the domain of a trimmed surface. There
are two trim loops. In practice, trim loops often consist of many piecewise
connected trim curves (indicated by their red boxes). (b) In previous
work, the vertical partitioning (blue) at curve end points led to many
subdivisions and a memory overhead.

4 EFFICIENT AND SuUB-PIXEL PRECISE TRIMMING

Our trimming method follows the general idea of a direct classifi-
cation based on the parametric description. Therefore, the domain
coordinates of a surface point are classified with respect to the
trim curves by using a ray-based point-in-polygon test and the
even-odd rule. Nevertheless, two observations can be made that
we think are not sufficiently considered by other approaches:

¢ The domain needs to be partitioned in order to minimize
the number of ray-curve intersections. Per definition, the
trim curves form closed, non-overlapping regions (trim
loops). In practice, trim loops are often a result of an in-
tricate approximation of surface-surface intersections [29]
resulting in a sequence of many rather short trim curves.
Figure 2 shows an example of a typical domain and the
contained trim curves. In latest state-of-the-art work [25]
[6], the number of subdivisions in the partitioning directly
depends on the number of trim curves which results in
increased storage requirements, incoherent memory access
and a performance overhead (see Figure 2).

o If the trimming is performed during fragment processing,
each fragment corresponds to an area of the projected
surface’s domain. A part of this area may be trimmed, the
other not. A binary classification based on the center of the
fragment will result in aliasing. While most existing trim
approaches could be modified evaluating multiple samples,
our approach estimates the partial coverage with minimal
overhead.

These observations led to the following design. Instead of
partitioning the domain based on the trim curves, our approach
builds a domain partitioning based on the features of the trim
loops. In most cases, this results in a much smaller data structure.
Each trim loop is split into piecewise monotonic curve sets (see
Section 4.1). Each set contains connected trim curves with the
same monotonicity which allows for an efficient in-search classi-
fication during run-time (see Section 4.3). The sets are organized
in a kd-tree which is built around their bounding boxes. A surface
area heuristic [23] is used to minimize the traversal costs of the
kd-tree as described in Section 4.2. This two-level data structure
allows for an efficient classification of most fragments without
any trim curve evaluation. For fragments close to the trim curves,
a pixel coverage is estimated (see Section 4.4) to allow for the
rendering of anti-aliased edges.

4.1 Piecewise Monotonic Curve Sets

The main idea to generate a partitioning based on the features
of the trim loops builds on the idea that the actual ray-curve
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Fig. 3. This example shows the trim loops from Figure 2 split into
eight curve sets which are monotonic in both parametric directions.
The bounds of an outer curve set overlap the inner curve sets entirely.
In some regions (dark grey), there are two or more overlapping curve
sets. In most cases, these overlaps can be resolved by our optimization
before the kd-tree is generated.

intersection is not required for an even-odd-test [25]. Each trim
curve can be evaluated similar to a binary search. If the curve is
monotonic, the implicit bounds of the remaining parts can be used
for an early classification. The same idea can be adapted to the
traversal of the trim curves, if the same preconditions apply, i.e.
that the sequence of trim curves is monotonic in both parametric
directions (u,v).

For each trim loop, the trim curves are split at their extrema in
u and v-direction such that the loop can be divided into piecewise
monotonic curve sets. Each curve set is a piecewise connected list
of trim curves with the same monotonicity properties. Sorting and
storing the contained trim curves in increasing v-order allows for
an in-search classification (for details see Section 4.3).

The curve sets represent the inner level of our two-level
trimming hierarchy. The outer level of this hierarchy is a kd-
tree. The axis-aligned bounding boxes of the curve sets serve as a
starting point for the generation of a kd-tree.

4.2 Curve Set Optimization and Kd-tree Generation

The domain is partitioned using a kd-tree to find the curve sets
efficiently. Each child node of the kd-tree contains only the
relevant curve sets.

The bounding boxes of the curve sets may overlap, as shown
in Figure 3. Processing multiple curve sets causes incoherent
memory access and should be avoided if possible. Therefore,
overlaps are minimized based on the following cost estimation:

C(Si) = Ca+ Poin - Coin+ Pevat  Cevar + Y, Ps;ps; - C(Sj) (1)
J#

For a curve set §;, the total costs C include the traversal of
the kd-tree Cy,, the binary search inside curve set Cp;,, curve
evaluations C,,, and additional costs for other overlapping curve
sets S;. The probabilities Py, Peyer and Py, AS; are computed using
the sizes of the corresponding areas and their ratios.

The costs Crg, Cpin and C,, are estimated by the number
of memory accesses since computational costs can be neglected.
In particular, inside the bounding box of a trim curve, a mean
of two evaluations is necessary for classification according to
Schollmeyer and Frohlich [25].

u

Fig. 4. This is a kd-tree generated after the optimization. The spatial
partitioning is indicated by blue lines for the u-direction and orange lines
for v-direction, respectively. In comparison to Figure 3, two curve sets
have been split. In this case, all leaf nodes are either empty or contain
only a single curve set.

Given a set of curve sets T = {Sy...S,}, the goal is to
minimize the total costs

argminy Z C(S)). 2)
S;eT

This optimization problem is solved with a greedy strategy that
eliminates or decreases the area of overlaps and the corresponding
probability Ps;g; by iteratively splitting the contained curve sets.

For each curve set, the costs are computed and inserted into a
priority queue. The segment with the highest costs of overlapping
curve sets is chosen for a split operation. As split candidates, we
consider the bounds of the contained trim curves and the bounds
of overlapping curve sets. For each candidate, the curve set is split
and the total costs for the resulting parts are accumulated.

If the costs can be reduced, we split at the position with the
minimal costs and re-insert the resulting subsets into the priority
queue. If the costs cannot be reduced, we continue with the next
curve set in the priority queue. This process continues until no
further split is possible or necessary.

Subsequently, a kd-tree is built to organize the resulting curve
sets, as shown in Figure 4. A surface area heuristic [23] is
used to build the kd-tree. In the resulting hierarchy, child nodes
representing large areas have a lower depth than smaller areas
which minimizes traversal costs. If the child node does not contain
any curve set, the trim classification for the corresponding area is
precomputed and stored in the node. Finally, the trim curves, the
curve sets and a depth-first serialization of the kd-tree are uploaded
to the GPU for rendering.

4.3

At run-time, a hierarchical search is used to classify a fragment’s
domain coordinates p = (up,,v,). This hierarchical search consists
of three searches: the traversal of the kd-tree, a binary search on
the contained curve sets and a binary search on trim curves.

First, the kd-tree is traversed to find the corresponding child
node. If the child node does not contain any curve set, the
precomputed classification is used. In all other child nodes, the
classification is based on the even-odd rule which requires an
analysis of the contained curve sets. The number of intersections is
determined for a horizontal ray in positive u-direction. However,
our trim classification does not compute ray-curve intersections.

In-search Trim Classification
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Instead, it terminates immediately if a binary search implies an
intersection or non-intersection, respectively.

For each curve set, the bounds b = {umin, Umaxs Vinin, Vimax }
of the contained trim curves are stored linearly in increasing v-
direction. In addition, we store its increase in u-direction A,. This
compact memory layout enables to perform a binary search on the
curve bounds. Binary searching the list of curve bounds allows for
an implicit in-search classification, as outlined in Algorithm 1.
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Algorithm 1 In-Search Trim Classification

1: procedure BINSEARCHCURVESET
2 imin < getStartIndex()

3 Imax < Imin + getNumberOfCurves()
4: while true do

5: icenter < (imin + imax)/z
6: [umin’ Vmins Umax, Vmax] — getcurveBOunds(icenler)
7 if (wmin < ttp < tmax) A (Vmin < Vp < Vinax) then

8

9

return BINSEARCHCURVE (icenter) > See [25]

: if (A, >0) then
10: if (ttp > timin) A (Vp < Viax) then
11: return false
12: if (up < tmax) A (vp > Vinin) then
13: return true
14: else
15: if (up < tmax) A (vp < Viax) then
16: return true
17: if (tp > tyin) A (Vp > Viin) then
18: return false
19: if (vy < Viin) then
20: Imax = Leenter — |
21: else
22: imin = lcenter + 1

Figure 5 illustrates the binary search of a curve set. Each
iteration, the curve bounds of the center element are used to
compute the bounding boxes of the remaining subsets. If the
domain coordinates p are in the bounding box of one of the
subsets, the binary search continues with the respective subset. If
the domain coordinates are inside the bounding box of the center
curve, it is analyzed with a binary search that is based on curve
evaluations, as described in our previous work [25]. At the same
time, large parts of the domain can be classified without further
analysis. If p is on the left side of a subset or the center element, an
implicit ray intersection with one of the contained curves exists.
Respectively, there is no intersection if the point is on the right
side. In both cases, p is classified and the search terminates.

At the time p is classified by one of the two binary searches,
the closest known point on the trim boundary and the remaining
bounding box are passed to the curve coverage estimation.

4.4 Curve Coverage Estimation

The point classification is always correct for the domain coordi-
nates of the fragment’s center. However, it does not necessarily
apply to the entire area of the pixel’s projection, especially close
to trim curves. In practice, the display of the corresponding surface
edges could result in aliasing. Enabling hardware multisampling
would require to classify each of the resulting samples, which
imposes a considerable overhead, as discussed in Section 6.1.
Instead, we approximate the trim curve’s projection into pixel

i=0

»
’

U imin umax u

Fig. 5. This Figure illustrates the analysis of the lower left curve set from
Figure 4. A binary search is performed for a list of six trim curves which
allows for an implicit classification of as trimmed (red) or untrimmed
(green) regions. For the corresponding fragments, the search terminates
early. An additional binary search based on curve evaluations is neces-
sary if p is inside the bounds b of the trim curve (yellow). In the remaining
regions (grey), the search continues.

coordinates and estimate the surface’s pixel coverage. Figure 6
illustrates this process for three adjacent pixels.

The partial derivatives of the domain coordinates dp/dx and
op/dy, readily available on modern graphics hardware, are used
to create the Jacobian J, which is used to transform domain
coordinates, as shown in Fig. 6(a), into pixel coordinates, see
Fig. 6(b).

_ (%p dp 3

Next, we compute a linear approximation of the trim curve
based on the information available at the time of classification: the
closest known point ¢ on the trim boundary and the remaining
bounding box of the binary search. The normalized vector §
between the start and end point of the bounding box serves as
approximation of the curve’s derivative. We do not compute the
exact derivative as it would require a more expensive evaluation
algorithm compared to the utilized Horner scheme in Bernstein
basis [20]. Note that ¢ and § are a byproduct of the in-search
classification described in 4.3. Both are transformed into pixel
coordinates ¢’ and §'.

d=Js"c @)
§=7"3 (5)

In pixel coordinates, the line defined by ¢’ and §' serves as lin-
ear approximation of the curve. It delimits the half-space between
covered and uncovered pixel space. Using the classification result,
we compute the signed distance d from the pixel center to the line
and the corresponding angle «. They are obtained by dropping
the perpendicular from p to the line. Instead of computing the
corresponding pixel coverage on-the-fly, we use a weighted filter
kernel to precompute the coverage for a set of values, as described
by McNamara et al. [18], and store them in a 2D texture, as
shown in Figure 6(c). Mapping the signed distance d and the
angle o to normalized texture coordinates allows to retrieve the
corresponding coverage with a single texture look-up.
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Fig. 6. (a) The footprint of three adjacent pixels in domain space. In this
case, the corresponding domain coordinates p,, p; and p, are classified
using a binary search on the same curve B(z). In the first iteration, the
mid curve points ¢ = B(0.5) and the remaining bounds § are identical
for all three pixels and allow for a classification. The partial derivatives
and domain coordinates are used to transform all points into the cor-
responding pixel coordinates. (b) In pixel coordinates, ¢, and §; define
a linear approximation of the curve. The signed distances d; from the
curve and corresponding angles «; are mapped to normalized texture
coordinates to obtain prefiltered pixel coverages from a precomputed
2D texture, shown in (c).

5 ADAPTIVE TESSELLATION

The proposed trimming approach is embedded in the fragment
processing stage of the second pass of our rendering system: the
tessellation pass. The trimming assumes a pixel-precise projection
of the base surfaces and the corresponding domain coordinates,
which we ensure in the first pass, the estimation pass.

5.1 Estimation Pass

An adaptive tessellation requires the estimation of the base sur-
faces’ footprint in screen space to apply the necessary tessella-
tion factors. In our system, the projection of the object-oriented
bounding box serves as a conservative estimate. Using the fast
bounding box area computation by Schmalstieg and Tobler [24],
we are able to compute the size in screen-space on-the-fly, even
for models with a large number of patches. A further refinement
using piecewise enclosing geometry, e.g. [34], is conceivable, but
is forgone for performance reasons.

In this pass, however, surface patches are only tessellated if
the required tessellation factor exceeds hardware limitations. The
output patches are stored intermediately along with the estimated
size of their projection Ay as transform feedback which is used as
input to the actual tessellation pass. In order to minimize a po-
tential geometry overhead, we continue with rectangular patches.
Nevertheless, current graphics hardware is limited to triangular
tessellation output. Therefore, we need to set the same inner and
outer (pre-)tessellation factors such that the resulting right-angled
triangles can be filtered and extended to rectangular patches during
geometry processing, as shown in Figure 7.

Note that frustum culling can also be performed at this stage.
However, we found that if the model composition allows for an
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Fig. 7. If the inner and outer tessellation factors are set to the same level,
the output consists of four types of right-angled triangles (a). During
geometry processing, two types are discarded (b). For the other two
types, we emit an additional corner point (c) which extends each triangle
to a rectangular patch (d) that is used as transform feedback and input
for the tessellation pass.

object-wise culling beforehand, an additional frustum culling for
each patch may even cause a performance overhead.

5.2 Tessellation Pass

In this pass, the intermediate patches from the estimation pass are
tessellated. In contrast to Yeo et al. [34], we use a non-uniform
tessellation to account better for elongated patches. Therefore,
we pre-compute the ratio between the maximal control polygon
lengths for both parametric directions. Using the control points
b; ; of a Bézier patch of degree n x m, the maximal lengths e, and
e, are given by

n—1

ey = ,r:nOa)i(n Z [bij = byl ©
j=0
m—1

ey =max Y [lb;j—b; . @
i=0..n j=0

The tessellation factors 7, and 7, are then adapted in corre-
spondence to the approximate aspect ratio of the patch size:

VA ey VA;s-e,
— y= .

e, ey

®)

Ty =

After the rasterization, fragments are classified using the
proposed trimming algorithm (see Section 4). The resulting pixel
coverage yields in three different types of fragments: untrimmed,
trimmed or partially trimmed.

Trimmed fragments are discarded. Partially trimmed fragments
may belong to an edge, however, they may also be part of a
closed surface formed by two or more adjacent patches. In general,
adjacency information is neither available for a trimmed NURBS
model nor easy to compute since the patches cannot be assumed
to be watertight. Instead, we postpone the decision whether a
fragment needs to be blended or spliced with a neighbor.

Therefore, partially covered fragments are routed into per-
pixel linked lists (A-Buffer) using a non-blocking implementa-
tion [15]. Untrimmed fragments are stored in a standard off-screen
render target (G-Buffer) for deferred shading. Both buffers serve
as input for the subsequent compositing pass.

5.3 Compositing Pass

In this full-screen pass, the information stored in the G-Buffer
and A-Buffer is used to fill cracks, shade and blend the contained
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TABLE 1
The number of surfaces sorted by their maximal polynomial degree.

2 3 4 5 6-15 Total
Beetle 4,570 5,646 1,685 19,104 8,255 39,260
Ducati 79,855 553 489 65,946 0 146,843
TABLE 2

The number of trim curves sorted by polynomial degree.

1 2 3 4-5 Total
Beetle 108,692 172 369,823 0 478,687
Ducati 322,387 258 885,921 28,919 1,237,485

fragments. First, a 2.5D crack detection [5] is performed based
on the depth values stored in G-Buffer. Claux et al. propose two
different crack filling methods. We utilize their image-space crack-
filling method with a 3x3-filter kernel because their ray-casting
based approach would require to render the model twice — a
significant overhead for large models.

After crack-filling, the partially covered fragments from the
A-Buffer are also shaded and blended in front-to-back order. For
pixels with a detected crack and a corresponding fill, the fragments
from the A-Buffer may represent the same geometry, e.g. for
adjacent trimmed patches. Therefore, the depth of the crack-fill
is moved closer to the viewer by the object-space tolerance of the
trimmed NURBS model which prevents a potential overdraw.

6 RESULTS AND DISCUSSION

All tests were performed on a 3.5 GHz Intel Core i7 work-
station with 128GiB RAM equipped with a single NVIDIA
GeForce GTX 1080 GPU with 8GiB video memory. The system
is implemented in C++, OpenGL and GLSL. The performance
timings were measured for a rendering resolution of 3840x2160.
For evaluation, we used the models shown in Figure 8. The
Tables 1 and 2 give an overview of the geometric complexity
of both models. The transform feedback and A-Buffer were both
configured with a budget of 1GB.

First, we evaluated the performance and memory requirements
of our trimming method. For comparison, we used our earlier
implementation [25]. In addition, we also organized the trim loops
in simple curve lists to investigate the effect of such a naive
approach. These curve lists have no spatial partitioning and need
to be processed sequentially. We compared these techniques using
the trim data of the VW Beetle model, shown in Figure 8(a). For
the performance comparison, we tried to avoid view dependencies
by trimming full-screen quads for each domain of the model. The
relative memory requirements and performance results are given
in Table 3. Our two-level data structure requires only about 50% of
the memory while being about 25% faster due to the tighter data
structure and increased cache coherence. The minimal memory
footprint of the curve lists amounted to about 40%. The total
performance overhead of about 9% seems surprisingly low, but the
detailed timings indicate that it is significantly slower for patches
with many trim curves.
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TABLE 3
This table shows a comparison between different trimming meth-
ods for the VW Beetle model. In order to avoid view depen-
dencies, the performance was measured by sequentially trim-
ming all domains of the model mapped to full-screen quads.
Our partitioning requires only about 50% of the memory com-
pared to the baseline algorithm [25] and is also about 25% faster.

Partitioning Size Draw Time
SF2009 [25] 100% 100%
Curve lists 39.9% 108.6%
Our approach 50.5% 75.4%
TABLE 4

This table shows a quantitative image comparison of the close-up
views shown in Figure 9. As image quality measures, the Root-
Mean-Square Error (RSME), Peak-Signal-to-Noise Ration (PSNR) and
the Structural Similarity [32] (SSIM) were used. All measures show
that the image quality of our approach is slightly better than FXAA
and MSAA 2x2, while being significantly faster than multi-sampling.

RSME PSNR SSIM fps
No AA 0.033067 29.6119 098919 232 Hz
No AA + FXAA  0.018565 34.6260  0.99551 228 Hz
MSAA 2x2 0.014288 36.9000  0.99800 143 Hz
MSAA 3x3 0.007781 42.1784  0.99942 108 Hz
MSAA 4x4 0.005645 44.9656  0.99968 81 Hz
Our approach 0.012581 38.0057  0.99821 182 Hz

We also compared the image quality of our coverage esti-
mation algorithm to other anti-aliasing techniques: Fast Approxi-
mate Anti-Aliasing (FXAA) [16] and Multi-Sample Anti-Aliasing
(MSAA). MSAA was implemented by performing and combining
the trim classification for multiple samples. The image results of
this test are shown in Figure 9. As ground truth we assume the
result using a 8x8 multi-sampling kernel.

The quantitative results of the comparison are shown in
Table 4. In most cases, our approach produces much smoother
results than 2x2 MSAA while being significantly faster. The
corresponding draw times indicate that our approach outperforms
multi-sampling. Furthermore, the result is also closer to ground
truth than FXAA. Therefore, our approach offers an efficient anti-
aliasing solution if higher quality than FXAA is needed.

Furthermore, we evaluated our three-pass pipeline in combina-
tion with the proposed tessellation heuristics. The introduction of
a pre-tessellation in the estimation pass allows to bypass hardware
tessellation limits, which other approaches [5], [33] are affected
by. Figure 10 shows an example in which we disabled the pre-
tessellation for a close-up view of the VW emblem. In order
to detect deviations in parameters space, we mapped the uv-
coordinates to the red and green color channel. The difference
image 10(c) shows that there are pixel errors at the silhouette and
also slight parameter deviations. In addition, a major advantage
of the proposed three-pass pipeline is the automatic support for
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(a) VW New Beetle

(b) Ducati 1100cc

Fig. 8. These screenshots show the models used for evaluation. Table 1 gives an overview of the contained surfaces. An overview of the trim curves

is shown in Table 2.

Y
)

(a) Trunk (b) No anti-aliasing (c) FXAA

(d) MSAA 2x2

(f) Ground truth

(e) Our approach

Fig. 9. (a) A view on the trunk of the car model. The close-up view of the highlighted region is used to compare different anti-aliasing methods.
(b) Point classification schemes without anti-aliasing, e.g. [6] [25], reveal aliasing at trimmed edges. In comparison with FXAA (c) and shader-based
multi-sampling (d), our approach (e) is faster and even closer to ground truth (f). The corresponding quantitative evaluation is shown in Table 4.

(a) Single pass

(b) Our system (c) Difference image

Fig. 10. (a) A close-up view of the VW emblem (116 patches) rendered
with a single-pass tessellation. Current hardware limitations prevent a
sufficient tessellation. (b) Our pipeline bypasses these limitations using
a pre-tessellation in the estimation pass. (c) The difference image is
shown for the highlighted region in Figure (b).

order-independent transparency (OIT), as shown in Figure 8(b).

A direct comparison to the approach of Claux et al. [6] is
limited to a theoretical discussion because the source code is no
longer available and an equivalent re-implementation seems unfea-
sible due the lack of implementation details and error thresholds.
In terms of image quality, Claux et al. show that their trimming
method produces more visual artifacts (within a given error thresh-
old) than our previous approach [25] which is pixel-accurate. In
this paper, we improved the quality, efficiency and performance of
our previous trimming method. Therefore, we can assume that our
approach results in a better image quality. The performance gain
reported by Claux et al. must be the result of using tessellation
instead of ray casting, because the absolute costs for trimming

are very low. For example, the rendering of the engine model
(see Figure 8(b)) takes about 180ms of which less than 3ms are
spent for trimming. In terms of rendering performance, our three-
pass pipeline allows for much higher tessellation levels and image
quality, but the necessary transform feedback between estimation
and tessellation represents an overhead of about 10-15% compared
to single-pass rendering systems [6].

At last, we evaluated the overall performance of our system.
While regular sized models easily perform at interactive frame
rates, we deliberately used high resolution and complex real-world
models for this evaluation to identify limitations and remaining
challenges. The VW Beetle (see Figure 8(a)) is rendered at about
8-10fps. The view of the Ducati Engine shown in Figure 8(b)
performs at about 6Hz. At first glance, these timings may appear
slow, although we found they are much faster than using a state-
of-the-art CAD application. Figure 12 shows the correspondence
between resolution and draw times for both models. The graph
indicates that the performance benefits only slightly from lower
resolutions even though less triangles are rendered. We think that
the major reasons are bandwidth limitations and a too conservative
computation of tessellation factors. Many tiny details are rendered
even if they are occluded, mostly trimmed (see Figure 11) or result
in a few pixels. For example, the rims of the VW Beetle contain
many surfaces in millimeter scale which are of polynomial degree
13 and more. A single evaluation of these surfaces may require
more than hundred texture look-ups. The development of level-
of-detail methods and occlusion culling techniques for trimmed
NURBS models would be desirable, but remains future work.
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Fig. 11. The symbol on the engine (a) consists of many circular base
surfaces which can be seen in the untrimmed model (b). Most parts of
these surfaces are trimmed.

200
180
160

140
VW Beetle

120 Ducati

Draw time in ms

100

80

960x540 1280x720 1920x1080 3840x2160

Resolution

Fig. 12. This graph shows the relation between rendering resolution and
draw times for the VW Beetle and Ducati engine model.

6.1 Limitations

Our system has still some limitations. As already mentioned,
tiny patches require costly polynomial evaluation even if they are
barely or not visible at all. While this represents no problem for
small and medium-sized models, it is a potential bottleneck with
increasing model complexity.

Furthermore, the computation of the tessellation factors does
not include trimming information. For base surfaces which are
largely trimmed, this may represent a performance overhead.
Figure 11 shows such an example.

The coverage estimation can only be used for the anti-
aliasing of trimmed surface edges. For the silhouettes of a model,
hardware-supported coverage-sampling anti-aliasing (CSAA) is
required. If CSAA is enabled, the rasterization provides a binary
coverage mask for each fragment that indicates which samples are
covered by a triangle. For each of these samples, our algorithm can
perform a binary trim classification to adjust the coverage mask
accordingly. Nevertheless, the classification of many samples
increases processing costs, as shown in Table 4, and it remains
unclear how to perform a robust crack detection on a multisample
framebuffer.

The traversal of the kd-tree uses the domain coordinates only
and does not consider the pixel’s footprint in domain space.
The quality of the coverage estimation will decrease if the pixel
overlaps multiple nodes of the kd-tree. Our method works best
in close and medium distance. For large object distances, filtered
trim textures or quadtree-based level-of-detail [6] representations
may achieve higher image quality.

In few cases, there remain pixel artifacts caused by cracks
which could be fixed by generating a more precise boundary
representation or a more advanced crack-filling technique [5].
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7 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel adaptive rendering system
for large trimmed NURBS models. The system builds on the
following contributions: (1) a memory- and cost-optimized trim
data structure, (2) an in-search point classification algorithm for
trimming, (3) a pixel coverage estimation that allows for anti-
aliasing of trimmed edges, and (4) a three-pass rendering pipeline
that bypasses hardware limitations and thereby allows for finer tes-
sellation levels. The system also integrates the proposed coverage-
estimation based anti-aliasing and order-independent transparency.
The evaluation of our implementation shows that the proposed
two-level data structure used for trimming requires only 50% of
the memory compared to our previous approach and is about 25%
faster. Our coverage-estimation based anti-aliasing for trimmed
edges can produce more accurate results than FXAA and multi-
sampling with only little overhead.

Nevertheless, a performance evaluation of our system using
complex real-world models shows that frame rates may drop
to the borderline of interactivity. The main reasons for this are
high depth complexities and very high bandwidth requirements.
In particular, most industrial models contain very fine details at
millimeter scale. These details require costly computations even
if they are occluded or barely visible. This is a common issue
often referred to as teapot-in-a-stadium problem. Therefore, we
are convinced that occlusion culling techniques and level-of-detail
(LOD) methods for NURBS representations deserve further re-
search. Existing approaches, e.g. [11], are mostly based on the pre-
computation of discrete meshes. A seamless, parametric level-of-
detail representation would help to minimize bandwidth require-
ments. The development of potentially visible sets for trimmed
NURBS models would be limited to static CAD models, but could
highly accelerate the rendering of depth-complex models.
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