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(a) LOD point cloud rendering of
a scanned rock scene

(b) Rendering with highest LOD
quality (20Hz)

(c) Rendering with low LOD qual-
ity (60Hz)

(d) Rendering with high quality
and image warping (60Hz)

Fig. 1. Our hybrid image warping strategy provides effective high frame rates with high image quality. (a) Shows a high-quality rendering
of a level-of-detail (LOD) point cloud. (b) A zoom-in of this image. At this level of quality, conventional stereoscopic rendering is quite
slow. (c) Shows the level of quality achievable at 60Hz with conventional rendering. A much lower level of detail must be used. (d) With
our method, 60Hz is achievable at a higher level of detail. Even with minor warping artifacts, the image quality is significantly better.

Abstract—Modern virtual reality simulations require a constant high-frame rate from the rendering engine. They may also require
very low latency and stereo images. Previous rendering engines for virtual reality applications have exploited spatial and temporal
coherence by using image-warping to re-use previous frames or to render a stereo pair at lower cost than running the full render
pipeline twice. However these previous approaches have shown artifacts or have not scaled well with image size. We present a new
image-warping algorithm that has several novel contributions: an adaptive grid generation algorithm for proxy geometry for image
warping; a low-pass hole-filling algorithm to address un-occlusion; and support for transparent surfaces by efficiently ray casting
transparent fragments stored in per-pixel linked lists of an A-Buffer. We evaluate our algorithm with a variety of challenging test cases.
The results show that it achieves better quality image-warping than state-of-the-art techniques and that it can support transparent
surfaces effectively. Finally, we show that our algorithm can achieve image warping at rates suitable for practical use in a variety of
applications on modern virtual reality equipment.

Index Terms—Image warping, stereoscopic rendering, transparency warping, a-buffer ray casting, image warping strategies, surface
estimation quadtree

1 INTRODUCTION

The real-time generation of realistic imagery remains a consider-
able challenge for any rendering engine. Advancements in graphics
hardware are often compensated by an increasing demand for highly
detailed models, sophisticated shading effects and high display reso-
lutions. Furthermore, immersive 3D displays such as head-mounted
displays (HMDs), 3D monitors or stereoscopic projection systems are
on the verge of becoming standard consumer products. For these dis-
plays, high frame rates and low latency are essential requirements to
prevent simulator sickness and provide smooth interaction. For exam-
ple, the Oculus Rift CV1 is recommending a consistent 90Hz rendering
rate. They also need imagery to be generated for both eyes. As a result,
trade-offs between visual quality and high frame rates become often
necessary.
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Recent HMD frameworks minimize the latency by predicting the
user’s head movements just before display and update the already
rendered image by a 2D warp1. This 2D transformation would be
sufficient for pure eye rotations, but it also works well for head rotations
because they result in only small positional changes of the eyes. For
position changes of the head, 3D image warping involving the depth
buffer is necessary [15]. 3D warping has also been used for stereoscopic
image generation [6]. However, most existing 3D warping approaches
do not scale well with increasing image resolution and are prone to
visual artifacts. Furthermore, existing warping approaches for semi-
transparent surfaces [12] are limited to a single layer.

In this paper, we present novel techniques to increase the scalability,
applicability and visual quality of 3D image warping for stereoscopic
displays. We start by generating an image using an existing deferred
rendering engine which stores opaque fragments in a G-Buffer [21]
and transparent fragments in per-pixel lists of an A-buffer [11]. For
the G-Buffer, an adaptive grid is generated based on the curvature and
continuity of the contained depth image. For the A-Buffer, a min-max
quadtree is built to accelerate backward warping by ray casting. The
current stereoscopic views are generated from a reference image by
combined forward and backward warping using these data structures.
The grid and the min-max quadtree are both independent of the warp
direction and can be used multiple times. Potential artifacts are reduced
by a novel hole-filling strategy.

1https://developer.oculus.com/blog/asynchronous-timewarp-examined/



The main contributions of our approach can be summarized as fol-
lows:

• A hybrid warping approach combining grid reprojection for
opaque pixels and ray casting of semi-transparent fragments

• A GPU-based adaptive grid generation for 3D warping which
results in fewer primitives than other state-of-the-art approaches

• An efficient A-Buffer ray casting accelerated by a min-max
quadtree which is built on-the-fly

• A GPU-based depth-aware, low-pass filter for hole filling which
achieves higher quality than existing algorithms

We demonstrate our algorithms for practical virtual reality scenar-
ios by extending an open-source rendering engine. We provide two
warping strategies, one that is best suitable for mostly static scenes and
one that works better for dynamic scenes. Our implementation shows
that the performance of the warping scales well with high resolutions
due to the adaptive warping grid. Furthermore, it proves that image
warping is not limited to opaque geometry, but can also be combined
with per-fragment programmable transparency. An evaluation shows
that our approach produces better results than other state-of-the-art ap-
proaches and may improve performance as well as latency. In addition,
warping in combination with an output-sensitive rendering system may
also be used to significantly improve visual quality while maintaining
the same frame rate as conventional rendering, as shown in Figure 1.
A user study confirms that in some scenarios users strongly prefer
stereoscopic warping over conventional stereoscopic rendering while
warping artifacts go largely unnoticed.

2 RELATED WORK

Image warping, that is applying geometric transformations to a source
image, is a mature field with several application areas. These trans-
formations often use additional per-pixel information such as depth or
motion. The resulting target image may appear as if it was created for
another perspective. In general, warping is neither injective nor sur-
jective, i.e. the target image may contain artifacts caused by holes and
folds. A survey of rendering systems exploiting temporal coherence
by image warping was given by [22]. Furthermore, image warping has
been used to generate post-processing effects such as motion blur and
depth of field [16].

2.1 Warping of opaque objects
Existing warping algorithms can be categorized by their data-access
pattern: forward-warping algorithms are based on data scattering and
backward-warping approaches are based on data gathering.

The most common data-scattering approach is to render one point
for each pixel in the source image [15] which was also shown for mul-
tiple layered depth images [24]. A problem of this approach is that the
calculated target locations are usually not at discrete pixel locations
and coloring the pixel closest to the calculated position will lead to
aliasing artifacts. Therefore, techniques such as point splatting [30]
were proposed and have been widely used in the context of image
warping. However, transforming each pixel separately does not scale
well with increasing image resolutions. Since adjacent pixels from the
source image often keep their relationship after warping, Chen et al. [4]
proposed to warp such areas as blocks. This idea was improved by
Didyk et al. [6]. Their GPU-based implementation repeatedly subdi-
vides a coarse screen-space grid until all pixels of the grid cells have a
maximum allowed depth disparity. The resulting grid is transformed
and rasterized in the destination image space. For opaque objects, we
follow the idea of using an adaptive grid but provide more efficient
generation schemes.

For data gathering approaches, suitable color information is retrieved
from a single or multiple source images [31] by an iterative search. An
advantage of this method is that no z-buffering is required because
contributing pixels are gathered and composited in one step. Bowles et
al. [2] proposed a search based on a fixed-point iteration. Motivated by
an in-depth analysis of its convergence behavior, they enhanced their

Fig. 2. Visualization of an engine model. Inner parts can be explored
using a see-through lens which requires programmable transparency.

system by using adaptive grid warping to find appropriate iteration
starting points. Another data gathering approach is ray casting. Peek
et al. [18] used basic ray casting into the depth buffer to perform
translational warping for latency reduction of HMDs.

Both, data scattering and data gathering are used by our system.
Data scattering allows for very quick warping of opaque surfaces while
data gathering will be used to composite semi-transparent image infor-
mation.

2.2 Hole Filling

In many cases, there is not sufficient information in the source image
to correctly determine the color of each output pixel. Many strategies
have been proposed either to prevent or fill the resulting holes.

The most common preventive hole-filling approach is to stretch
neighboring texture information over the holes [14]. This results in
artificial geometry, so-called "rubber sheets", spanning the gap between
foreground and background. While this popular method is cost-efficient,
it introduces noticeable artifacts especially in the presence of high
frequencies in the depth buffer. In order to reduce these artifacts, several
works perform a low-pass filtering on the depth-buffer [10, 19, 20, 32].

Reactive hole-filling methods try to fill holes and therefore relate to
image reconstruction [17]. For tiny holes, simple inpainting methods
may be sufficient, for instance, choosing a random neighboring pixel
color [2]. For larger holes, it is possible to extend the boundary color of
a hole in epipolar direction which has similar results as the preventive
rubber sheet approach. Other research focuses on efficient hole-filling
strategies based on ray casting [1]. However, for complex scenes,
performing ray casting for scattered pixels may represent a potential
performance bottleneck. Therefore, we suggest a novel reactive hole-
filling algorithm.

2.3 Warping of semi-transparent objects

Many modern rendering engines are based on deferred shading [21].
The color and geometry information are stored in offscreen render
targets (G-Buffer) which makes the integration of a warping stage
straightforward. If support for transparent objects is required, warping
becomes non-trivial. Blending transparencies before warping results in
visual artifacts, as shown in Figure 7. Works extending the G-Buffer are
limited to a single layer of semi-transparent objects [12]. A potential
solution would be to render and blend transparent objects for each eye
separately.

However, some systems support programmable transparency [23]
which allows for the implementation of advanced 3D interfaces, e.g.
see-through techniques [28] as shown in Figure 2. In such a system,
the opacity of an object is computed on a per-fragment basis. All
opaque pixels are stored in a G-Buffer, while all transparent fragments
are routed into an A-Buffer [3] for later compositing. In this case,
re-rendering transparent objects would usually require re-rendering
large parts of the scene which is, of course, not suitable.
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Fig. 3. The warping follows the application processing and the regular
rendering. It is separated into two parts: A warp-direction independent
preprocessing stage and the re-rendering which performs the actual
warping based on the latest tracking data as additional input.

The A-Buffer is a versatile data structure for storing multiple semi-
transparent fragments per pixel. The generation of this data structure
has been presented before; however, nothing has been published regard-
ing warping of the A-Buffer.

3 SYSTEM OVERVIEW

The proposed 3D warping approach is added to an open-source VR-
system which implements a deferred rendering pipeline and supports
also programmable transparency [Schollmeyer2015]. Opaque pixels
are stored in a G-Buffer while transparent fragments are stored in
an A-Buffer. These two buffers form the basis of the warping stage,
which needs to accomplish three major tasks: a 3D depth image warp
of opaque pixels, the hole filling and the reprojection of transparent
fragments. The costs of these tasks are highly dependent on the image
resolution. We perform preprocessing to generate appropriate data
structures for accelerating re-rendering. The conceptual integration of
such a warping stage into an existing rendering pipeline is shown in
Figure 3.

4 WARP PREPROCESSING

As described in the system overview, the results of the application-
defined rendering pipeline are an A-Buffer and a G-Buffer. These two
buffers are used to build the following data structures: an adaptive warp
grid for opaque pixels and a min-max quadtree storing depth values
for transparent fragments. Both are used to accelerate the subsequent
re-rendering. In particular, the adaptive grid is used for 3D image
warping, while the min-max quadtree minimizes the costs for the ray
casting. However, they do not depend on the warp direction and thus
may be reused multiple times, e.g for both eyes or for multiple frames
in an asynchronous warping system.

4.1 Adaptive Grid Generation
The main goal of this stage is to find blocks of adjacent pixels that
belong to the same almost flat and connected surface patch which can
therefore be safely warped together without producing holes and geo-
metric distortions. At first, we filter the depth buffer in order to find
such surface patches. To allow for parallel processing, the source im-
age’s depth buffer is divided into tiles of a certain size, e.g. 32x32 pixel.
For each tile, a surface-estimation quadtree is constructed bottom-up. A
node in the quadtree only contains information about the connectedness
and flatness of the corresponding area. Didyk et al. [6] derive connect-
edness information from the minimum and maximum depth values of
all represented pixels stored in a quadtree. However, their approach
leads to over-tessellation on surfaces which are connected, but tilted
with respect to the camera, as indicated in Figure 4(a). In contrast,
we provide three reduction strategies to construct a surface-estimation
quadtree which also detects surfaces that are slanted in view space:
cross-kernel surface reduction, partial cross-kernel surface reduction
and irregular grid reduction.

In the following, we will elaborate on these three strategies and then
we will describe how to build an adaptive grid from this tree.

4.1.1 Cross-Kernel Surface Reduction
Instead of storing and comparing absolute depth values or disparities,
this estimate stores in each quadtree node whether all leaves below this
node form a connected surface. For leaf nodes, the four represented

pixels are assumed to be part of a larger flat surface patch if each of
them is collinear with its adjacent pixels in 3D space. This is verified by
a set of collinearity tests L : R3→ B. Each collinearity test is based on
the change of differences between the pixel’s depth di and its neighbors
which is computed as follows:

f (di−1,di,di+1) = |(di−1−di)− (di−di+1)| (1)

Slightly curved surfaces are accounted for by introducing an ε-
tolerance. If f is within this ε-tolerance, the three adjacent pixels
are considered approximately collinear. Thus, a collinearity test L is
defined as:

L(di−1,di,di+1) =

{
true if f (di−1,di,di+1)< ε

false otherwise
(2)

The cross-kernel surface reduction performs two collinearity tests for
each of the four pixels and the corresponding neighbors in horizontal
and vertical direction, as shown in 5(a). If all eight tests are positive,
the four pixels are assumed to form a surface patch.

For all positive tests, the maximum deviation from collinearity is
stored as an estimation error for curved surfaces and accumulated to
higher levels.

The information of whether four pixels form a connected surface can
be safely propagated to higher levels of the quadtree. If all four children
of an inner node are part of a connected surface, they are assumed to
be part of the very same surface, because neighboring patches used
overlapping pixel pairs to check for collinearity. The resulting quadtree
is used to generate an adaptive tessellation in screen space, as shown
in Figure 4(b). At edges, however, the tessellation may be too fine
because the depth discontinuity between the edge and the background
is propagated to the inner nodes. This over-tessellation can be reduced
using the partial cross-kernel reduction.

4.1.2 Partial Cross-Kernel Surface Reduction
In order to detect surfaces close to depth discontinuities, the shape of
the kernel has to be adaptive. Therefore, this reduction strategy assumes
a surface if a group of four pixels is collinear to at least two adjacent
sides, as indicated in Figure 5(b). Using this improved kernel, it is
possible to detect connected surfaces which touch a depth discontinuity.
However, it becomes non-trivial to propagate this information to higher
levels of the quadtree. If two adjacent four-pixel groups form a surface
each, it would still be possible that there is a discontinuity between
them.

Therefore, each quad-tree node uses multiple bits to encode the
connectedness characteristics. Each node separately encodes its con-
nectedness to its left, right, top and bottom neighbor. In addition,
storing this information to its four diagonal neighbors can improve the
warp quality, as described in Section 5.1. Compared to the cross-kernel
reduction, eight additional bits encode the partial connectedness of
each node to its neighbors. Each bit is set if the adjacent pixels in the
corresponding direction are collinear in 3D space. Using this informa-
tion, it is possible to propagate surface information to higher levels in
the quadtree. Each inner node forms a surface if its children are each
part of a surface and they are connected in the corresponding directions.
If that is the case, the node is marked as belonging to one surface and
the connectedness bits of all children are merged by a logical and.

An example quadtree generated by this reduction is depicted in
Figure 4(c). Far fewer primitives are generated which speeds up the
actual 3D warping process.

4.1.3 Irregular Grid Reduction
While the partial cross-kernel reduction already yields much better
results, the number of cells generated can be reduced even further. The
idea is to relax the constraint that each node of the quadtree has to have
exactly four children: The irregular grid will also generate rectangular
cells with an aspect ratio of 2 : 1 in the following way. When four
tree nodes are merged to create a new node on the next level, a merge



(a) Didyk et al. ≈ 9.3k (b) Cross-kernel ≈ 12.7k (c) Partial cross-kernel ≈ 6.7k (d) Irregular grid ≈ 4.3k

Fig. 4. Depth-buffer quad trees for four different collinearity estimation algorithms and the corresponding number of primitives. The approach of Didyk
et al. (a) tends to split inclined surfaces unnecessarily, while the cross-kernel estimation (b) leads to over-tessellation close to depth discontinuities.
The partial cross-kernel estimation (c) yields much better results. The number of generated primitives can be decreased significantly if rectangular
cells are allowed (d).

(a) (b)

Fig. 5. (a) In the cross-kernel surface reduction, a cell of four pixels is
classified as a surface if all eight collinearity tests (marked as red lines)
with the adjacent pixels are true. (b) In contrast, the partial cross-kernel
surface reduction considers a cell of four pixels as a surface if at least
one of the four configurations reports collinearity.
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Fig. 6. Merge modes of the irregular grid: There are eight possibilities of
merging adjacent cells to form a cell with rectangles.

type is assigned based on the connectedness of its child nodes. All
eight possible configurations are shown in Figure 6. Since there are
eight different merge types, three additional bits are required to encode
the merge type of each node. Based on this information, the grid
generation can produce a sparser grid because some adjacent cells will
be merged into one rectangular cell. An example quadtree generated
by this reduction is depicted in 4(d). With this approach, even fewer
primitives are generated.

4.1.4 Building the grid

The reduction strategies are extensions of each other and are only used
separately. Each strategy will result in a different quadtree. The surface-
estimation quadtree is then used to create an adaptive grid in multiple
iterations. Generation starts with a screen-sized grid with the same tile
size used for the generation of the surface-estimation quadtree. Thus,
each cell of the grid corresponds to a quadtree. Then, in each iteration,
the connectedness information and the accumulated estimation error
stored per node are used to decide if a grid cell needs to be split. If
a node is connected but exceeds a certain estimation error threshold,
it is split to avoid geometric distortions during warping. Note that
such a split would not affect the connectedness of the grid because the
continuity information is stored separately. This process is repeated
until the leaf level is reached. The size of the resulting grid cells varies
between one pixel and the initial cell size. The adaptive grid generation
can be efficiently implemented using a mipmap pyramid for storing
the surface-estimation quadtrees and a transform feedback loop for the
multi-pass grid refinement.

(a) Input scene (b) Min-max quadtree

(c) (d) (e)

Fig. 7. For a rendered scene (a), a min-max quadtree is used to ac-
celerate the ray casting of semi-transparent fragments (b). The color
coding shows the number of cells a ray traverses. The anaglyph 3D
images (c) to (e) show the result of three different warping approaches
for semi-transparencies. (c) Using conventional image warping based
on depth values written only by opaque geometry, the glass appears to
be painted on the floor (SSIM=0.885). (d) If semi-transparent geometry
contributed to the depth buffer as well, the floor behind the glass seems
to be part of the glass texture in the warped stereo image (SSIM=0.957).
(e) These artifacts can be avoided using our approach (SSIM=0.975).

4.2 Min-Max Quadtree Generation

Transparent fragments stored in the A-Buffer are re-projected using
ray casting. For each pixel in the destination image, a ray needs to be
generated and transformed into the source image space. These rays
easily reach a considerable length and sampling all pixels along the
ray is not feasible in practice. Furthermore, in single-pass A-Buffer
implementations (e.g. [11]), the fragment data is typically scattered in
memory, which results in incoherent memory access. However, often
only a few samples along the ray will actually contribute to the final
color. Therefore, a min-max quadtree is used to allow for empty space
skipping.

The data structure is generated in two main steps on the GPU. At
first, the minimum and the maximum depth of the semi-transparent
fragments are gathered per pixel. Then, a series of parallel reductions
is performed to create the quadtree bottom-up. On each level, it propa-
gates only the minimum and maximum depth of its four children. The
number of required passes depends logarithmically on the resolution of
the source image. In order to benefit from texture caching, the quadtree
is stored as a mip-map pyramid. The quadtree is recreated every refer-
ence frame. However, it is independent of the warp direction. Once it
is created, it can be used to perform multiple consecutive warps.



(a) Disocclusions (b) Stretched (c) Our method

Fig. 8. Result of different inpainting hole-filling methods for the oilrig
scene.

5 RE-RENDERING

Based on the latest input, the view for each eye is re-rendered in three
stages. In the first stage, the adaptive warp grid is used to reproject
all opaque geometry. In the second stage, the intermediate result is
passed to a low-pass filter to mitigate potential dis-occlusion or aliasing
artifacts. Finally, a ray is generated for each pixel and intersected
with the fragments stored in the A-Buffer to gather and blend all semi-
transparent objects.

5.1 Grid Warping

In this stage, the actual 3D warping of opaque pixels is performed by
applying the warp function to all vertices of the adaptive warping grid,
see Figure 4. In particular, a depth value from the source image is
retrieved for each grid vertex. Using this depth and the inverse view
projection matrix, all grid vertices are re-projected to world space.
Finally, the view projection matrix of the target camera is used to
project the grid vertices to the target camera’s clip space. Since the
projection and view matrices will not change during one warp, the
matrix multiplications can be precomputed to one combined warp
matrix. Thus, only a single matrix multiplication is required to warp a
grid vertex.

However, special attention has to be paid to which depth values are
used. Existing grid warping approaches assume vertices between pixels.
Consequently, adjacent grid cells are properly stitched together as their
corners use the same depth. While this prevents the generation of holes,
foreground and background objects will be connected, which is usually
not desired as it produces similar artifacts as stretched inpainting, see
Figure 8(b). In contrast, placing grid corners directly on pixels would
lead to a large number of micro holes since neighboring grid vertices
do not use the same depth value.

Instead, we use the connectedness information stored in the surface-
estimation quadtree. Grid vertices fetch their depth between pixels, if
the adjacent cells form a connected surface, and directly from pixels,
if there is a depth discontinuity between the cells. At this point, the
connectedness to diagonal neighbors is used as well. The warped grid
produces neither rubber sheets nor an excessive number of micro holes.

Another important challenge in grid warping is the texture filtering
used. When the adaptive grid has been rasterized in target image space,
a texture lookup into the source image has to be performed per fragment.
Since this lookup location will not coincide with source pixel locations,
interpolation becomes necessary. If linear interpolation is used, good
results are achieved on smooth surfaces. At object boundaries, however,
color would bleed between foreground and background. This sub-pixel
effect would cause serious issues with hole-filling strategies, such as
inpainting, because the incorrect color would be extended into the
generated holes. On the other hand, nearest-neighbor filtering prevents
these issues but causes aliasing artifacts on other surfaces.

Our solution to this issue is similar to the presented grid corner place-
ment. The information generated in the preprocessing stage allows for
an adaptive solution: we calculate the appropriate texture coordinates
using the surface-estimation quadtree. If the current pixel is in the vicin-
ity of a depth discontinuity (i.e. none of the corresponding collinearity
bits is set), nearest neighbor interpolation has to be used. Otherwise, a
surface is assumed that requires linear interpolation.

Fig. 9. This example shows five different levels of the filtered image
pyramid. Holes and the foreground object dissolve in higher levels
because only non-hole pixels and pixels with a depth larger than the
kernel average are taken into account for filtering.

5.2 Hole Filling Using Depth-Based Low-Pass Filter

For hole filling, an epipolar search combined with an adaptive low-pass
filtering may increase the visual quality significantly [13]. Mark blurred
the generated stripes with increasing distance from the hole’s boundary.
However, an efficient GPU implementation is far from obvious.

Our solution is to generate multiple low-pass filtered versions of the
intermediate warping result, each version being blurred more than the
previous, as shown in Figure 9. In particular, the filter uses depth infor-
mation to avoid foreground objects from occluding valid background
information. Before averaging the color of pixels within a certain kernel
size, their mean depth is computed. Only pixels which are neither a
hole nor closer to the camera than the average depth are taken into ac-
count. This guarantees that foreground objects are gradually dissolved
by the low-pass filtering. The resulting images are stored in a mip-map
pyramid.

Finally, the mip-map pyramid is used to fill holes caused by dis-
occlusions. The lookup level in the pyramid depends on the distance to
the background border of the hole. This border is searched in epipolar
direction with an exponentially increasing step size. This is possible
because the filter radius is effectively doubled in each layer of the
mip-map pyramid. This yields a very conservative hole border distance
estimate because a precise nearest-neighbor search would be too slow.

5.3 Ray Casting Transparencies in the A-Buffer

The ray casting algorithm performs on the min-max quadtree, see
Section 4.2, and the A-Buffer. The traversal of the min-max quadtree is
inspired by the stackless height-field ray casting algorithm presented by
Tevs et al. [27]. The generated ray enters the min-max quadtree at its
root node. Its exit intersection with the root node is computed in screen
space using the formulas presented by Dick et al. [5]. The quadtree is
traversed until an intersection with a leaf node occurs. Compared to
the original traversal, the algorithm cannot stop, if an intersection is
found. Instead it continues to gather transparent fragments along the
ray until either the accumulated opacity exceeds a given threshold or
the ray reaches the depth of the warped grid.

Thus far, a leaf node can be found efficiently; however, the possibility
to move upwards in the quadtree structure is required in order to find
secondary hits or to regain traversal speed when a ray travels close
to a semi-transparent surface without actually hitting it. We follow
the approach of Tevs et al. to ascend one level whenever the ray start
advances to a boundary which is also a boundary between nodes one
level above. That means, whenever a node has no sibling in the ray
direction, the traversal will ascend one level.

At leaf nodes, the corresponding linked lists from the A-Buffer are
searched for intersections and the retrieved colors along the ray are
composited. In practice, intersecting these fragments would cause
aliasing artifacts because adjacent fragments do not form a water-tight
surface. A ray could pass between them which would result in micro
holes. Therefore, we extrude each fragment slightly in depth and
intersect the resulting box. We make sure that the ray does not hit
any other fragment within the thickness of the box to avoid multiple
intersections with the same surface.
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Fig. 10. Our two proposed image warping strategies. Cyclops warp-
ing from a central perspective (a) and alternate frame warping for two
consecutive frames (b).

6 EVALUATION

As mentioned in Section 3, the presented algorithms were integrated
into an open-source rendering engine [Schollmeyer2015]. This frame-
work implements programmable transparency and is therefore well-
suited for a test implementation. The underlying deferred rendering
pipeline was extended with two different warping strategies, see Fig-
ure 10. Cyclops warping warps a frame from a central rendered per-
spective into the left and right eye. Alternate frame warping exploits
temporal coherence by warping the left and right reference views for
two consecutive frames. Each strategy can be enabled instead of con-
ventional stereo rendering. Depending on the type of interaction and
3D content, both approaches have their advantages and disadvantages
which will be discussed later.

All tests were performed on a 3.33 GHz Intel Core i7 workstation
with 12GiB RAM equipped with a single NVIDIA GeForce GTX 980
GPU with 4GiB video memory. All performance timings were mea-
sured for a rendering resolution of 1920x1080, if not stated otherwise.
The maximum node size for both the surface estimation quadtree and
the min-max quadtree was set to 32x32 pixel. In all tests, except the
comparison of the different surface estimation strategies, the irregu-
lar grid reduction was used for the adaptive grid generation. The test
scenes are depicted in Figure 11.

6.1 Results

A detailed comparison of the timings for the adaptive grid generation
and warping is shown in Figure 12. For all scenes, the proposed
reduction strategies perform much better than the method proposed
by [6] because they produce far fewer primitives. Mostly, the irregular
grid strategy will produce the smallest number of grid cells. However,
a significant difference between our strategies can only be observed for
the extreme hairball scene.

Furthermore, we evaluated the costs for the different warping stages.
The graph, shown in Figure 14, indicates that the performance of most
stages is hardly affected by the scene complexity. Only for the hairball,
the grid generation does not benefit from the adaptive reduction which
results in more primitives that need to be reprojected, as shown in
Figure 13.

We also evaluated the image quality of our adaptive grid warping.
Table 1 shows a comparison of the resulting image errors between
our method and an implementation of [6]. For better comparability,
both methods used our hole-filling approach. The results indicate that
although less triangles are used for warping, the image quality is almost
equal. In two cases, our results are even slightly closer to ground truth.
This is because of two reasons. The adaptive grid generation prevents an

Table 1. This table shows the image warping error for our test scenes.
For all views, the image quality of our approach is almost equal to Didyk
et al. In some cases, it is even slightly better due to the adaptive texture
filtering and the prevention of over-tessellation.

Error metric Dydik et al. Our method

Oilrig PSNR
SSIM

25.4221
0.95673

25.4061
0.95647

Hairball PSNR
SSIM

20.6883
0.90727

20.7276
0.90774

Sponza PSNR
SSIM

35.6339
0.99141

35.8308
0.99148

over-tessellation of slanted surfaces which may cause aliasing artifacts
after reprojection. Furthermore, the adaptive texture filtering at depth
discontinuities improves the quality of the hole-filling. In conclusion,
our method delivers the same quality as Didyk et al. while being
significantly faster (see Fig. 12) in most cases.

In addition, we evaluated how our algorithms scale with increasing
image resolutions. Figure 13 shows that the number of primitives in the
grid increases sublinearly with higher resolutions due to the adaptive
grid generation. The corresponding timings of the different stages are
illustrated in Figure 15. Ray casting and hole filling can be efficiently
performed in a single pass as they both operate on a per-pixel level.
Therefore, the corresponding timings appear as one stage in the graph.
Although, some stages exhibit sublinear behavior, most stages also
include parts that linearly depend on the image resolution, e.g. the
rasterization of the grid and the ray casting.

As shown in Figure 7, ray casting the A-Buffer for warping translus-
cent fragments results in images hardly distinguishable from the ground
truth image. This was also confirmed by the corresponding image error
metrics. The ray casting stage requires less than 1ms for the Sponza
scene with the translucent window gallery, as shown in Figure 14. In
general, the performance may depend on the application scenario. It
is interesting to observe that an increasing warp disparity affects the
performance of the ray casting much more than a high depth com-
plexity of semi-transparent fragments. If per-fragment programmable
transparency is required, ray casting of the A-Buffer is probably the
only suitable option because an efficient forward warping algorithm
for these fragments has not been shown yet. For scenes with constant
per-object opacity values, however, separate rendering and compositing
of semi-transparent objects may be in some cases more efficient than
our approach.

We also evaluated our hole-filling method in comparison to other
approaches. Therefore, we compared warped images with ground
truth images by using various image quality metrics. In the related
literature, other researchers used the peak signal-to-noise ratio (PSNR)
and the structural similarity index (SSIM) [29]. The latter was proven to
correlate better with perceived quality than PSNR [9]. However, we will
present both for better comparability. The results are shown in Table 2.
For the given test scenes, our method provides the highest quality,
but was only about 0.3ms slower compared to stretched inpainting.
The kernel-size of the filter and the reduction heuristic both allow for
tradeoffs between quality and performance.

Finally, we briefly investigated the potential gain in visual quality
when combining our approach with an output-sensitive rendering sys-
tem. For this purpose, we integrated a renderer for level-of-detail point
clouds, similar to [8]. In this system, the performance can be increased
by decreasing the model fidelity. However, if image warping was en-
abled, a higher level-of-detail could be rendered at the same frame
rates. We assumed that the resulting increase in image quality would
outweight potential warping artifacts. Figure 1 shows some results for
a rock scene which consists of about 400 million points at the highest
detail. For the view shown in 1(a), a pixel-accurate stereoscopic ren-



(a) Oilrig (b) Hairball (c) Sponza

Fig. 11. This Figure shows our test scenes with different complexities: The oilrig (a) has some large surfaces, but also many small geometries and
occlusions. The hairball (b) represents a worst case scenario for the grid generation as it has a high frequency of depth discontinuities. For the
evaluation of the ray casting, the standard Sponza scene (c) was extended with galleries of semi-transparent windows.
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Fig. 12. Comparison of different surface estimation strategies.
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Fig. 13. Comparison of number of primitives in the adaptive grid for
different surface estimation strategies.

dering performs at about 20Hz. A corresponding close-up is shown in
Figures 1(b) to 1(d). If a frame rate of 60Hz was required, the neces-
sary decrease of fidelity led to a perceivable loss of detailed features
(SSIM=0.945), as shown in 1(c). In contrast, using image warping, the
resulting image quality loss could hardly be seen (SSIM=0.990).

6.2 User study
The presented algorithms can increase the efficiency, quality and ap-
plicability of stereoscopic rendering via image warping. However,
image warping may introduce visual artifacts which can hardly be
evaluated using quantitative error metrics. Therefore, a user study was
conducted with 16 participants (2 female, 14 males) between 20 and 38
years old, each experienced in 3D computer graphics and the usage of
stereoscopic displays.

6.2.1 Study Design
The users were head-tracked and they could freely move in front of a
27-inch passive stereoscopic display with a resolution of 2560x1440
pixels for each eye. As shown in Figure 17(a), the display employs a
semi-transparent mirror and two monitors with Nvidia G-Sync support.
We chose this display because we did not get access to the raw position
and orientation tracking data of recent HMDs. Furthermore, the perfor-
mance gained by image warping directly results in higher frame rates
without screen tearing because of the adaptive synchronization between

0 1 2 3 4 5

Time in [ms]

Sponza

Oilrig

Hairball

Ray casting & hole filling
Grid warping
Low-pass filtering
Min-max quadtree
Grid generation

Fig. 14. These timings show that all stages perform almost scene-
independently. In the extreme hairball scene, grid generation and grid
warping stages are slower because they do not benefit equally from the
adaptive grid generation. For sponza, the costs for ray casting are slightly
higher because semi-transparent surfaces are visible.

Fig. 15. This graph shows the contributions of the different stages to the
warping time for different resolutions of the oilrig (left) and the hairball
scene (right).

graphics hardware and monitor via G-Sync. The evaluation was per-
formed using conventional rendering and two warping strategies which
are illustrated in Figure 10. The users were asked to rank the different
rendering modes by their preference. They were allowed to indicate
ties because a forced choice may have distorted the result. Furthermore,
the users answered detailed Likert-scale questions about the perceived
pleasantness, performance, image quality and latency while they were
using the system.

Our study was focused on the evaluation of the grid warping and the
hole-filling strategies. There were three different test scenes: the rock
(Figure 16(c)), the oil rig (Figure 16(b)) and a scene with many textured
balls (Figure 16(a)) which were falling on the ground, colliding and
rolling away. The ball scene was chosen to investigate how image
warping is perceived in highly dynamic scenes. In contrast, the rock
and the oil rig scenes are both static scenes and were used to investigate
how image warping is perceived for highly detailed scenes. However,
while the oil rig has a high depth complexity with many potential un-
occlusions, the rock scene is highly realistic with many little features
on the rock. Figure 17(b) shows the average frame rates for all scenes
and rendering modes. The oil rig scene rendered at about 43Hz with



(a) Balls (b) Oil rig (c) Rock

Fig. 16. In the user study, the participants were shown three different scenes: a physics simulation showing many bouncing balls (a), the oil rig (b)
and a highly-detailed rock scene (c). The frame rates for the test scenes in all rendering modes are shown in Figure 17(b).

Table 2. Image quality results for various hole-filling strategies: For each
result, the luminance of the warped image and of a ground-truth image
were compared. Green numbers are the best results for each metric
while red numbers are the worst results.

Error
metric

Rubber
sheets

Stretch
inpaint Our method

Oilrig PSNR
SSIM

24.36
0.92580

24.67
0.94359

25.91
0.95277

Hairball PSNR
SSIM

20.60
0.87819

20.42
0.87642

21.60
0.90650

Sponza PSNR
SSIM

35.45
0.99449

37.41
0.99486

37.63
0.99461

(a) Display setup (b) Performance

Fig. 17. The rendering performance was logged while participants moved
in front of the stereoscopic display (a). The average frame rates and their
standard deviation are shown in (b).

regular stereoscopic rendering and at about 55Hz with warping, the
rock with 18Hz and 26Hz, and the balls scene with 45Hz and 55Hz.
The regular end-to-end latency of our system depends on the frame
rate and ranges from about 70ms at 60Hz to about 105ms at 20Hz and
was measured based on Friston et al. [7]. Furthermore, we limited user
interaction to tracked head-movements to avoid confounding influences
of navigation parameters, viewing angles and potentially varying frame
rates.

Two separate tests were performed. In both tests, the scenes were
shown in random order. In the first test, for each scene the participants
could switch between three render modes in shuffled order: conven-
tional stereoscopic rendering, cyclops warping and alternate frame
warping. In the second test, each scene was rendered using alternate
frame warping and the users could choose between our hole-filling
method and stretching.

6.2.2 Study Results
The results of our study are shown in Figure 18. They indicate that
the participants’ general preferences depend on the scene content. For
the rock scene, both warping approaches were preferred to conven-
tional rendering. For the oil rig, conventional rendering and alternate
frame warping were preferred, while the latter was quite unpopular for

Fig. 18. These are the results for the warping strategy evaluation. The
upper left diagram shows the preferred modes for all participants. If a
user indicated a tie between two preferred modes, both were counted.
The other diagrams show the mean values and standard deviations of
the answers to the detailed questions about the perceived pleasantness,
performance and visual quality.

rendering the ball scene.
The answers to our detailed questions point to the reasons for these

results. The participants replied to these questions on a 5-point Likert
scale ranging from worst (1) to best (5). For the evaluation of the an-
swers, we used two-sided, paired sample t-tests and an α-value of 0.05.
After the Bonferroni adjustment, we obtain statistical significance for
t-values greater than 7.6488 or p-values lower than 0.0166 respectively.

For all three scenes, the general preferences mostly coincide with the
perceived pleasantness. In particular, for the rock scene alternate frame
warping (t(2) = 19.8024, p = 0.0025) and cyclops warping (t(2) =
9.8042, p = 0.01024) were considered significantly more pleasant than
conventional rendering, mainly because both were perceived more
fluent (t(2) = 5011.1, p = 3.9810−8 for alternate frame warping and
t(2) = 51.178, p = 0.0004 for cyclops warping) while no difference in
visual quality was observed. In contrast, many visual artifacts were
noticed for the cyclops warping of the oil rig (p ≈ 0) because of its
high depth complexity and the resulting un-occlusions.

For the ball scene, users found alternate frame warping quite unpleas-
ant compared to conventional rendering (t(2) = 6.8375, p = 0.0207).
The lower update rate of dynamic objects for the alternate frame warp-
ing and the conventional rendering was interpreted as visual artifacts
by many users. Surprisingly, the image errors of cyclops warping were
barely noticed for this scene.

The outcome of the second test, in which we compared the dif-
ferent hole-filling approaches, did not show significant differences.
Preliminary tests on a stereoscopic, projection-based display indicated
that differences are perceivable on larger screens. Further studies are
necessary, but remain future work.

In conclusion, the study confirms that image warping was preferred
to conventional rendering for two of three scenes and visual artifacts
went mostly unnoticed. However, the choice of the warping strategy
highly depends on the dynamics in the scene.



6.3 Discussion and Limitations
In this work, we focused on the development of scalable image-warping
algorithms for high frame-rate, low-latency stereoscopic rendering sys-
tems. We suggested two warping strategies: cyclops warping and
alternate frame warping. Cyclops warping updates the positions of
moving objects in each frame whereas alternate frame rendering has
the disadvantage that it can only update moving objects every second
frame. However, the beauty of alternate frame warping is that it con-
verges to correct and artifact-free images when the user slows down.
Furthermore, additional per-pixel motion information could be used
to improve the warping of dynamic objects [25, 26] for both warping
approaches, but in particular for the alternate frame warping. Although,
this could be added easily for the grid-based forward warping of opaque
pixels, an adaptation of our ray-casting based warping of translucent
fragments is quite intricate. In particular, it would require to reinsert all
dynamic fragments into the A-Buffer at their new positions and thereby
also trigger a recreation of the corresponding min-max quadtree. For
dynamic light sources, per-pixel object ids could be used to reshade
the warped fragments. However, in most modern rendering engines the
shading computations are quite costly. If they would be performed for
each pixel in the target image, grid warping may become a bottleneck
for high resolutions.

The results of the warping process can be further improved by adding
prediction of head movements which is currently not supported in our
system. Prediction could not only minimize the perceived latency;
it would also decrease the warping distance and therefore improve
the visual image quality of the warp. Our approaches can be also
implemented if the rendering of reference frames and warping are
performed asynchronously [25]. However, for an implementation on
a single graphics card effective fine-granular preemption and a high-
priority context are needed. Both are not yet available in OpenGL.

The applicability of our warping approach depends strongly on the
achievable frame rates for rendering the scene, the image resolution and
the complexity of the scene. Figure 15 shows that for today’s image
resolutions of head-mounted displays of around two to three megapixels
for both eyes together (a single display stretching across both eyes is
typically used), the complete warping for the left and right eye can be
performed in two to four milliseconds on current GPUs. If we want to
achieve a frame rate of 90Hz for stereoscopic applications, this leaves
us with only 5.5ms for rendering each eye. If we use warping instead,
and assume a cost of 3ms, we can spend 8ms on rendering one view.
That corresponds to a 45% increase in geometry, shading complexity
or generally visual quality. At the same time the latency is reduced by
8ms (11ms-3ms). This relationship improves for lower frame rates, e.g.
at 60Hz we have about 8ms per eye for regular stereoscopic rendering.
We can spend 13ms on rendering if we use 3ms on warping both eyes.
That corresponds to more than a 60% increase in rendering time for
the scene. At the same time, the latency decreases by about 13ms.
This confirms that the technique is a good match for today’s GPU and
HMD configurations. Figure 15 also reveals that warping would not
be worthwhile on current GPUs if the resolution of the head-mounted
displays increases to 4 or even 8 megapixels. However, we expect that
the performance of the GPUs also increases in lockstep and thus our
techniques will remain useful in the future.

The memory requirements of the presented algorithms are quite
decent. For full-HD resolution, all required intermediate data structures
sum up to 68.6MiB. However, the implementation of an A-Buffer
involves the allocation of a fixed memory budget which may require
hundreds of megabytes depending on the image resolution and the
application scenario.

7 CONCLUSION AND FUTURE WORK

Our algorithms increase the scalability and applicability of image warp-
ing as a means to improve the frame rate and latency of stereoscopic
rendering systems. We presented three novel reduction schemes to
generate a surface-estimation quadtree for a depth image. Based on
the continuity information stored in this data structure, an adaptive
grid for positional image warping is generated. We have shown that
our approach yields fewer primitives than other methods and therefore

decreases the warping overhead. An important feature of our algo-
rithm is that the detected continuity is used to adaptively adjust the
grid vertices’ position and color texture lookup such that both alias-
ing and stretching artifacts are mostly prevented and become almost
imperceptible in head-tracked environments. Furthermore, we suggest
an efficient method for ray casting translucent fragments stored in an
A-Buffer, which integrates well into our warping. Potential artifacts
due to disocclusions are mitigated by a depth-based low-pass filter.

In order to confirm these claims, we integrated two warping strate-
gies based on our algorithms into an open-source rendering engine
and performed quantitative tests considering the image quality and
performance as well as a user study. Performance improvements are
scene-dependent and are typically in the range of 20 to 40% in our
scenarios. Image quality for stereoscopic warping was not significantly
decreased compared to conventional rendering and was hardly noticed
by users in head-tracked environments. The evaluation of our user
study reveals that rendering modes with image warping were preferred
for two test scenarios.

Ray casting the A-Buffer has far fewer disocclusion artifacts than
the forward warping of the depth buffer since the A-Buffer effectively
contains a rasterised version of the complete set of (partially) visible
translucent surfaces. Thus re-rendering the discretized scene descrip-
tion contained in the A-Buffer from a slightly different perspective
works well. It also performs well if the number of visible translu-
cent fragments is limited. However, this approach cannot be easily
transferred to larger scenes of opaque objects with non-trivial depth
complexity since it becomes inefficient to store a discretized version
of the entire scene in a multi-layered G-Buffer even though this would
have the advantage that G-Buffer and A-Buffer could be merged into
one buffer. Nevertheless, we think that there is potential to apply this
idea to a conservative approximation of the potentially visible set of
opaque and transparent objects instead of the entire scene.

Our efficient and high-quality image warping contributes to the
arsenal of practical solutions to respond to the challenges of modern
virtual reality applications such as stereoscopic rendering, effective
handling of transparencies, high frame rates and low latency.
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