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Abstract

It has been established that passwords should, instead of being stored in the clear, be
accompanied by a random value and then processed by a one-way hash function. The
steadily increasing computational capabilities of all attackers has left a severe dent in the
security of this approach. Nowadays, passwords should be hashed with a memory- and
time-consuming algorithm that penalizes attacks which operate on less than the required
memory. This thesis focuses on the implementation of one such algorithm, Catena, which
not only resists all known attacks but also provides a convenient set of distinct properties.

The explanation of the preliminaries of password hashing is followed by an introduction of
all major competitors in the field of memory- and time-consuming password hashing. The
thesis then presents an accentuated summary of the specification of Catena. Finally, the
three applications created during this thesis, a reference implementation of Catena and
two related tools, are elaborated in detail. This includes rationales for the software design as
well as optimized versions of the naive algorithms from the specification. Catena-axungia,
the first related tool, is a unique application that eases the deployment of Catena by
allowing to search for abstract cost parameters with concrete measurements. The second
tool, Catena-Variants, is a modular framework that allows to easily exchange the
components of Catena. This significantly simplifies benchmarking and verification of new
approaches.

ii



Acknowledgements

Foremost, I would like to thank Prof. Dr. Stefan Lucks and PD Dr. Andreas Jakoby for
accepting to review this thesis. Furthermore, I would like to express my sincere gratitude
to Jakob Wenzel, Eik List and Dr. Christian Forler for the continuous support and the
invaluable advise. I am also very grateful to Katharina Spiel and Kearsley Schieder-Wethy
for the final proofreading.

iii



Contents

List of Figures vi

List of Tables vii

List of Listings viii

List of Algorithms ix

List of Acronyms x

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Password Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Galois-Field Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Related Work 20
3.1 PHC Finalists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Notable and Historic PHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Catena 24
4.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Parameter Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



CONTENTS v

5 Implementation 37
5.1 Catena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Catena-axungia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Catena-Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Discussion 52
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A Benchmarks 60
A.1 Galois-Field Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2 Compiler Choice & Optimization Options . . . . . . . . . . . . . . . . . . . 61

B Additional Information 62
B.1 clang Optimization Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of Figures

2.1 Alignment of the final three Karatsuba summands. . . . . . . . . . . . . . . 13
2.2 Alignment of the summands contributing to F . . . . . . . . . . . . . . . . 15
2.3 Summands of the final reduction result R. . . . . . . . . . . . . . . . . . . . 15

4.4 A (3, 2)-bit-reversal graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 A (3, 1)-double-butterfly graph consisting of three layers: vertical (solid

lines), diagonal (dotted lines), sequential and connecting (dashed lines). . . 34

5.1 A (3, 2)-bit-reversal graph altered to match the traversal of the optimization. 41
5.2 The first three rows of a (3, λ)-double-butterfly graph aligned in 2g + 2g−1

blocks of memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Illustration of the class structure created by applying the curiously recurring

template pattern to the function categories of Catena-Variants, where
DefaultAlgorithm, Blake2b1, Blake2b, Gamma and BRG are examples for
concrete functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



List of Tables

4.1 Slightly adapted notational conventions borrowed from [15]. . . . . . . . . . 24
4.2 Overview of the default instances of Catena [15]. . . . . . . . . . . . . . . 26
4.3 Values for the domain identifier d. . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Benchmark comparing BLAKE2b-1 with BLAKE2b on a Intel(R) Core(TM)

i7-3930K CPU @ 3.20GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Recommended parameter sets for average systems. All timings are measured

on an Intel Core i5-2520M CPU (2.50GHz) system [15]. . . . . . . . . . . . 36

A.1 Benchmark of several algorithms for 128 bit Galois-Field multiplication . . . 60
A.2 Runtime of Catena-Dragonfly and Catena-Butterfly with different

compilers (GCC and clang) and optimization levels (O2, O3, Ofast). . . . . 61

B.1 Flags enabled by the optimization levels O2 and O3 of clang 3.5.0. . . . . . 62

vii



List of Listings

2.1 A logical shift of a 128 bit integer v by count bits to the left, where count
< 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 Usage statement explaining the command-line interface of Catena-axungia. 46

viii



List of Algorithms

1 Right-to-left multiplication in a binary Galois Field . . . . . . . . . . . . . . 17
2 Precomputation step for optimized right-to-left multiplication . . . . . . . . 17
3 Multiplication step for optimized right-to-left multiplication . . . . . . . . . 18
4 Repair step for optimized right-to-left multiplication . . . . . . . . . . . . . 18
5 Catena [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6 Function flap of Catena [15] . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 The client-independent-update function [15] . . . . . . . . . . . . . . . . . . 27
8 Catena-KG [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9 The main functions of BLAKE2b-1 and BLAKE2b. . . . . . . . . . . . . . . 30
10 The compress functions of BLAKE2b-1 and BLAKE2b. . . . . . . . . . . . 31
11 The functions SaltMix and xorshift1024star [15]. . . . . . . . . . . . . . 32
12 (g, λ)-Bit-Reversal Hashing (BRHgλ) [15]. . . . . . . . . . . . . . . . . . . . . 32
13 (g, λ)-Double-Butterfly Hashing (DBHgλ) [15]. . . . . . . . . . . . . . . . . . 35
14 Optimized (g, λ)-Bit-Reversal Hashing (BRHgλ) . . . . . . . . . . . . . . . . 42
15 Parameter-Search Algorithm of Catena-axungia . . . . . . . . . . . . . . 47
16 Function get_garlics of Catena-axungia . . . . . . . . . . . . . . . . . . 48

ix



List of Acronyms

API Application Programming Interface

BRG Bit-Reversal Graph

BRH Bit-Reversal Hashing

COTS Commercial Off-The-Shelf

CRTP Curiously Recurring Template Pattern

DBG Double-Butterfly Graph

DBH Double-Butterfly Hashing

GCM Galois/Counter Mode

KDF Key-Derivation Function

PHC Password Hashing Competition

PHS Password-Hashing Schemes

ROM Read-Only Memory

RtL Right-to-Left

SSE Streaming SIMD Extensions

TMTO Time-Memory Tradeoff

x



Chapter 1

Introduction

I’m a little tired of writing about
passwords. But like taxes, email,
and pinkeye, they’re not going
away any time soon.

Jeff AtwoodI

1.1 Motivation

Password security is an ongoing concern for everyone using networked or shared computing
devices. Applying an irreversible hash function to the password has become the common
way to secure stored passwords. The Password Hashing Competition (PHC) [1] was started
in 2013 to collect and curate current password-hashing schemes (PHS). The Catena
password-scrambling framework [15] was one of the six finalists of this competition and is
listed as a special recognition [2].

Security Concerns about Existing Schemes The amount of password leaksII shows
that relying solely on securing the computer that stores the passwords is not enough. While
salting and hashing may have been enough to secure passwords in the past, currently we
face far greater computational power on the side of an attacker. Using modern graphics
cards, an attacker can test billions of hashes per second for regular hash functions [19].
This threat gets worse considering attackers whose budgets surpass those of medium-sized
companies. Passwords that remain infeasible to crack in such scenarios have to be quite
long and vary in character use. Since these passwords are obviously hard to remember, it
is unlikely for all users to voluntarily choose them.

Ihttp://blog.codinghorror.com/your-password-is-too-damn-short/
IIFor example, the credential-monitoring service PwnedList claims to import several thousand leaks per

month. https://pwnedlist.com/stats/landing
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2 CHAPTER 1. INTRODUCTION

An approach to counter large amounts of cracking power is to increase the computation or
the memory required to hash a password. This process is called password scrambling. The
widely available cryptIII-family consists of several time-consuming algorithms [43]. Both,
the attacker and the defender, are slowed down by the increase in required computation. It
is still possible for an attacker to hash several thousand password candidates in the same
time it takes the defender to compute one hash by parallelizing the attack on graphics
cards or other dedicated hardware [19].

Since large chunks of memory per core are available only for CPU computations, increasing
the memory requirement limits the parallelizing capabilities of an attacker without affecting
the defender too much. scrypt was the first password scrambler with variable memory cost
[40]. Since its release, two side-channel attacks against scrypt were found [14, Appendix A].
Another downside of scrypt is its sheer complexity. While the design of Catena is much
simpler, it still allows to adjust both time and memory cost without being vulnerable to
either of the attacks.

Distinctive Properties While the security of an algorithm should always be the greatest
concern when selecting a password-hashing scheme, some scenarios may require certain
features to increase the practical security or usability. Besides allowing to securely hash
passwords under adjustable cost and time requirements, Catena also provides client-
independent updates, keyed hashing and server relief.

The static increase of computation power necessitates, that cost parameters of password-
hashing schemes are updated regularly in order for the hashes to stay infeasible to crack.
While the common way of changing parameters of the authentication process requires to
wait for the next login of the user to compute a new hash with adapted cost parameters,
client-independent updates can update the old hashes without involvement of the client.
Most password-hashing schemes implement client-independent updates by chaining several
invocations, which requires an adapted authentication process and additional storage for
every update. In contrast, Catena allows to treat all password hashes equally irrespective
of whether they have been updated or not. The only additional requirement for these client-
independent updates is a single additional field of storage for the initial cost parameter.
Without this feature, password hashes will have to be deleted after a certain time without
a login from the user. The result is an increased workload for users due to reasons not
obvious to them.

For keyed password hashing, the resulting password hash will be encrypted with a secret
key. This requires not only the password hashes and salts, but also the secret key for any
kind of feasible attacks. If they are stored separately, the attacker has to put more effort
into obtaining all information required for an attack. This is especially useful in case of
backups that can then be stored without great security concern as long as they do not
contain the secret key.

IIIoften referred to as crypt(3)
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The increased time and memory costs of a password-hashing scheme slow down both the
attacker and the defender. The result is that setting specific cost parameters will limit a
server to a certain number of concurrent logins. Server relief offloads most of the work to
the client and therefore increases the throughput of the server. Alternatively, it allows the
defender to increase the cost parameters without affecting the throughput. Only the last
step(finalization) is computed on the server to ensure that the hash sent via the network
is different to the one stored in the database. For Catena, server relief yields the same
hashes as regular hashing; therefore, both methods can be used interchangeably.

Related Topics Key generation and proof of work are often associated with password
scrambling due to similar requirements regarding randomness of the output and the
adaptability of time and memory cost. Forler, Lucks, and Wenzel show in [15] that Catena
is suitable for both. The reference implementation of Catena includes a special interface
for key generation.

Implementation The complexity of current computational devices and the amount of
limiting factors make it impossible to predict the runtime of a memory- and time-consuming
algorithm accurately. Therefore, an optimized implementation is a must to be able to
measure real-world performance. See [8] and [24] as prime examples for benchmark done
in the scope of the PHC.

1.2 Contribution

The first contribution of this thesis was the design, implementation, and optimization of
Catena that resulted in an optimized but still easy-to-grasp reference implementation.
Part of this process was a novel reduction of BLAKE2b hash function to a single round.

The second contribution of this thesis, Catena-axungia, is a unique search tool for
optimal cost parameters. It finds the closest matching cost parameters for provided time
and memory limits. In practical applications of password-hashing schemes, these concrete
measurements are usually more helpful than the rather abstract cost parameters. Besides
allowing the determination of optimal Catena parameters for a system, Catena-axungia
could also be used to update recommended parameters in the future.

The design and implementation of Catena-Variants, a flexible and extendable implemen-
tation of Catena in C++, is the third contribution of this thesis. Catena-Variants allows
to easily exchange several of its components with alternatives, emphasizing the framework
aspect of Catena. Benchmarking tools and a wide range of alternative components are
already included. The flexibility makes it easier to test and verify variants of Catena.
The design and implementation of both Catena and Catena-Variants could serve as a
basis for other password-hashing schemes and similar constructions.
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1.3 Outline

The remainder of this thesis starts with the explanation of the preliminaries necessary to
understand Catena and the implementations in Chapter 2. In Chapter 3, recent and past
password-hashing schemes are presented to provide a reference frame. In particular, it
includes an overview of all other PHC finalists. Chapter 4 contains a detailed explanation
of the Catena password-scrambling framework. The implementation specifics of all three
applications that are part of this thesis are presented in Chapter 5. Chapter 6 concludes
with the discussion of the work presented in this thesis and provides an outlook on future
work.



Chapter 2

Preliminaries

Stop associating “hashed” with
“secure” when it comes to
passwords.

tylerjlI

This chapter contains an introduction to hash functions and password hashing, with an
emphasis on the properties of password-hashing schemes as well as attacks against them.
The third section explains the technical details required for fast and portable implemen-
tations. The rest of the chapter gives an in-depth description of the implementation of
Galois-Field multiplications, which can be used as a fast hash function.

2.1 Hash Functions

A hash function H can be defined as:

H : {0, 1}∗ → {0, 1}n;

H is a deterministic one-way function that maps input values of variable length to output
values of a fixed length (here: nbit). Invoking a hash function is called hashing and
the resulting output values are called hashes. The set of input values, the domain, is
theoretically infinite and the range, i.e. the space that contains all output values, is limited
by the fixed size of the resulting hash. An n-bit hash function can therefore produce 2n

different hashes and the result is a theoretically unlimited set of input values for every
output value. Two or more input values that map to the same hash are called a collision.

Ihttp://blog.tjll.net/please-stop-hashing-passwords/
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Cryptographic Hash Functions A cryptographic hash function h is a hash function
that fulfills the following additional requirements:

1. Pre-Image Resistance: For any specified hash y it is infeasible to find an input x
so that y = h(x).

2. Second Pre-Image Resistance: Given an input value x1, it is infeasible to find a
distinct input x2 so that h(x1) = h(x2).

3. Collision Resistance: It is infeasible to find any two distinct inputs x1 and x2 so
that h(x1) = h(x2).

See [45] for more formal and specific notions of these requirements.

2.2 Password Hashing

Storing passwords only in a hashed form has become the common practice for password-
based user authentication. This ensures that an attacker who gains access to the database
can not easily retrieve the passwords. It is safe to assume that at least some users tend to
reuse passwords or alter them only slightly. A breach that reveals the passwords of these
users puts all of their accounts at the risk of getting compromised.

The minimum requirements for a password-hashing scheme are the same as those for
cryptographic hash functions. Collision resistance is required in order to have a high
probability that a given password yielding the stored hash is the password that was
originally submitted. The pre-image resistance and second pre-image resistance guarantee
that an attacker can not easily recover the password or a collision of it from the password
hash.

It is common practice to add a salt to the password before hashing. A salt is a random
value of fixed length that is stored alongside the password hash in the database [36].
The additional random value restrains an attacker from precomputing all the hashes of a
wordlist or dictionary. While it may still be feasible to hash smaller dictionaries with all
possible salts, the size of the result remains a product of the dictionary size and the length
of the salt; therefore, hashing wordlists becomes less feasible with increasing salt length.
Other time-memory-tradeoff attacks are affected in a similar fashion. Salting also increases
the number of hashes an attacker has to compute when attempting to crack the whole
hash database, because they would have to try every salt with every password candidate.
Analysis of leaked password databases shows that it is common for several users to share a
password [33]. With a reasonably large salt length, it becomes unlikely for two users to
share the same salt. As a result, it becomes improbable that several hashes are cracked
at once because the differing salts will result in different hashes, even for users sharing a
password. Furthermore, salting reduces the danger of collisions. A second pre-image of
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a salted hash only collides with the actual password when using the same salt and hash
function whereas a second pre-image for a unsalted hash can be used as a replacement for
the actual password everywhere where the same hash function is used.

Key Stretching The strength of a password can be measured in bits of surprisalII. An
attacker will need to hash 2µ password candidates to crack a password with µ bit surprisal.
Increasing the computation required for a single hash is called key stretching [29]. If the
work required for a single hash is 2σ, the total computation required to crack a password
hash becomes 2µ+σ. This results in σ bits of pseudo-entropy [32]. The most common
technique for key stretching, found e.g., in some members of the crypt family[43], is the
iteration of a cryptographic hash function. The work of the whole construction can then
be expressed as a factor of the work required for a single call to the iterated hash function.
While key stretching slows down the attacker and the defender equally, it does not prevent
the attacker from parallelizing their attack and thereby reducing the average time per hash
significantly.

Since memory and especially fast cache memory are a much more limited resource on
graphic cards and hardware solutions like ASICs and FPGAs, increasing the memory
requirement of key stretching is an effective way of limiting the parallelization capabilities
of the attacker. scrypt was the first implementation of memory-demanding key stretching
[40].

Memory-Hardness Memory-Hardness is an additional requirement for memory-de-
manding key stretching that limits the complexity of a time-memory-tradeoff -adjusted
algorithm to the overall space and time complexity of the password-scrambling algorithm.
Hence, an attack that reduces the memory to 1/n must suffer a penalty of at least factor
n. The more general notion of λ-memory-hardness was introduced in [14, Chapter 3] and
is defined as follows:

Definition 2.1 (λ-Memory-Hard Function). Let g denote the memory cost factor. For a
λ-memory-hard function f , which is computed on a Random Access Machine using S(g)
space and T (g) operations with G = 2g, it holds that

T (g) = Ω
(
Gλ+1

S(g)λ

)
.

Using this definition, memory-hardness becomes the special case where λ = 1.

The stronger notion of sequential memory-hardness was introduced in [40]. A sequential-
memory-hard function has the additional property that it can not be sped up at all by
parallel computations. This can be achieved by making the access depend on the actual
data as seen in scrypt.

IIoften referred to as entropy
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Client-Independent Update It is fairly safe to assume that the computational power
of the average attacker and the average defender doubles roughly every two years. While
this may decrease the load on the defenders side, it also decreases the security, because the
attacker requires less time to compute a hash. The security of an authentication process
with fixed cost parameters would be halved every two years. Obviously, the defender will
have to update the cost parameters regularly.

The common way to change parameters or hash functions for password hashing is to wait
for the user’s next login. When logging in, the user’s given password is verified with
the hash from the database and afterwards the password is used to compute a new hash
that replaces the old one in the database. Keeping password hashes with outdated cost
parameters in the database poses a risk to the user. Therefore, it is common to delete all
hashes that could not be updated after a grace period. This usually forces a user to start
the same procedure used in case of forgotten passwords. The additional work may annoy
users especially because the reason is out of their reach.

Client-independent updates [14] are an alternative to replacing or deleting password hashes.
Well-designed password-hashing schemes can update hashes that were generated with
outdated cost parameters to new cost parameters without requiring the password. This
allows updating all hashes in a database without a single login of a user. Grace periods and
code branches to consider password updates on login become unnecessary. It is obvious
that this is only possible for schemes that do not require the password for every step.

Server Relief The number of parallel logins that an authentication server, that is using
a PHS, can handle is limited by the cost parameters. This can be a huge burden for busy
or slow servers. Server relief, as defined in [14], allows to offload the majority of the work
to the client. Only a fast finalization step is computed on the server to ensure that the
password hash transmitted from the client is different from the hash stored in the database.
This is necessary because in this scenario the hash computed by the client becomes the
actual password and should therefore never be stored in plaintext. This scenario is virtually
the same as the client generating a very strong password.

While it would be possible to create a dedicated server-relief protocol for almost all password
hashing schemes, incorporating this property into a password scrambler makes it possible
that hashing with server relief and regular hashing yield the same result. Making different
modes of hashing interchangeable increases the flexibility. As an example, in a scenario
with a wide variety of clients, a server could offload the password scrambling only to fast
enough clients and hash the password for all other clients itself.

Keyed Password Hashing For keyed password hashing, the password hashes are
encrypted with a secret key [14]. Storing the key separately from the database increases
the effort required for an attacker. For a successful attack, they requires not only password
hash and salt, but also the secret key. If the key is stored on a hardware security module,
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an attacker without hardware access to the server will most likely fail. Without investing
in such a module, a defender could also generate the key during the bootstrapping phase
and from then on, keep it in the RAM or a register of the CPU. Retrieving keys that are
never stored on the hard disk is far more complicated and requires extensive knowledge of
the system.

As long as the key is kept separate, databases containing only keyed hashes can be stored
without greater concerns about security. This is especially useful for backups as it poses
no additional security requirements for backup servers.

Key-Derivation Keys for symmetric-key algorithms are often derived from passwords
using a Key-Derivation Function (KDF). It is easy to see that KDFs face similar threats as
password-hashing schemes. Since PHS usually have a limited output size, using one for key
generation can be a problem when requiring larger keys or when multiple keys should be
derived from one password. Hence, only password-hashing schemes that allow an arbitrary
output length can be used for key generation. Multiple keys generated from one password
should be independent from each other since an attacker should not be able to derive one
key from the other.

Proof of Work Proof-of-work systems require a certain amount of work from the client as
a measure to limit the use of a resource. This can be used to prevent overuse, e.g., spamming
or denial of service [13], or to create an artificial rarity for so-called cryptocurrencies [37].
To prove the execution of the work, the client has to solve a problem that is either known
in advance or posed as a challenge by the server.

When using cryptographic hash functions for proof-of-work systems, a challenge could be a
hash y and a part x1 of its random input x [28]. The client then has to find the rest of the
input x2 so that h(x1 || x2) = y. The server can then compare the hash of x1 || x2 from
the response to the previously stored y from the challenge.

Hashcash [3] is a common approach for a foreknown problem. The sender has to provide a
string s that, when hashed together with the recipient’s address a and the timestamp t,
results in a hash starting with a fixed number of zero bits. For the verification, the server
checks a and t for validity and then verifies that the hash of a, t and s starts with the
specified number of zero bits. Requiring a timestamp or nonce is important to prevent
the client from reusing the solution. Proof-of-work systems with a foreknown problem are
easier to integrate into existing protocols since they affect only a single step.

The two aforementioned approaches to proofs of work can be used with password hashing
schemes instead of regular cryptographic hash functions. The clear advantages of using
a PHS are the additional performance parameters in form of the cost parameters of the
scheme. With the parameter choice, an otherwise time-bound proof-of-work system could
be adjusted to require memory and time. It is important to note that, as with all search
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tasks, the work required for finding a specific input or output of a hash function or PHS can
differ greatly between different clients depending on the precise task or search approach;
therefore, the amount of work should be defined for the average case.

2.3 Attacks

Brute-force search is the naive of cracking password hashes. The attacker tries all possible
combination of characters from a specified character set. This is obviously only feasible for
a limited number of characters. Excluding all characters that are not part of a specific
language or keyboard layout can improve this approach drastically. Another improvement
can be gained by statistically analyzing passwords and then performing the search starting
with the most likely characters at this position or alternatively in this contextIII.

As mentioned before, it is common for multiple users to share the same password [33].
An experienced attacker will be able to predict at least some of these poorly chosen
passwords. Even a large list of these predictions can be processed faster than all brute-
forced combinations of more than a few letters. A regular dictionary could serve as a
starting point for such a wordlist. Further improvement is possible by trying to predict the
adjustments made to conform to the corresponding password policy.

Time-Memory-Tradeoff Attacks The first kind of time-memory-tradeoff (TMTO)
attacks allow a reduction of the runtime in exchange for an increased requirement of storage
space or memory. An attacker that plans to conduct several attacks can gain a significant
advantage by hashing the password candidates in advance. The actual attack is reduced to
a simple comparison between the precomputed hashes and the hashes from the database.
The already significant amount of storage required to store all the hashes is drastically
increased by salting. Precomputing may stay still be feasible for smaller salt sizes and
small dictionaries or limited length brute-force attacks. It is also possible to reduce the
amount of storage in exchange for a more time-consuming comparison process [39].

The second kind of TMTO attacks require a password hashing scheme that can be run
with a reduced amount of memory. By reducing the required memory the attacker is able
to hash more password candidates in parallel. A memory-reduced algorithm could also
depend less on cache memory and therefore run faster on devices with a smaller cache.
Memory-hardness (see Definition 2.1) quantifies the magnitude of disadvantage suffered
from the tradeoff. Biryukov and Khovratovich present a set of TMTO attacks against
data-independent password hashing schemes in [5]. For one instance of Catena, Catena-
Dragonfly, the attack uses wisely chosen intervals in every level that can be computed
mostly independently. This allows to reduce the memory-hardness of Catena-Dragonfly
to significantly less than λ.

IIIsee for example hashcat’s markov attack: https://hashcat.net/wiki/doku.php?id=statsprocessor

https://hashcat.net/wiki/doku.php?id=statsprocessor
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Side-Channel Attacks An attack that uses side effects of an implementation to gain
additional information is called side-channel attack. Usually, this requires access to the
defender’s machine. The design decisions of some password-hashing schemes make side-
channel-free implementations very slow or even impossible.

When running a spy process on the defender’s system, the attacker can log the order in
which the implementation of the PHS accesses the memory [14, Appendix A]. The spy
process needs to run on the same CPU as the target process and must be able to interrupt
it. The cache-timing attack consists of first flushing the cache after the filling step of
the PHS by reading from memory. After or during the computation phase the process
measures the time it takes to access different parts of the memory. This reveals which
parts of the memory were read by the target process. For schemes whose memory accesses
depend on the password or a direct derivative thereof, the access pattern could be used to
filter password candidates. The attacker can calculate the access pattern of the candidates
and compare them to the one measured before. This allows the set of candidates to be
drastically narrowed without having to compute full password hashes. It is easy to see that
filtering password candidates is less demanding then computing a full password hash and
is therefore better parallelizable.

An attacker able to gain access to the memory used by a password-hashing scheme after or
during its run can conduct a garbage-collector attack [16]. The attacker can use the internal
state received from this attack as a replacement for the final hash. All computations of the
PHS during the search for the password can then be stopped at the step at which the state
was retrieved. The threat gets worse when the memory contains the password or a direct
derivative of it. If the function that is used to derive the password is drastically faster to
compute than the password hash, the attack is called weak garbage-collector attack [16].

2.4 Implementation

Intrinsics The most common extension to regular x86-CPU instructions are the Stream-
ing SIMD Extensions (SSE) and their successors SSE2, SSE3 and SSE4. The latest of these
extension sets, SSE4, is available on all modern desktop CPUsIV. They add support for
128-bit registers and include a broad range of instructionsV. Some of these instructions sim-
ply provide regular operations for the larger registers and others provide access to complex
operations. The successors AVX and AVX2 include support for 256-bit registers. Another
extension is the set of pclmulqdq instructions. They allow the carry-less multiplication of
two 64-bit multiplicands in one operation. These extensions can be called using intrinsic
functions or intrinsics for short.

IVhttp://en.wikipedia.org/wiki/SSE4#Supporting_CPUs
Vhttps://software.intel.com/sites/landingpage/IntrinsicsGuide/

http://en.wikipedia.org/wiki/SSE4#Supporting_CPUs
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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Endianess Currently, there exist two approaches for storing the bytes of a word: Little-
endian systems store the bytes starting in the smallest address ordered after ascending
significance [31]. In big endian, the order is reversed. C and C++ code can be written
mostly without any concern about the endianess of the system; only the conversion between
datatypes and arrays differs between both conventions.

2.5 Galois-Field Multiplication

Galois-Field multiplications can be used as a fast compression function and is an option for
hashing in Catena-Variants. Binary Galois Fields, i.e. finite fields with an order that is
a power of two, are especially suited for fast implementations because their coefficients
can be represented as bits and addition in the field is equivalent to XOR. The rest of
this section explains two approaches for implementing fast multiplications in the Galois
Field GF (2128) with the reduction polynomial f(z) = z128 + z7 + z2 + z + 1 from the
Galois/Counter Mode (GCM) [35]. The first approach uses pclmulqdq instruction and
other extensions specific to modern x86-CPUs to speed up the computation. The second
approach is a generic approach that does not require any specific CPU.

The special properties of a binary Galois Field lead to the operations being carry-less. In
this context, subtraction is the same as addition and can therefore be replaced with XOR.
Multiplication of a polynomial Q with an monomial of degree g is the equivalent to a left
shift of Q by g bit.

For this section, let Q denote the integer, i.e. the vector of bits, that represents the element
Q(z) of the binary field. Furthermore, let Q0 to Qm−1 denote the m = d n64e 64-bit words
of the n-bit integer Q where Q0 is the lowest word. The n bits of Q are indexed from the
least significant bit q0 to the most significant bit qn−1. These bits represent the coefficients
of the element Q(z). A bitwise logical left shift or right shift will be denoted as � and �,
respectively.

Karatsuba Multiplication Both approaches presented in this section benefit from
splitting up the multiplication into 64-bit multiplications. The general approach restricts
the multiplicand size to 64 bits, i.e. the largest avaiable datatype, because splitting data
into several variables requires costly workarounds for computations that require the data
in its entirety. While there are datatypes larger than 64 bit avaiable on computers with
extended instruction sets, the pclmulqdq instruction limits the size of its multiplicands to
64 bit.

The Karatsuba algorithm [22, section 2.2.2] allows to compute a 128-bit multiplication
with the help of just three 64-bit multiplications and a few additional operations instead of
the four multiplications required by a naive algorithm.
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Let A and B be the 128-bit multiplicands that can be decomposed into

A = (A1 � 64) +A0

B = (B1 � 64) +B0.

The multiplication of A and B can then be performed as

A ·B = ((A1 � 64) +A0) · ((B1 � 64) +B0)

= ((A1 ·B1)� 128) + ((A1 ·B0 +A0 ·B1)� 64) +A0 ·B0.

The second summand can be rearranged as

A1 ·B0 +A0 ·B1 = (A1 +A0) · (B1 +B0)− (A1 ·B1 +A0 ·B0).

This reduces the total amount of required multiplications to the following three:

C = A1 ·B1,

D = A0 ·B0,

E = (A1 +A0) · (B1 +B0).

Substituting these into the middle summand yields

A1 ·B0 +A0 ·B1 = E − (C +D).

The whole multiplication then becomes

A ·B = (C � 128) + ((E − (C +D))� 64) +D.

E1 − C1 +D1 E0 − C0 +D0

=

D1 D0

C1 C0

+

+

X3 X2 X1 X0

≪ 128

≪ 64

Figure 2.1: Alignment of the final three Karatsuba summands.
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The following computation of the result of the multiplication can be derived from Figure 2.1:

X3 = C1,

X2 = E1 − C1 +D1 + C0,

X1 = E0 − C0 +D0 +D1,

X0 = D0.

Note that addition and subtraction can both be performed by XOR in binary Galois Fields.

Reduction The 256-bit result X has to be reduced after the multiplication to become
an element of the Galois Field. This process can be drastically simplified from polynomial
division to a series of shifts and adds.

The order of the field is m = 128. The reduction polynomial (modulus) f(z) = z128 + z7 +
z2+z+1 can then be written as f(z) = zm+z7+z2+z+1. Substituting r(z) = z7+z2+z+1
yields f(z) = zm + r(z). Due to the nature of the modulo operation, only the coefficients
with a degree larger than m are affected by the reduction. For example, the element qa · za

with a ≥ m is reduced by

qa · za mod f(z) ≡ qa · za−m · r(z) mod f(z)

≡ qa · za−m+7 + qa · za−m+2 + qa · za−m+1 + qa · za−m+0 mod f(z);

consequently, the reduction of X(z) mod f(z) becomes:

x2m−2 · z2m−2 + · · ·+ xm · zm + xm−1 · zm−1 + · · ·+ x1 · z + x0 mod f(z)

≡ (x2m−2 · zm−2 + · · ·+ xm) · r(z) + xm−1 · zm−1 + · · ·+ x1 · z + x0 mod f(z).

The largest possible degree after this reduction is (m − 2) + degree(r(z)). This would
require an additional reduction, but the commutative property allows to evade it. First,
only the summands that would have a degree larger than or equal to m after the reduction
are reduced and added to X. Then the reduction of the full polynomial is performed. For
the GCM modulus f(z), the maximal degree after the first reduction is 126 + 7 = 133.
This means that only the third word X2 is affected by the first step.

The auxiliary variable F , i.e. the updated X2, can be computed as shown in Figure2.2:

F = X2 + (X3 � 64) + (X3 � (64− 1)) + (X3 � (64− 2)) + (X3 � (64− 7)).

Since (X3 � 64) is empty, this can be simplified to:

F = X2 + (X3 � 63) + (X3 � 62) + (X3 � 57).
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X3 X2 X1 X0

X3 X2

X3 X2

X3 X2

X3 X2

+

=

≪ 0

≪ 1

≪ 2

≪ 7

+

+

+

F

Figure 2.2: Alignment of the summands contributing to F

X3 X2 X1 X0

X3 F

X3 F

X3 F

X3 F

+

=

≪ 0

≪ 1

≪ 2

≪ 7

+

+

+

R1 R0

Figure 2.3: Summands of the final reduction result R.

Figure 2.3 shows the final alignment from which the result of the reduction R can then be
derived as

R1 = X1 +X3 + ((X3 � 1) + (F � 63)) + ((X3 � 2) + (F � 62))

+ ((X3 � 7) + (F � 57)),

R0 = X0 + F + (F � 1) + (F � 2) + (F � 7).

Intrinsics Specifics A detailed description of implementing multiplication and reduction
using pclmulqdq instruction (see Section 2.4) and other intrinsics can be found in [21]. The
Karatsuba algorithm and the reduction are performed as described above. The pclmulqdq
instruction is used to compute the 64-bit multiplications. Some steps can be reduced when
using 128-bit instructions.

Since all commonly available instruction sets lack the support for bitshifts by values that
are not a multiple of 8, the effects of a bitshift have to replicated by a series of operations.
To emulate the left shift of a variable V by cbit, both 64-bit words of the variable are
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shifted independently to the left:

V1 = V1 � c

V0 = V0 � c.

The part of the lower word V0 that is shifted out can be reconstructed by right-shifting a
copy of it. This reconstruction is then XORed to the higher word V1:

V1 = V1 ⊕ (V0 � (64− c)).

Listing 2.1 shows an exemplary implementation. For c > 64, the emulation can be simplified
to

V1 = V0 � (64− c)

V0 = 0,

but this case does not occur when reducing with the GCM modulus.

1: __m128i s l l128 (__m128i v , uint8_t count ) {
2: __m128i r e s u l t , tmp ;
3: r e s u l t = _mm_slli_epi64(v , count ) ;
4: tmp = _mm_slli_si128(v , 8) ;
5: tmp = _mm_srli_epi64(tmp , 64 − count ) ;
6: r e s u l t = _mm_or_si128( r e s u l t , tmp) ;
7: return r e s u l t ;
8: }

Listing 2.1: A logical shift of a 128 bit integer v by count bits to the left, where count < 64.

Generic Specifics Support for the pclmulqdq instruction can be found only in x86
processors built after 2010. To support other architectures or x86 processors without this
feature, a generic implementation is required. The only requirement for this approach is a
compiler with support for 64-bit datatypes. Since those are a part of the C99 standard,
they should be widely available [26]. The Karatsuba algorithm and the reduction can be
performed exactly as described above. Due to the absence of the pclmulqdq instruction,
the carry-less multiplication has to be implemented for this approach.

The main idea behind implementing carry-less multiplications can be derived from the
following equation:

A(z) ·B(z) = am−1 · zm−1 ·B(z) + · · ·+ a1 · z1 ·B(z) + a0 ·B(z).

Any multiplication of B(z) with zi is the same as left shifting B(z) by this amount. Since
any ai can only be 0 or 1, the value of any summand is either zero or B shifted by the
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respective amount. This approach is called right-to-left multiplication [22, section 2.3.2]
when processing the bits of A from right to left as displayed in Algorithm 1.

Algorithm 1 Right-to-left multiplication in a binary Galois Field
Input: A,B : Multiplicands, m : Multiplicand Size
Output: R : Result of Multiplication

1: R← 0
2: for i from 0 tom− 1 do
3: if ai = 1 then
4: R← R⊕B
5: end if
6: B � 1
7: end for
8: return R

For 64-bit multiplications, B is already represented by largest available datatype. Shifting
B will increase its size to two words and make additional operations neccessary for every
step that involves B. The bitwise processing slows this approach down even more.

A common optimization for Galois-Field multiplications is the precomputation of windows
[22, section 2.3.2]. For a window of size w, the results of the multiplication of B with all
possible w-bit values is computed. The comparison then becomes a simple lookup of the
current w-bit window of A. The right-to-left approach described above would require to
shift all precomputation results. Since those consist of two words each, the shifts would
become especially expensive.

A faster approach for carry-less multiplication is described in [7]. By limiting the pre-
computed values to a single word, the disadvantages of right-to-left multiplication for
precomputation can be circumvented. The ensuing repair step is less expensive than shifting
two words at each step. For the precomputation step shown in Algorithm 2, the possible
values of the window are treated as integers and used as the indices of the corresponding
result.

Algorithm 2 Precomputation step for optimized right-to-left multiplication
Input: B : Multiplicand, w : Window Size
Output: u : Vector of Precomputed Results

1: u[0]← 0
2: u[1]← B
3: for i from 2 to 2w − 1 in steps of 2 do
4: u[i]← u[i� 1]� 1 . Restricted to the size of the word
5: u[i+ 1]← u[i]⊕B
6: end for
7: return u

Algorithm 3 shows the multiplication step. Extracting the window from A in Line 4 is
performed by shifting the current window to the right into the least significant bits and
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then applying a bitmask 2w − 1 that zeros everything but the last w bit. The resulting
integer can then be used for a lookup in u.

Algorithm 3 Multiplication step for optimized right-to-left multiplication
Input: A,B : Multiplicands, w : Window Size, u : Vector of Precomputed Results
Output: R′ : Intermediate Result

1: R′0 ← u[a ∧ (2w − 1)]
2: R′1 ← 0
3: for i from w to 64− 1 in steps of w do
4: tmp← u[(A� i) ∧ (2w − 1)]
5: R′0 ← R′0 ⊕ (tmp� i)
6: R′1 ← R′1 ⊕ (tmp� (64− i))
7: end for
8: return R′

The bits omitted from the precomputed values have to be restored in a repair step to get
the correct result of the multiplication. Only the highest word of R is affected by this.
Furthermore, only the w − 1 highest bits of B are omitted during the precomputation and
only the 1-bits could affect the result. A value v from the precomputation causes one of
these 1-bits b64−j to be shifted out only if v has a 1-bit which is at least as far away from
the beginning of the window as the distance j of b64−j from the end of the word. For the
repair step, this means that for every 1-bit aj′ with j′ mod w ≥ j the bit b64−j has to be
added to the result at position r64+j′−j .

The bits aj′ can easily be extracted from A by using a bitmask. For values j′ mod w ≥ 1,
the bitmask has to extract all bits except for the first bit of every window. It must therefore
consist of a pattern of one 0-bit followed by (w− 1) 1-bits starting with the least significant
bit. Instead of adding b64−j to all positions r64+j′−j , the vector of extracted bits can be
shifted by j bit to the right and XORed to the highest word of the result. It is easy to see
that this step can be skipped if b64−j is 0.

Algorithm 4 Repair step for optimized right-to-left multiplication
Input: A,B : Multiplicands, w : Window Size, R′ : Intermediate Result
Output: R : Result of the Multiplication

1: R← R′

2: k ← ¬(1 + 2w + 22·w + . . .+ 2b 64−1
w
c·w) . mask

3: for j from 1 to w − 1 do
4: if b64−j then
5: R1 ← R1 ⊕ ((A ∧ k)� j)
6: end if
7: k ← k ∧ (k � 1) . exclude all bits j′ : j′ mod w = j
8: end for
9: return R
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An improved implementation will have a fixed window size w, which allows to precompute
the mask once and embed it into the code. The condition checking if b64−j is 1 can be
replaced by a bitmask to prevent branching.

The optimized algorithm (Algorithm 3 and 4) prevents side-channel attacks that gain
additional information about the multiplicands by measuring the computation time. The
use of precomputation and bitmasks instead of branching makes the computation time of
the optimized algorithm independent of the multiplicands, whereas the naive algorithm
(Algorithm 1) takes varying amounts of time, because it contains a condition that depends
on the 1-bits of one multiplicand.

There are further possible improvements to Galois-Field multiplications. Most of them
apply only to multiplications with larger degrees or with one constant multiplicand. Left-
to-right multiplication, i.e. processing the bits from left to right instead, is useful in
combination with precomputation since only the result has to be shifted instead of copying
and shifting the precomputed values [22, section 2.3.3]. The advantage of left-to-right
multiplication is lost when restricting the precomputed results to a single word since
shifting the result alone requires as many operations as the additions in Lines 5 and 6 of
Algorithm 3. For multiplication without the Karatsuba algorithm, the precomputed values
could be restricted to the size of the multiplicands by directly reducing them [22, section
2.3.3]. Brent et al. suggest to perform two lookups at once in line 4 of Algorithm 3 [7].
gf2xVI takes this approach a step further by unrolling the loop altogether. Though, both
approaches yielded no improvement in our benchmarks (see Section A.1).

VIgf2x is the implementation of [7]: http://gf2x.gforge.inria.fr/

http://gf2x.gforge.inria.fr/


Chapter 3

Related Work

So please don’t throw away PHC!

Daniel J. BernsteinI

Research on password hashing and key derivation has spawned several different schemes
over the years. This chapter provides an overview of current and past approaches. The
current password hashing schemes are represented by all finalists and some noteworthy
non-finalists of the Password Hashing Competition (PHC) [1].

Forler et al. provide an overview of all candidates with a detailed analysis of the weakness to
side-channel attacks [16]. Results for several mechanical test as well as various benchmarks
of the finalists can be found in [8].

3.1 PHC Finalists

This section covers all nine finalists of the PHC [2] with the exception of Catena, which
is described in depth in Chapter 4. From these schemes, the competition panel selected
Argon2 as the winner and gave special recognition to Catena, Lyra2, Makwa and yescrypt
[2].

The versioning and ordering are borrowed from the official candidate list [2]. Please be
aware that this section reflects the state of the candidates during the winner selection stage
of the competition. Further tweaks were not considered since the finalization phase of the
competition is still ongoing at the time of writing this thesis.

Argon2 In May 2015, Argon2 was accepted as a late addition to the competition,
replacing ArgonII; both are specified in [4]. The two variants of Argon2, Argon2d and
Argon2i, differ only in their memory-access pattern. Argon2i features data-independent

Ihttp://article.gmane.org/gmane.comp.security.phc/2462
IIhttp://article.gmane.org/gmane.comp.security.phc/2963
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memory access to be secure against side-channel attacks. Argon2d’s memory accesses
depend on previously computed data similar to scrypt. This allows Argon2d to reach
reasonable memory hardness in fewer passes than Argon2i. Both variants rely on BLAKE2b
and additionally on a compression function that is based on the round function of BLAKE2b
[46].

In addition to allowing to adjust the time and memory costs, Argon2 has a parameter p
for the maximum degree of parallelism. It should be noted that the memory cost can be
adjusted in fine-grained steps of 4p kilobyte. Moreover, Argon2 features keyed hashing,
server relief and a variable output that allows it to be used as a KDF. The specification
suggests a way of implementing Client-independent updates for time and memory cost,
that would require to change the authentication process for every update.

battcrypt battcrypt is a memory-hard PHS that was designed to be easily implementable
in PHP [50]. battcrypt relies on SHA-512 and, similar to bcrypt [44], on Blowfish. battcrypt
extends bcrypt’s concept of a PHS with adjustable time cost to also include adjustable
memory cost. The memory-hardness is achieved by using a data-dependent memory access
pattern. battcrypt includes a dedicated interface allowing to create outputs of any size for
key derivation.

Lyra2 Lyra2 achieves memory-hardness by applying a sponge construction to the entries
of a memory matrix [25]. There are three options for the sponge function: BLAKE2b
or one of two modifications of BLAKE2b that include multiplications. The size of the
matrix and thus the memory requirement can be adjusted in two dimensions allowing to
adjust the memory access for different cache sizes. The required computation time can be
controlled by changing the number of iterations. Lyra2p is a special variant that supports
parallelism with shared memory. Since there is no restriction on the output size, Lyra2 is
well-suited for key derivation.

Makwa The Makwa password-hashing scheme is based on squarings modulo a Blum
integer n [42]. The prime factors of the integer can either be erased or used as additional
secrets. If they are known, the computation of the squarings becomes significantly faster;
therefore, the security of Makwa depends on the secrecy of the factors. Since squaring is
a purely computationally expensive task, Makwa’s memory requirements are negligible.
The time cost can be adjusted by changing the numbers of squarings required. The novel
process awards Makwa with two distinctive properties: escrow and delegation. Escrow
refers to the possibility that certain configurations of Makwa allow to efficiently recover the
password when the prime factors of n are known. Delegation allows the defender to safely
offload some of the required computation to an untrusted third party, e.g., a computational
cloud. Makwa can be configured to hash its large output with HMAC-DRBGIII to obtain

IIIHMAC-DRBG is usually a Deterministic Random Bit Generator, but is used for hashing in Makwa
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a hash of smaller size. This makes it possible to use the server relief seen in other PHS
instead of delegation. On the other hand, hashing the output of Makwa renders client-
independent updates impossible.

Parallel Parallel is a simple scheme for chaining hash-function calls [51]. It allows to
adapt the computation cost by setting the number of iterations. Parallel includes a variant
for key derivation.

POMELO POMELO is based on three state-update functions [53]. One of these
functions uses data-dependent memory access. The size of the state and the number of
iterations and therefore the time and memory cost can be adjusted independently. A slight
modification allowing POMELO to generate keys of arbitrary size is suggested in the paper.
While the paper describes a way of implementing client-independent updates, the approach
requires changing the hashing process for every parameter update.

Pufferfish The Pufferfish password-hashing scheme is a modern adaption of bcrypt with
the addition of data-dependent memory access [20]. In contrast to the similar scheme
battcrypt, Pufferfish uses a modified blowfish that works on 64-bit words and relies on
HMAC_SHA512. Memory cost, time cost and output length are freely adjustable, which
allows to use Pufferfish for key derivation.

yescrypt The yescrypt PHS is a backwards-compatible extension of scrypt and inherits
its sequential memory-hardness and most of the structure [41]. In comparison to scrypt,
yescrypt can optionally use a freely adjustable amount of read-only memory (ROM), that
can be shared between different threads. yescrypt extends scrypt’s parallelization by also
allowing a mode where several threads operate on the same memory.

3.2 Notable and Historic PHS

The first widely used password-hashing scheme for Unix was crypt [43]. The original
implementation used the lowest 7 bit of each of the first eight characters of the password
as a key for DES and then encrypted a constant string with it. This construction had
properties similar to a cryptographic hash function. The obvious limitations of crypt have
motivated several successors. Most of those are based on an adjustable number of iterations
over a cryptographic hash function.

A noteworthy successor of crypt is bcrypt[44]. It is based on 64 iterations of a modified
blowfish cipher. The modifications of the cipher allow to adjust the computational cost of
the scheme by altering the key schedule.
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The first sequential memory-hard PHS, scrypt, was presented by Percival in 2009 [40].
It was also the first password-hashing scheme that allowed to adjust memory and time
costs. scrypt achieves its memory-hardness by deriving the memory access pattern from
the data itself. The memory-demanding step is followed by a call to PBKDF2. This allows
scrypt to inherit PBKDF2’s property of arbitrary output length and its suitability for key
derivation. The optional parallelism is achieved by computing several memory-demanding
steps in parallel.

BRG-Based Catena-Dragonfly is not the only PHC candidate that relies on a bit-
reversal graph (BRG) for memory access. Rig also uses a BRG for half of its memory
accesses [9]. The sequential memory-hard schemes TwoCats and SkinnyCat combine a
data-dependent memory access pattern with a data-independent access pattern based on a
BRG to counter cache-timing attacks [11].



Chapter 4

Catena

Avoiding cache timing attacks is
desirable, and Catena shows how
to do it.

Bill CoxI

The Catena password-scrambling framework is specified in [15]. This chapter summarizes
the paper by Forler, Lucks, and Wenzel and accentuates certain details that are important
for the implementation (see Chapter 5). The rest of this chapter uses the notation defined
in Table 4.1, which is mostly identical to the one used in [15]. Please be aware that the
notation for vertices and garlic has been altered slightly.

Identifier Description

pwd password
F memory-hard function replaced in a particular instance of Catena
λ security parameter of F (depth)
s salt (public random value)
t tweak
d domain (application specifier) of Catena
V unique version identifier
γ public input (e.g., salt)
glow lowest garlic
ghigh highest garlic
H underlying cryptographic hash function
H′ reduced version of H
n output length of H and H′ in byte
m output length of Catena in byte
Γ function depending on the public input γ
h, y password hash (or intermediate hash)
vj

i i-th vertex of the j-th row/BRG
kvj

i i-th vertex of the j-th row of the k-th DBG
τ Bit-Reversal Permutation
σ function determining the index of the diagonal edges (DBG)
AD associated data
K secret key
|X| size of X in bits or size of a set X

Table 4.1: Slightly adapted notational conventions borrowed from [15].

Ihttp://article.gmane.org/gmane.comp.security.phc/489
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4.1 Specification

The Catena framework consists of the main algorithm Catena, the work function flap
(see Algorithm 6) and several functions and modes that extend its functionality.

Algorithm 5 Catena [15]
Input: pwd : Password, t : Tweak, s : Salt, glow : Min. Garlic, ghigh : Max. Garlic, λ :

Depth, m : Output Length, γ :Public Input
Output: x : Hash of the Password

1: x← H(t || pwd || s)
2: x← flap(dglow/2e, x, γ, λ)
3: for g from glow to ghigh do
4: x← flap(g, x || 0∗, γ, λ)
5: x← H(g || x)
6: x← truncate(x,m)
7: end for
8: return x

The Catena Function The main function shown in Algorithm 5 takes eight inputs:
pwd, t, s, glow, ghigh, λ, m and γ. The password pwd is chosen by the user. Salt s and
public input γ are random values that are determined before invoking Catena. For most
applications it is possible to use the same value for γ and s. The cost parameters and the
output length m are fixed values of the authentication process, where glow (minimal garlic)
and ghigh (maximal garlic) determine the memory usage, and λ denotes the depth of the
underlying graph and therefore the time cost. The tweak t is computed as:

t← H(V ) || d || λ || m || |s| || H(AD),

with V being a unique version identifier and d being a 1-byte domain identifier. The
parameters λ, m and |s| are 1-byte values denoting the depth of the graph, the output
length in byte and the salt length in byte. The values of V for the default instances (see
Section 4.3) are given in Table 4.2. All currently defined values for d can be obtained from
Table 4.3. AD is a custom string of associated data that should contain information that
is unique to the authentication process. The tweak can be made unique for every user by
adding, for example, the user ID. In this case the tweak can function - similar to the salt -
as a random public input. The hash function H used to hash AD and V , depends on the
instance. While the presented tweak structure is employed by all default instances (see
Section 4.3), adapting the tweak for custom variants of Catena is possible.

The main algorithm (see Algorithm 5) starts by computing the hash of the tweak, the
password, and the salt. This allows to erase the password from memory after this step.
To provide resistance against weak garbage-collector attacks (see Section 2.3), the hash is
then processed once by the work function flap with half of the memory cost. After this
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Name F H ′ V

Catena-Dragonfly BRHgλ BLAKE2b-1 “Dragonfly”
Catena-Dragonfly-Full BRHgλ BLAKE2b “Dragonfly-Full”
Catena-Butterfly DBHgλ BLAKE2b-1 “Butterfly”
Catena-Butterfly-Full DBHgλ BLAKE2b “Butterfly-Full”

Table 4.2: Overview of the default instances of Catena [15].

Mode d

password scrambling 0
key derivation 1
proof of work 2

Table 4.3: Values for the domain identifier d.

step neither the password nor any easy-to-compute derivative of it remain in memory. The
main loop executes three steps for every value g from glow to ghigh. First, the flap function
is called with the memory-cost parameter g. If m is less than n, x needs to be padded
with 0’s to fit the output size n of the underlying hash functions H and H ′. The output
of flap is then hashed together with g and finally truncated to the m least significant
bits. Performing the hashing and truncation every iteration is essential for the support of
client-independent updates (see Section 2.2).

Algorithm 6 Function flap of Catena [15]
Input: g : Garlic, x : Value to Hash, γ: Public Input, λ : Depth
Output: x : Intermediate Hash Value

1: v−2 ← x⊕ 1
2: v−1 ← x
3: v0 ← H(v−1 || v−2)
4: for i from 1 to 2g − 1 do
5: vi ← H ′(vi−1 || vi−2) . initialize the memory
6: end for
7: v ← Γ(g, v, γ) . one row with γ-based memory accesses
8: x← F (g, v, λ) . memory-hard function
9: return x

The flap Function The actual work is managed by the flap function shown in Algorithm
6. Γ and F require 2g ·n bits of memory v to operate on, where g denotes the current garlic.
The internal state v is initialized in Lines 1 to 6 with a sequential chain of derivatives of
the input value x. Afterwards, the Γ function, which uses γ-based memory access, is called.
The final step of flap is the application of the memory-hard function F to v.
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Actual Functions and Values The actual functions used for H, H ′, Γ and F as well
as the value V (from the tweak) depend on the instance of Catena. The default instances
are presented in Section 4.3.

4.2 Features

This sections shows that Catena supports all the desirable features listed in Section 2.2.

Algorithm 7 The client-independent-update function [15]
Input: h : Old Hash, ghigh : Old Max. Garlic, λ : Depth, m : Output Length, γ :Public

Input, g′high : New Max. Garlic
Output: h′ : Updated Hash

1: h′ ← h
2: for g from ghigh to g′high do
3: h′ ← flap(g, h′ || 0∗, γ, λ)
4: h′ ← H(g || h′)
5: h′ ← truncate(h′,m)
6: end for
7: return h′

The Client-IndependentUpdate Function Any hash computed with Catena can
be updated with a client-independent update. The function that updates a hash h with
an outdated memory-cost parameter ghigh to a new hash h′ with a larger memory cost
parameter g′high can be seen in Algorithm 7.

The Server-Relief Function Server-relief (see Section 2.2) can be implemented by
omitting the Lines 5 and 6 from Algorithm 5 in the final iteration of the loop, i.e. when
g = ghigh. The client sends the resulting x to the server, which then computes

h = truncate(H(g || x),m)

to get the final hash h. H and truncate are far less computationally expensive than flap
and their memory requirement is negligible.

The Key-Derivation Function Catena can be extended to support generating keys
of arbitrary length. This mode is called Catena-KG and presented in Algorithm 8. The
key identifier I allows to generate different and independent keys of length ` from the same
password. In case that several keys are required at once, the invocation of Catena in Line
1 can be separated from the rest of the computation and x can be kept in memory as long
as new keys are required. Please be aware that the domain identifier d of the tweak t′ is 1
for key derivation.
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Algorithm 8 Catena-KG [15]
Input: pwd : Password, t′ : Tweak, s : Salt, glow : Min. Garlic, ghigh : Max. Garlic, γ :

Public Input, ` : Key Size, I : Key Identifier, λ : Depth
Output: k : `-Bit Key Derived from the Password

1: x← Catena(pwd, t′, s, glow, ghigh, λ, n, γ)
2: k ← ∅
3: for i from 1 to d`/ne do
4: k ← k || H(i || I || ` || x)
5: end for
6: return truncate(k, `) . truncate k to the first ` bits

Keyed Password Hashing For keyed password hashing (see Section 2.2) with Catena,
encryption and decryption are the same operation, which is defined as:

y = x⊕H(K || userID || g || K),

where x is the value to encrypt or decrypt, K denotes the secret key and userID is a unique
and user-specific identification number. For regular Catena without server relief, the
encryption is applied after Line 7 in Algorithm 5. Keyed server relief can be implemented
by encrypting h. During client-independent updates, the old hash h has to be decrypted
before Line 1 of Algorithm 7. The new hash h′ must then be encrypted after Line 6.
Note that the decryption during client-independent updates uses the old garlic g and the
encryption uses the new garlic g′.

Proof of Work The approaches for proof-of-work systems presented in Section 2.2 can
be used with Catena without any changes to the algorithm. For the challenge approach,
the input that the client has to find could be either the saltII or a password.

Flexibility It is possible to adapt the Catena framework to different environments. For
a scenario that requires the computations to be parallel, part of the salt could be kept
secretII. Then, the attacker and defender would have to guess the correct salt. The search
for the correct salt can be done in parallel with the restriction that b parallel threads
increase the memory requirement by a factor of b. A different scenario that requires the use
of a specific hash function, e.g., because it has optimized implementations for all involved
system, could be satisfied by a custom instance of Catena.

Security The fundamental security of the Catena framework is described by its pre-
image security (see Section 2.1) and its pseudorandomness. Pseudorandomness denotes
the property that an attacker can not gain any significant advantage at distinguishing
Catena from a random function. Chapter 4 of [15] shows that Catena inherits both

IIThe secret part of the salt is also referred to as pepper
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security properties from the underlying hash function H. The pseudorandomness property
also holds for Catena-KG, where it is a mandatory property [15, Chapter 8].

Catena provides resistance against the two major classes of side-channel attacks for
password-hashing schemes, garbage-collector attacks and cache-timing attacks (see Section
2.3). While security against garbage-collector attacks also depends on the implementation,
Catena allows implementations to safely erase the password from memory very early
in the algorithm (after Line 1 of Algorithm 5). The measures taken to defend the
reference-implementation against garbage-collector attacks are explained in Section 5.1.
The resistance against cache-timing attacks comes from the the data-independent memory
access pattern.

The memory-hardness (see Definition 2.1) of Catena depends on the actual instance and
is therefore discussed in Section 4.3.

4.3 Instances

This section specifies the four default instances of Catena: Catena-Dragonfly, Catena-
Butterfly, Catena-Dragonfly-Full and Catena-Butterfly-Full, as well as the
functions BLAKE2b-1 and SaltMix, that are both shared between multiple instances.

All instances operate on the memory filled in the flap function. The values in the internal
state v are first updated based on the salt and then by using a memory-access pattern based
on a given graph, where the memory blocks can be seen as the vertices of the underlying
graph. Each block is as long as the output length of the hash function(s). In the concrete
instances, this results in a block size of 512 bit.

BLAKE2b-1 BLAKE2b-1 is a modification of BLAKE2b that reduces the number of
rounds from 12 to one. It is used by two of the default instances, Catena-Dragonfly
and Catena-Butterfly, for H ′. For BLAKE2b-1, all invocations of H ′ need to be
augmented with the index of the vertex that is currently computed. The differences between
the HashFast function that consitutes BLAKE2b-1 and the main BLAKE2 function of
BLAKE2b are shown in Algorithm 9. Please note that the later is abstracted from the
pseudocode given in the IETF draft [46]. The functionality is split into blake2b_update

and blake2b_final in the reference implementation of BLAKE2b [38].

As shown in Line 1 of Algorithm 9(b), the state S gets initialized for every execution of
BLAKE2, whereas BLAKE2b-1 initializes the state only once every few invocations. For
the default instances, the number of invocations that reuse the same Blake2b-1 state is
derived from the underlying graph structure. Reusing the state between executions assures
that 12 iterations of BLAKE2b-1 are as close as possible to BLAKE2b. Table 4.4 shows
that reusing the state also significantly reduces the computation time.
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HashFast
Input: I1 : Input1, I2 : Input2, v : Vertex

Index
Globals: S : BLAKE2b state
Output: h : Hash

1: S.buf ← I1 || I2
2: S.buflen← 128
3: increment_counter(S, S.buflen)
4: set_last_block(S)
5: r ← v mod 12
6: compress(S, r)
7: h← S.h
8: return h

(a) BLAKE2b-1

BLAKE2
Input: I : Input Array, l : Input Length in

Byte, m : Output Length
Output: h : Hash
1: blake2b_init(S, m) . init state
2: for i from 0 to (bl/128c − 1) do
3: S.buf ← I[i]
4: S.buflen← 128
5: increment_counter(S, S.buflen)
6: compress(S)
7: end for
8: S.buf ← I[bl/128c] || 0∗
9: S.buflen← l mod 128

10: increment_counter(S, S.buflen)
11: set_last_block(S)

12: compress(S)
13: h← S.h
14: return h

(b) BLAKE2b

Algorithm 9: The main functions of BLAKE2b-1 and BLAKE2b.

Algorithm Median clocks per byte
BLAKE2b-1 2.44
BLAKE2b-1 without initialization 0.86
BLAKE2b 9.81

Table 4.4: Benchmark comparing BLAKE2b-1 with BLAKE2b on a Intel(R) Core(TM) i7-3930K
CPU @ 3.20GHz.

BLAKE2b-1 uses the functions blake2b_init, increment_counter and set_last_block

from the BLAKE2b reference implementation without any modification. The blake2b_init

function creates a parameter block P with the default settings for sequential hashing and
the specified output length. The output length is fixed to 64 byte for BLAKE2b-1. The
state S is then zeroed and the chain value S.h is set to IV ⊕ P, where IV denotes the
initialization vector of BLAKE2b. S.t, the 128-bit input-length counter, is incremented
by increment_counter. The function set_last_block sets the the lower word of the
finalization flag S.f to 264 − 1, i.e. all bits to 1.

The fixed input length of 128 byte allows BLAKE2b-1 to omit the handling of longer inputs
(Line 2 to 7 of Algorithm 9(b)) as well as the padding done in Line 8. Another change
from BLAKE2b to BLAKE2b-1 is the additional computation of the round index in Line 5
of Algorithm 9(a).

The compression functions of BLAKE2b and BLAKE2b-1 are shown in Algorithm 10.
The only difference is the omission of the loop in BLAKE2b-1. The G function, the
initialization vector and the message schedule are the same as in BLAKE2b. For BLAKE2b
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and BLAKE2b-1, σ denotes the message schedule and should not be confused with the
function σ of Catena-Butterfly.

compress
Input: S : BLAKE2b State, r : Round Index
Globals: IV : Initialization Vector,

σ : Message Schedule
1: v[0 . . . 7]← S.h
2: v[8 . . . 15]← IV
3: v[12, 13]← v[12, 13]⊕ S.t
4: v[14, 15]← v[14, 15]⊕ S.f

5: s[0 . . . 15]← σ[r mod 10][0 . . . 15]
6: v ← G(v, 0, 4, 8, 12, S.buf [s[0]], S.buf [s[1]])
7: v ← G(v, 1, 5, 9, 13, S.buf [s[2]], S.buf [s[3]])
8: v ← G(v, 2, 6, 10, 14, S.buf [s[4]], S.buf [s[5]])
9: v ← G(v, 3, 7, 11, 15, S.buf [s[6]], S.buf [s[7]])

10: v ← G(v, 0, 5, 10, 15, S.buf [s[8]], S.buf [s[9]])
11: v ← G(v, 1, 6, 11, 12, S.buf [s[10]], S.buf [s[11]])
12: v ← G(v, 2, 7, 8, 13, S.buf [s[12]], S.buf [s[13]])
13: v ← G(v, 3, 4, 9, 14, S.buf [s[14]], S.buf [s[15]])

14: S.h← S.h⊕ v[0 . . . 7]⊕ v[8 . . . 15]

(a) BLAKE2b-1

compress
Input: S : BLAKE2b State
Globals: IV : Initialization Vector,

σ : Message Schedule
1: v[0 . . . 7]← S.h
2: v[8 . . . 15]← IV
3: v[12, 13]← v[12, 13]⊕ S.t
4: v[14, 15]← v[14, 15]⊕ S.f
5: for r from 0 to 11 do
6: s[0 . . . 15]← σ[r mod 10][0 . . . 15]
7: v ← G(v, 0, 4, 8, 12, S.buf [s[0]], S.buf [s[1]])
8: v ← G(v, 1, 5, 9, 13, S.buf [s[2]], S.buf [s[3]])
9: v ← G(v, 2, 6, 10, 14, S.buf [s[4]], S.buf [s[5]])

10: v ← G(v, 3, 7, 11, 15, S.buf [s[6]], S.buf [s[7]])
11: v ← G(v, 0, 5, 10, 15, S.buf [s[8]], S.buf [s[9]])
12: v ← G(v, 1, 6, 11, 12, S.buf [s[10]], S.buf [s[11]])
13: v ← G(v, 2, 7, 8, 13, S.buf [s[12]], S.buf [s[13]])
14: v ← G(v, 3, 4, 9, 14, S.buf [s[14]], S.buf [s[15]])
15: end for
16: S.h← S.h⊕ v[0 . . . 7]⊕ v[8 . . . 15]

(b) BLAKE2b

Algorithm 10: The compress functions of BLAKE2b-1 and BLAKE2b.

SaltMix All default instantiations of Catena use SaltMix for Γ (see Line 7 of Algorithm
6). The function SaltMix, as defined in Algorithm 11, updates the state array v using
salt-dependent accesses; hence, γ is set to s. In contrast to the functions used for F ,
memory access pattern of SaltMix changes with the salt and is therefore most probably
different for every user.

SaltMix updates the state array v 2d3g/4e− 1 times. For every update, it gets two random
values j1 and j2 from xorshift1024star [52], extracts the g most significant bits from
both and then updates the state word vj1 to H ′(vj1 || vj2).

The algorithm xorshift1024star is a statistically sound random-number generator that
works on a 1024-bit state of 16 64-bit words. As shown in Line 1 of Algorithm 11(a), the
state is initialized with the two 512-bit values H(s) and H(H(s)).

4.3.1 Catena-Dragonfly & Catena-Dragonfly-Full

Catena-Dragonfly and Catena-Dragonfly-Full use SaltMix for Γ and (g, λ)-bit-
reversal hashing (BRHgλ) for F . While Catena-Dragonfly uses BLAKE2b for H and
BLAKE2b-1 for H ′, Catena-Dragonfly-Full uses BLAKE2b for both.

BRHgλ is defined in Algorithm 12 and an example of the underlying (g, λ)-bit-reversal
graph (BRGg

λ), where g = 3 and λ = 2, is shown in Figure 4.4. The edges of the graph
and therefore the memory accesses of the algorithm are calculated using the bit-reversal
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SaltMix
Input: g : Garlic, v : State, s : Salt
Output: v : Updated State
1: r ← H(s) || H(H(s))
2: p← 0
3: for i from 0 to 2d3g/4e − 1 do
4: (j1, r, p)← xorshift1024star(r, p)
5: (j2, r, p)← xorshift1024star(r, p)
6: j1 ← j1 � (64− g)
7: j2 ← j2 � (64− g)
8: vj1 ← H ′(vj1 || vj2 )
9: end for

10: return v

(a) SaltMix

xorshift1024star
Input: r : State, p : Index
Output: idx : Current Index
1: s0 ← rp

2: p← (p + 1) mod 16
3: s1 ← rp

4: s1 ← s1 ⊕ (s1 � 31)
5: s1 ← s1 ⊕ (s1 � 11)
6: s0 ← s0 ⊕ (s0 � 30)
7: rp ← s0 ⊕ s1
8: idx← rp · 1181783497276652981
9: return (idx, r, p)

(b) xorshift1024star

Algorithm 11: The functions SaltMix and xorshift1024star [15].

permutation τ . An additional edge connects the last vertex vj2g−1 of the j-th row with
the first vertex vj+1

0 of the (j + 1)-th row. The function τ is defined as the reversal of the
binary representation of a number. The computation of each vertex vji (Line 4) depends
on the previous vertex vji−1 or vj−1

2g−1 and vj−1
τ(i) .

Since only two rows are required for every computation, the notation for the algorithmic
representation can be simplified. In Algorithm 12, ri denotes the i-th vertex of the current
row and is therefore equivalent to vji from the graph representation. The previously
computed row is denoted by the vector v without any superscript.

A BRGg
λ has λ+1 rows with 2g vertices each. Since the first row is filled by the initialization

step of flap (Lines 1 to 6 of Algorithm 6) and updated by Γ (Line 7 of Algorithm 6),
computing BRHgλ takes λ · (2g − 1) invocations of H ′ and λ invocations of H. Because of
their 1024-bit input size, BLAKE2b and BLAKE2b-1 need only one compression function
call per invocation.

Catena-Dragonfly is proven to be memory-hard (in terms of λ-memory-hardness:
1-memory-hard) with only minor improvements from increasing λ [15] [5].

Algorithm 12 (g, λ)-Bit-Reversal Hashing (BRHgλ) [15].
Input: g : Garlic, v : State Array, λ : Depth
Output: x : Password Hash

1: for j from 1 to λ do
2: r0 ← H(v2g−1 || v0)
3: for i from 1 to 2g − 1 do
4: ri ← H ′(ri−1 || vτ(i))
5: end for
6: v ← r
7: end for
8: return r2g−1
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Figure 4.4: A (3, 2)-bit-reversal graph.

4.3.2 Catena-Butterfly & Catena-Butterfly-Full

Similarly to the variants of Catena-Dragonfly, both variants of Catena-Butterfly
set Γ = SaltMix and H = BLAKE2b. However, Catena-Butterfly and Catena-
Butterfly-Full use (g, λ)-double-butterfly hashing (DBHgλ) for F . Catena-Butterfly-
Full sets H ′ = H, whereas Catena-Butterfly additionally employs BLAKE2b-1 for
H ′.

Figure 4.5 shows an example of the graph that double-butterfly hashing is based on with
g = 3 and λ = 1. A double-butterfly graph (DBG) is a G-superconcentrator, i.e. it has q
vertex-disjoint paths that connect any subset of size q of its G input nodes with any subset
of size q of its G output nodes with q ≤ G [6].

Let DBGg
λ denote a graph consisting of λ stacked DBGs with 2g vertices in each row and let

kvji be the i-th vertex in the j-th row of the k-th DBG. For double-butterfly hashing, each
vertex kvji of the graph is calculated from three different inputs: its vertical predecessor
kvj−1
i , its sequential predecessor kvji−1 or kvj−1

2g−1 and the vertex given by the diagonal
connection kvj−1

σ(g,i,(j−1)). The function σ is defined as

σ(g, i, j) =

i⊕ 2g−1−j if 0 ≤ j ≤ g − 1,

i⊕ 2j−(g−1) otherwise.

Algorithm 13 defines the resulting (g, λ)-double-butterfly hashing. The notation for the
algorithmic representation has been simplified similarly to BRH. The vectors r and v

denote the j-th and the (j − 1)-th row, respectively.

A (g, λ)-double-butterfly graph consists of λ double-butterfly graphs with 2 · g rows that in
turn consist of 2g vertices each. Since two adjacent graphs share one row, the total number
of rows in the graph is (λ · (2 · g − 1)) + 1. Hence, the computation of DBHgλ requires
(λ · (2 · g− 1)) · (2g − 1) invocations of H ′ and λ · (2 · g− 1) invocations of H. This does not
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Figure 4.5: A (3, 1)-double-butterfly graph consisting of three layers: vertical (solid lines), diagonal
(dotted lines), sequential and connecting (dashed lines).

include the computation of the first row that is done by the flap and SaltMix functions
for all default instances.

XORing the first two inputs of H or H ′ (Lines 3 and 5 of Algorithm 13) ensures that the
complexity of the calls to H and H ′ is the same for DBHgλ and BRHgλ. The recommended
hash functions BLAKE2b and BLAKE2b-1 both work with a block size of 1024 bit so
that one invocation of the hash function requires only one invocation of the compression
function.

Lengauer and Tarjan established time-memory tradeoffs for a stack of λ superconcentrators
that conform with λ-memory-hardness [30] [15]. Since a (g, λ)-double-butterfly graph is
just a specific G-superconcentrator, their analysis holds for (g, λ)-double-butterfly hashing
and therefore, for Catena-Butterfly and Catena-Butterfly-Full.

4.4 Parameter Recommendation

Practical applications of Catena, like authentication processes or key generation, require
the choice of one specific instance with fixed cost parameters to ensure interoperability.
While it is possible to update the cost parameters retrospectively, the initial cost
parameters as well as the updated ones have to be chosen carefully.
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Algorithm 13 (g, λ)-Double-Butterfly Hashing (DBHgλ) [15].
Input: g : Garlic, v : State Array, λ : Depth
Output: x : Password Hash

1: for k from 1 to λ do
2: for j from 1 to 2g − 1 do
3: r0 ← H(v2g−1 ⊕ v0 || vσ(g,0,(j−1)))
4: for i from 1 to 2g − 1 do
5: ri ← H ′(ri−1 ⊕ vi || vσ(g,i,(j−1)))
6: end for
7: v ← r
8: end for
9: end for

10: return v2g−1

Instances For scenarios that do not require a λ-memory-hardness with λ > 1 and
scenarios that require a fast memory fill rate, Catena-Dragonfly is preferable to
Catena-Butterfly. Please note that while it wont increase the memory-hardness by
much, choosing a λ ≥ 2 for Catena-Dragonfly drastically decreases the risk of garbage-
collector attacks. Catena-Butterfly has the advantage of achieving λ-memory-hardness.
In scenarios that require a high time-memory tradeoff, it is therefore recommended to use
Catena-Butterfly. An attacker that reduces the memory by a factor of ten will need
10λ times more effort to compute DBHλg .

In addition to increasing the time cost by increasing λ, it is also possible to use Catena-
Butterfly-Full or Catena-Dragonfly-Full that both take longer to compute than
Catena-Butterfly or Catena-Dragonfly, respectively.

Cost Parameters The lower limits for g and λ can be derived semantically from
Algorithm 12 and 13 as 1. Setting g = 0 or λ = 0 would result in the omission of loops and
therefore alter the hashing process significantly. It can be derived from Algorithm 5 that
glow ≤ g holds. Since glow is also used as the garlic for one iteration of the loop in Lines 3
to 7 of Algorithm 5, it has the same restrictions as g and therefore glow > 0 must hold.

While there is no upper limit for both g and λ, implementations might restrict them
for performance improvements. For example, support for garlic values larger than 63 on
modern 64-bit systems requires a more complicated approach on memory management.

The cost parameters are not only limited by the upper and lower limits but also by the
hardware and the time designated for the process. Thus, they should obviously always be
chosen for the most restricted or the busiest system involved. It is common practice to
select cost parameters that are only just bearable to prevent any unnecessary advantage
for an attacker. Forler, Lucks, and Wenzel set the time limit for tolerability to about 0.5 s
for authentication and 5 s for key derivation [15]. Table 4.5 shows cost parameters for all
default instances that match these restrictions on current commercial off-the-shelf (COTS)
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Password Hashing
Algorithm glow/ghigh λ Time
Catena-Dragonfly 21/21 2 0.51 sec
Catena-Dragonfly-Full 18/18 2 0.31 sec
Catena-Butterfly 16/16 4 0.46 sec
Catena-Butterfly-Full 14/14 4 0.30 sec

Key Derivation
Catena-Dragonfly-Full 22/22 2 3.90 sec
Catena-Butterfly-Full 17/17 4 4.75 sec

Table 4.5: Recommended parameter sets for average systems. All timings are measured on an Intel
Core i5-2520M CPU (2.50GHz) system [15].

computers. The memory requirements posed by these recommended parameters are at
most about 128Mb for authentication and about 256Mb for key-derivation and should
therefore be of no concern for modern COTS systems. Note that the continuously rising
computational power will lead to these recommendations becoming outdated in just a few
years.

Busy servers or systems that significantly differ from COTS computers might require
individually adjusted cost parameters. Adapting the cost parameters to technological
progress also requires to determine suitable parameters. Catena-axungia (see Section
5.2) allows to search for optimal parameters under given time and memory constrains for
the default instances.



Chapter 5

Implementation

[. . .] it is also important to use a
fast implementation, since the
whole concept of slow hashing is
a muscle contest between the
attacker’s machine and the
defender’s machine.

Thomas PorninI

This chapter focuses on the implementation of the three applications that were created
for this thesis. The first one is the reference implementation, which includes all default
instances of Catena. Catena-axungia, the second application, is a unique search tool
for optimal cost parameters for Catena. The third application is Catena-Variants, a
flexible and extendable implementation of Catena.

To ensure portability, all implementations presented in this chapter rely on the aliases
defined in stdint.h [26]. While the types defined by the C99 standard may vary in width
as long as they provide a certain minimum precision, all datatypes defined in stdint.h have
a fixed width on all platforms. Relevant for this thesis are the types uint8_t, uint32_t

and uint64_t, which are defined as unsigned integers types of 8 bit, 32 bit and 64 bit,
respectively.

5.1 Catena

My work on the Catena reference implementation started in September of 2014 and
continues the preexisting reference implementation of Catena V1II by Christian Forler
with contributions from Steve Thomas and Bill Cox. The differences between the current

Ihttp://security.stackexchange.com/a/34156
IIFinal commit of the Catena V 1 reference implementation: https://github.com/medsec/catena/

tree/3f13e78050547c1e01cf9587da94e0bf6652677b
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reference implementation and the one of Catena V1 include, besides various enhancements,
the support for H ′, the extension by Catena-Dragonfly, BLAKE2b-1 and SaltMix,
and the defense against garbage-collector attacks. The reference implementation is released
under the MIT license and can be found on

https://github.com/medsec/catena.

It is written in the C99 version of the C programming language [26]. The API is exposed
in catena.h and implemented in catena.c. Helper functions shared between multiple
instances are defined in catena-helpers.h and implemented in catena-helpers.c. In
addition to SaltMix, Γ and a function resembling the memory-initialization part of flap,
these functions also cover password overwriting and XOR of two 512-bit values with and
without the use of intrinsics.

The header hash.h defines the actual functions representing the hash functions H and H ′.
These are implemented in catena-blake2b-ref.c and catena-blake2b-sse.c, where
the suffix differentiates between the regular and the SSE-optimized version of BLAKE2b
and BLAKE2b-1. While BLAKE2b is implemented by simply providing a wrapper for
the reference implementation of BLAKE2b [38] found in the folders blake2-ref and
blake2-sse, the aforementioned files also contain the algorithms constituting BLAKE2b-1
(see Section 4.3).

The flap interface for all instances is defined in catena.h and implemented
in catena-BRG.h for Catena-Dragonfly and Catena-Dragonfly-Full and
catena-DBG.h for Catena-Butterfly and Catena-Butterfly-Full. The distinction
of the -full instances is made in catena-blake2b-ref.c and catena-blake2b-sse.c.
While it would be possible to use the same flap function for all instances, the differences in
memory allocation (see Section 5.1.2 and 5.1.1) would require a lot of instance-depending
code.

Interface The exposed functions that constitute the Catena API are mostly inherited
from the preexisting implementation. During this thesis, functions for keyed server-relief
and keyed client-independent updates were added as complements to the already existing
functions for hashing, client independent updates, the server and client part of server relief,
and key generation. Except for key generation all of these functions are also available
as a keyed version. Catena additionally includes the official PHS-interfaceIII that is
a requirement for all candidates of the Password Hashing Competition. It provides a
generalized interface for all candidates of the competition to allow easier testing and
benchmarking. Please be aware that, as discussed later, the PHS-function is not available
when password overwriting is enabled.

IIIhttps://password-hashing.net/call.html

https://github.com/medsec/catena
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While the choice of datatypes for the parameters is not specified by Catena, an obvious
choice can usually be derived from the type of data represented by the parameter. For the
current reference implementation, λ as the parameter lambda, glow and ghigh as min_garlic

and garlic, respectively, are represented as uint8_t. This limits all three parameters to
a minimum value of 0 and a maximum value of 255, which is sufficient for all scenarios.
The garlic parameters have to be restricted further to a maximum value of 63 so that the
value 2ghigh can still be represented in a uint64_t. It is also highly unlikely that a defender
will be able to provide 264 · n = 270 bytes of memory anywhere in the near future. Data,
like the salt s or the secret key K, is passed to Catena as arrays of bytes represented by
uint8_t. While the password pwd and the associated data AD are also arrays of uint8_t,
they can also be considered as arrays of single-byte characters. It is up to the developer
using Catena, to decide if those parameters are passed as characters or bytes. Note that
using the byte representation of larger types requires measures to ensure the same result on
big- and little-endian architectures (see Section 2.4). The parameter for the user-specific
identification number userID is a uint64_t, which should be sufficiently future-proof.
The nature of the C programming language requires the lengths of arrays to be provided
as an additional parameter. Depending on context, the length parameters are either of
type uint8_t or uint32_t.

The Catena API provides sanity checks for most parameters. In addition to the afore-
mentioned check for ghigh ≤ 63, the conditions glow ≤ ghigh and λ > 0 as well as glow > 0
must hold. For all functions with the exception of key derivation, an additional check to
ensure that the requested output length is less or equal to the output length of the hash
function H is required. Since the PHS-interface uses different datatypes for the parameters,
it requires additional checks to prevent overflows.

Compiling The reference implementation includes a Makefile that can be used with
make [18] to build Catena without directly invoking a compiler. While the reference
implementation can be compiled with any C compiler that supports the C99 standard,
password overwriting can only be fully ensured with GCC version 4.4 or newer [49] or
clang version 3.5 or newer [47]. The benchmark presented in Appendix A.2 revealed that
Catena is noticeably faster when compiled with clang. The same benchmark also revealed
that the optimization level O3 is at least as fast as any other available level. Therefore,
clang with the flag -O3 (see Appendix B.1) is used as the default compilation method.
Additional flags include -std=c99 to enable C99 support and -march=native to enable
all intrinsic functions and optimizations available on the current system.

It is fairly safe to assume that only one instance of Catena will be used per authentication
process; it is therefore convenient to create executables that include only one instance
to reduce the file size. The Makefile demonstrates how to build Catena-Dragonfly
and Catena-Butterfly independently and also includes an option to compile Catena-
Dragonfly-Full and Catena-Butterfly-Full instead.
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Security While the resistance against cache-timing attacks and garbage-collector attacks
is already given by the Catena specification, the resistance against weak garbage-collector
attacks must be secured by the implementation. The invocation of flap with reduced
cost parameters in Line 2 of Algorithm 5 provides security against weak garbage-collector
attacks that target the value x. Different attacks could try to retrieve the password from
memory; therefore, the implementation must ensure its erasure after Line 1 of Algorithm 5.

Because optimizing compilers might leave out any changes to variables that are not
accessed afterwards, measures have to be taken to ensure that the memset is actually
executed. The reference implementation uses __attribute__((optnone)) for clang and
__attribute__((optimize("O0"))) for GCC to instruct the compilers to skip the opti-
mization step for the password-overwriting function. These compiler attributes are available
from clang version 3.5 [48, Attributes in Clang] and GCC version 4.4 [17, Section 6.30]
onwards. Furthermore, free is used to deallocate the memory that holds the password.
This additionally counts as a use of the memory and should provide a reason for all
compilers to retain the memset that erases the password.

Since it is impossible to impose restrictions on parameters, modifying or deallocating the
memory that contains the password might lead to undefined behavior, e.g., when the
password is held by a automatic variable or the password was declared constant. Hence,
password overwriting is disabled by default in the reference implementation, but the compile
process will issue a warning. Enabling password overwriting with the flag SAFE silences
the warning. Please note that this will disable the PHS-interface, because the password has
to be declared as const to match its function prototype.

Hash Functions Catena-Dragonfly and Catena-Butterfly use BLAKE2b-1 for
H ′ and BLAKE2b for H, while Catena-Dragonfly-Full and Catena-Butterfly-
Full use BLAKE2b for both. The reference implementation of Catena contains the
regular as well as the SSE-optimized version of the BLAKE2b reference implementation
[38]. Similarly, two versions of BLAKE2b-1 are included for systems with and without
SSE. The Makefile determines if sufficient SSE supportIV is present and then chooses the
versions of BLAKE2b and BLAKE2b-1 accordingly.

Endianess The reference implementation includes two measures to make the output of
Catena endianess-independent (see Section 2.4). First, the key length ` and the iteration
count i for Catena-KG as well as the userID for all keyed functions have to be converted
to little endian. If checking the __BYTE_ORDER define from endian.h reveals that the
system is big endian, the byte order of the values is changed using the functions bswap_64

and bswap_32 from byteswap.h. Second, the seed for xorshift1024star, saved as array
of 16 64-bit integers, has to be loaded endianess-independently from two arrays of 64

IVThe SSE-optimized versions of BLAKE2b and BLAKE2b-1 require at least SSE2 and provide further
optimizations for later SSE versions and AVX
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uint8_t each. This is implemented in the function initXSState by shifting and ORing
each 8-bit word separately into the correct position. While the loading could be sped up
on little-endian systems by simply copying the memory area of the two input arrays into
the seed array, the impact would be negligible since this functionality is required only once
per invocation of flap.

5.1.1 Catena-Dragonfly

The reference implementation uses improved algorithms for (g, λ)-bit-reversal hashing and
the function τ to reduce the memory usage and increase the speed of Catena-Dragonfly
(see Section 4.3.1).

Algorithm 14 shows the optimization of BRHgλ implemented by Steve ThomasV. In contrast
to a naive implementation of Algorithm 12 that would require 2 · 2g 512-bit blocks of
memory, the optimization only requires 2g blocks. By traversing and saving the nodes
in bit-reversal order in every odd row, the predecessor of every node can immediately be
replaced. Because τ is an involution, the traversal of even rows stays sequential. The
traversal and memory layout can be seen in Figure 5.1. Despite the varying memory layout
of the rows, no additional consideration of the alignment is required for the return value
since the last block of every row always contains the last node v2g−1 of the row.

v00 v01 v02 v03 v04 v05 v06 v07

v10 v14 v12 v16 v11 v15 v13 v17

v20 v21 v22 v23 v24 v25 v26 v27

Figure 5.1: A (3, 2)-bit-reversal graph altered to match the traversal of the optimization.

Instead of reversing the bits of an integer separately, the function τ as implemented by
Christian ForlerVI starts by swapping the byte order using the bswap_64 function and
then proceeds to swap adjacent groups of four, two and finally single bits. To reduce the
number of operations, the groups are extracted using bitmasks and all groups of a specific
size are processed at once.

Vhttps://github.com/medsec/catena/commit/3266baad8596dec2ed8e68625b8676e63d2150d9
VIhttps://github.com/medsec/catena/commit/89b17d6a4570fbb776ba91c4521bdb94fd647c31

https://github.com/medsec/catena/commit/3266baad8596dec2ed8e68625b8676e63d2150d9
https://github.com/medsec/catena/commit/89b17d6a4570fbb776ba91c4521bdb94fd647c31
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Algorithm 14 Optimized (g, λ)-Bit-Reversal Hashing (BRHgλ)
Input: g : Garlic, v : State Array, λ : Depth
Output: x : Password Hash

1: for j from 1 to λ do
2: v0 ← H(v2g−1 || v0)
3: for i from 1 to 2g − 1 do
4: vτ(i) ← H ′(vτ(i−1) || vτ(i))
5: end for
6: j ← j + 1
7: if j = λ then
8: break
9: end if

10: v0 ← H(v2g−1 || v0)
11: for i from 1 to 2g − 1 do
12: vτ(i) ← H ′(vτ(i−1) || vτ(i))
13: end for
14: end for
15: return v2g−1

5.1.2 Catena-Butterfly

This subsection describes two ways of computing (g, λ)-double-butterfly hashing (Section
4.3.2): a fast one which requires 1.5 · 2g 512-bit blocks of memory and a slower one that
has a memory requirement of 2g blocks.

The reference implementation of Catena-Butterfly and Catena-Butterfly-Full
uses the fast algorithm since the resulting implementation is easier to understand and it
is unfavorable for Catena to be slowed down. The reduced-memory algorithm would
clash with the requirement for a simple and readable implementationVII, because it differs
significantly from the naive algorithm for computing DBHgλ (see Algorithm 13) and requires
a far more complicated traversal. Moreover, the reduced-memory algorithm should be sped
up by computing some steps in parallel, which would make the implementation even more
complex. In light of Catena being among the slowest password-hashing schemes in the
finale of the PHC[8], slowing it down any further is undesirable.

Fast Algorithm Similar to Catena-Dragonfly, the naive algorithm for computing
(g, λ)-double-butterfly hashing shown in Algorithm 13 requires 2 · 2g blocks of memory.
This memory requirement can be reduced by replacing a vertex as soon as all computations
depending on it have been conducted, i.e. all vertices connected by the sequential, vertical
and diagonal layer of the graph have been computed.

While it is obvious at which point the dependencies from the vertical and sequential edges
will be resolved, the length of the diagonal edges differs between rows. The length of a

VIIhttps://password-hashing.net/call.html

https://password-hashing.net/call.html
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diagonal edge is given by the difference between the index of the source and the destination
vertex and longer diagonal edges require more computations until their dependencies are
resolved. The largest index difference which determines the memory requirement can be
derived from the function that defines the diagonal edges. This function σ is defined as

σ(g, i, j) =

i⊕ 2g−1−j if 0 ≤ j ≤ g − 1,

i⊕ 2j−(g−1) otherwise,

where g is the garlic, i is the index of the vertex in the current row and j is the index
of the previous row. It is easy to see that the index difference of the diagonal edges is
maximal when computing the second and the last row, i.e. when j = 0 and j = 2 · g − 2.
The index difference between the source and the destination vertex is 2g−1 for both cases.
Consequently, the memory requirement can be reduced to 2g + 2g−1 = 1.5 · 2g. Figure
5.2 shows an example of the resulting alignment. A indexing function idx that translates
vertex indices into their memory position can be derived as

idx(g, i, j) =



i if j mod 3 ≡ 0,

i+ 2g if j mod 3 ≡ 1 ∧ i < 2g−1,

i− 2g−1 if j mod 3 ≡ 1 ∧ i ≥ 2g−1,

i+ 2g−1 otherwise.

Note that if the depth index k > 1 and (2 · g − 1) mod 3 6= 0, i.e. the last row of the
previous graph does not start at the first memory block, an offset or carry over has to be
added to the row index j. The carry over o can be computed as o = o+ (2 · g − 1) where o
is set to 0 for k = 0.

Reducing the memory requirement of Algorithm 13 requires the following changes: increas-
ing the size of v to 1.5 · 2g, removing r and replacing it with v, and wrapping all accesses of
v in idx. The resulting algorithm suffers only a negligible increase in computational time
from invoking idx. Note that the vertical edges prevent a memory layout optimization
similar to the one described for Catena-Dragonfly (see Section 5.1.1), since they would
resemble the diagonal edges when the vertices would be aligned in σ order.

0v00
0v01

0v02
0v03

0v04
0v05

0v06
0v07

0v10
0v11

0v12
0v13

0v14
0v15

0v16
0v17

0v20
0v21

0v22
0v23

0v24
0v25

0v26
0v27

2g 2g−1

Figure 5.2: The first three rows of a (3, λ)-double-butterfly graph aligned in 2g + 2g−1 blocks of
memory.
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Reduced-Memory Algorithm It is possible to reduce the memory requirement further
down to 2g blocks of memory at the cost of additional computations per line. Since σ is an
involution for the same g and j, the only nodes that are vertically and diagonally connected
to kvj−1

a and kvj−1
σ(g,a,j−1) are

kvja and kvjσ(g,a,j−1). Computing the latter allows to replace
the former. This requires only one additional memory block to temporary save one of the
results before both predecessors can be replaced and another block for the intermediate
values that have to be computed to resolve the sequential connection. When computing a
pair of nodes kvj−1

a and kvj−1
σ(g,a,j−1), fulfilling the sequential dependency of the node with

the larger index may require additional computations because the nodes before it have
not been computed yet. Every row has 2j−1 distinct subgroups. Obviously, the sequential
dependency is only unresolved for the first node of every subgroup. For j ≤ g, the number
of vertices between kvja and kvjσ(g,a,j−1) can be derived from σ as 2g−1−(j−1)− 1 = 2g−j − 1.
As a result, the total number of additional computations per row is 2j−1 · (2g−j − 1).
Consequently, the first half of the graph, i.e. for j ≤ g, requires

g∑
j=1

2j−1 · (2g−j − 1)

additional computations. With the exception of the middle row, every diagonal layer
from the first half also occurs in the second half; hence, the second half requires the same
number of additional computations. The diagonal layer of the middle row, i.e. j = g,
occurs only once in the whole graph, but since it requires no additional computations it
can be neglected. The total amount of additional computations can then be calculated by
doubling the equation for the first half:

2 ·
g∑
j=1

2j−1 · (2g−j − 1) = 2 ·
g∑
j=1

(2g−1 − 2j−1)

= 2 ·
g∑
j=1

2g−1 − 2 ·
g∑
j=1

2j−1

= g · 2g − 2 · (2g − 1)

= (g − 2) · 2g + 2.

A rough estimate of the relative increase can be calculated by gauging the additional
computations as g · 2g and the total cost of the naive algorithm as 2 · g · 2g (see Section
4.3.2):

g · 2g
2 · g · 2g = 1

2 .

Please be aware that the actual increase will be lower than that, because of the overhead
created by memory initialization and Γ. Furthermore, all of the additional computations
are done with H ′ which are less expensive than the computations of H. But even when
computing kvja and kvjσ(g,a,j−1) in parallel, the reduced-memory algorithm will still require
the most time.
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5.2 Catena-axungia

The memory and time cost are quantified as abstract integers whose effects depend on
the password-hashing scheme. Furthermore, the actual runtime of the hashing process
varies greatly between different systems and as a result, the time cost can only be used
as a comparative value. Catena-axungia addresses this problem by allowing to search
for optimal cost parameters under constraints that are supplied in concrete measurements.
Finding optimal cost parameters that are still tolerable is a labor-intensive process that
has to be executed for every deployment and every update of cost parameters. Catena-
axungia makes this process beginner-friendly and allows the automation of most of it.
To ensure the applicability of the results, the search for suitable parameters should be
conducted on the system with the least computing speed and with the limitations of the
system with the least amount of memory in mind. It is also advisable that the search is
conducted under realistic conditions, i.e. with the same load it would have in a production
environment. The implementation of Catena-axungia, which is subject to the MIT
license, is published on

https://github.com/medsec/catena-axungia.

Figure 5.1 shows the usage statement of Catena-axungia that explains all command-line
parameters, their default values and restrictions. The maximum value of min_mhard is
given by the restrictions of the uint8_t that represents λ (see Section 5.1). The time
limit for password hashing max_time has maximum of a full day, which should cover all
scenarios. All other parameters are restricted by the datatypes used to represent them.
While the lower limit for max_memory corresponds to ghigh = 4, the search process can
actually return lower values if the time limitations are not met. The upper limit for
max_memory is equivalent to ghigh = 35, which should be far more than enough for the
foreseeable future. While busy system should choose a higher iteration count iterations

so that the results will be unaffected by load variations, the default of 3 is enough for idle
systems. When the full_hash option is enabled, the search will be executed for Catena-
Dragonfly-Full and Catena-Butterfly-Full instead of Catena-Dragonfly and
Catena-Butterfly.

Algorithm 15 defines the parameter search of Catena-axungia for the given con-
straints λmin, memmax and tmax which correspond to the parameters min_mhard,
max_memory and max_time. The input i is the equivalent of the command-line parameter
iterations. The algorithm will be run once for I = Catena-Dragonfly and once for
I = Catena-Butterfly or their respective -full counterparts. The parameter-search
algorithm starts by setting λ and g to their corresponding start values and determining
the maximum garlic gmax. To satisfy the lower bound for memory hardness, λ starts at
λmin and should never drop below λmin.

The initialization of g as well as the determination of the maximum garlic gmax is handled

https://github.com/medsec/catena-axungia
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This application searches for the optimal Catena - Butterfly and Catena - Dragonfly parameters for given
constraints . Make sure to run this under realistic conditions on the most constrained system of the ones
involved .

Usage: ./ catena - axungia --max_time TIME --max_memory MEMORY [-- min_mhard
HARDNESS ] [-- iterations ITERATIONS ] [-- full_hash ] [-- verbose ]

-t, --max_time TIME Upper bound for expected password - hashing time in
seconds ( floating point). Max: 86400

-m, --max_memory MEMORY Upper bound for memory usage in KiB. Min: 1,
Max: 2147483647

-h, --min_mhard HARDNESS Lower bound for memory - hardness factor .
Default : 2, Min: 1, Max: 255

-i, --iterations ITERATIONS Number of iterations used to determine the
runtime . Higher values increase stability .
Default : 3, Min: 1, Max: 2147483647

-f, --full_hash Uses a full hash function instead of a reduced one for
consecutive calls

-v, --verbose Outputs progress information

Listing 5.1: Usage statement explaining the command-line interface of Catena-axungia.

by the function get_garlics, that is specified in Algorithm 16. The number of memory
blocks that fit into memmax can be computed by converting the memory limit memmax

to bytes and dividing it by the size of one memory block, i.e. the output length n of
H and H ′. The logarithm to base 2 of the result is the maximum garlic gmax. As the
garlic for Catena is represented by integers, the result has to be rounded down. For
Catena-Butterfly and Catena-Butterfly-Full, the increased memory consumption
of 1.5 · 2g · n has to be taken into account. Since the implications of larger memory
restrictions might be ambiguous to the user, they might choose a memory limit that takes
too long to compute; therefore, the starting point for g must be set to a value lower than
gmax. For Catena-axungia, this starting point is either a quarter gmax or 15 if the result
is larger than 15. The absolute maximum of 15 was chosen because it should be computable
in conceivable time on most available systems. Moreover, it has to be ensured that g never
undercuts the lower limit of 1 (see Section 5.1).

The first step after the initialization is the maximization of the garlic in Line 3. To prevent
unnecessary computations, the heuristic t < (tmax/2) is used to determine if it is likely
that I can still be computed in less than tmax after the garlic is increased. The time it
takes to compute I with the parameters g and λ is measured using the function measure,
which determines the median computation time over i iterations. Since the aforementioned
heuristic may fail, incrementing the garlic could lead to the computation time exceeding tmax.
This case is covered by the additional check in Line 7. The algorithm continues by increasing
λ in Line 10. In contrast to the garlic increment, incrementing λ results in a almost linear
increase of computation time. To cancel out most of the influence of the overhead created by
the memory initialization and Γ, the procedure is repeated twice. Possible exceeding of tmax

after the increase of λ is handled from Line 19 onwards. The search procedure may fail at
finding suitable parameters for some supplied limitations since t < tmax and g ≥ 1 are strictly
adhered to. Please be aware that the search procedure assumes that glow = ghigh since glow
is irrelevant for most scenarios and the impact of it can be estimated from the results.
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Algorithm 15 Parameter-Search Algorithm of Catena-axungia
Input: I : Instance, λmin : Lower Bound for Memory Hardness, memmax : Memory

Constraint (in KiB), tmax : Time Constraint (in s), i : Iterations
Output: g : Recommended Garlic, λ : Recommended Depth

1: λ← λmin
2: g, gmax ← get_garlics(I,memmax)
3: while g < gmax ∧ t < (tmax/2) do . Start by increasing g
4: g ← g + 1
5: t← measure(I, λ, g, i) . Determine median time over i iterations
6: end while
7: if t > tmax ∧ g > 1 then g ← g − 1
8: t← measure(I, λ, g, i)
9: end if

10: for j from 1 to 2 do . Continue by increasing λ
11: λinc ← min((tmax − t)/(t/λ), 255− λ)
12: if λinc > 0 then
13: λ← λ+ λinc
14: t← measure(I, λ, g, i)
15: else
16: break
17: end if
18: end for
19: while t > tmax ∧ λ > λmin do
20: λ← λ− 1
21: t← measure(I, λ, g, i)
22: end while
23: if t > tmax then
24: return g, λ
25: else
26: print No suitable parameters found
27: end if

Build Process To eliminate redundancies, Catena-axungia relies on the reference
implementation of Catena. The Makefile builds all instances of Catena into separate
object files with the interface from catena.c being replaced by a simplified interface
wrapper found in wrapper.c. Symbol collisions between the different instances are avoided
by renaming all exposed functions and variables via compiler options. The function
wrapper is also given a unique name per instance. As a result, the instance variable I
from Algorithm 15 can be replaced by an identifier that indicates which of the renamed
wrapper functions should be used.
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Algorithm 16 Function get_garlics of Catena-axungia
Input: I : Instance, memmax : Memory Constraint (in KiB)
Output: g : Start Garlic, gmax : Maximum Garlic

1: gmax ← blog2(memmax · 1024/n)c
2: if I = Catena-Butterfly ∨ I = Catena-Butterfly-Full then
3: if 1.5 · 2gmax > (memmax · 1024/n) then
4: gmax ← gmax − 1
5: end if
6: end if
7: g ← max(min((gmax/4), 15), 1) . Ensure g ∈ [1, 15]
8: return g, gmax

5.3 Catena-Variants

Catena-Variants allows to easily create and test custom instances of Catena. New
functions for flap, Γ, F , H and H ′ can be added and swapped with the default functions
without needing to change any of the existing code. The resulting instance can then be
used to benchmark the impact of the changes or to compute hashes, e.g. to verify an
alternative implementation. The MIT-licensed implementation in C++11 [27] can be found
on

https://github.com/medsec/catena-variants.

Since Catena-Variants is in ongoing development, this section will only cover the design,
features and functions as of the commit on the 4th of August 2015VIII.

The implementation of Catena-Variants includes two applications that allow to assemble
custom instances from command-line parameters. The first application, catena-measure,
measures the computation time and the memory usage of the instance for a set of supplied pa-
rameters. Password hashes of the custom instance can be computed with catena-scramble,
which is the second application.

Structure While Catena-Variants shares a lot of code with the reference implementa-
tion of Catena (see Section 5.1), the desired flexibility requires an object-oriented design
that necessitates lot of changes to the structure. Instances of Catena are represented
by objects of class Catena, which provides an interface that is nearly identical to the
reference implementation. To ease the creation of those objects, a factory CatenaFactory

is provided, which holds references to all available functions and allows to create an instance
of Catena by supplying identifiers for the desired functions.

The concrete functions of Catena-Variants are represented by classes and split into five
categories, Algorithm, Graph, HashFast, HashFull and RandomLayer, that represent the
placeholder functions flap, F , H ′, H and Γ. Every of those categories is implemented
VIIIhttps://github.com/medsec/catena-variants/tree/d67370552172d23c92e1c2cfbc56e62660ed6c64

https://github.com/medsec/catena-variants
https://github.com/medsec/catena-variants/tree/d67370552172d23c92e1c2cfbc56e62660ed6c64
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as a class that is derived from Registerable, which defines an interface for three basic
informations about each subclass: a name, a short handle and a description. Concrete
functions could be derived from two of the categories, which would lead to the class
inheriting the interface of Registerable twice. This ambiguity, the so-called deadly
diamond of death [34], is avoided by declaring the inheritance between the categories and
Registerable virtual.

Since C++ does not allow to create objects from the name of a class, the CatenaFactory

operates on instances of the concrete functions; therefore, the classes that represent the
functions must provide the method clone() that returns a deep copy of the object. The
curiously recurring template pattern (CRTP) [10] is used to provide this method for every
of the five category classes and thereby avoids having to implement it in every subclass.
For the implementation of the pattern, a layer of abstract classes is introduced and inserted
between the categories and Registerable. Figure 5.3 shows the resulting structure of
classes. It is the responsibility of the abstract classes to provide the interface, whereas
its children implement the clone() method and all functionality shared between the
children’s subclasses. To be able for clone() to return a copy of the actual subclass, the
superclass implementing the function needs to know on which derived class the method
is invoked. This is achieved with the CRTP in which each derived class uses itself as a
template argument for the superclass. As a result, the classes Algorithm, Graph, HashFast,
HashFull and RandomLayer require a template argument and can no longer be used as a
general superclass for their subclasses. The abstract superclasses of the aforementioned
classes can still be used as supertypes for all concrete function classes of their respective
category. Consequently, all references, e.g. pointers, should use the abstract classes, while
subclasses should be derived from the templated classes. To ease the memory management,
shared pointers [27, Section 20.6.2] are used for references.

The factory pattern used for CatenaFactory is extended by class registration to circumvent
the need to change the factory for every function class added to Catena-Variants.
Because class registration must take place before any other code is executed that could
access the factory, the function implementations must execute their registration at the
beginning of every application that uses Catena-Variants. While C++ does not provide
any explicit mechanism to do this, global variables can be used as a workaround. They
are constructed before any other code is executed and can contain arbitrary code in their
constructor. This behavior is implemented in the class Registry, that takes the class as
a template argument and registers it with the factory if the class fits into one of the five
categories.

Functions In addition to the functions used by the default instances of Catena, the
implementation of Catena-Variants includes a few more alternatives. Graphs, instances
of F , can be found in the directory graphs. As seen in Catena-Butterfly-Full and
Catena-Dragonfly-Full, hash functions can be used for both H and H ′; therefore, all
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Registerable

AbstractRandomLayer

+clone()

AbstractGraph

+clone()

AbstractHashFast

+clone()

AbstractHashFull

+clone()

AbstractAlgorithm

+clone()

Algorithm

+clone()

HashFast

+clone()

HashFull

+clone()

RandomLayer

+clone()

Graph

+clone()

DefaultAlgorithm Blake2b1 Blake2b Gamma BRG

Figure 5.3: Illustration of the class structure created by applying the curiously recurring template
pattern to the function categories of Catena-Variants, where DefaultAlgorithm,
Blake2b1, Blake2b, Gamma and BRG are examples for concrete functions.

classes that are derived from HashFast, HashFull or both are placed in a shared directory
hashes. Instances of Γ, random layers, are placed in random_layers. While it is possible
to swap the function flap with an alternative from the directory algorithms, only the
default (see Algorithm 6) is part of Catena-Variants as of writing this thesis.

The list of graphs has been extended by a gray-code based modification of bit-reversal
hashing as suggested by Ben Harris [23]. It is based on a graph that has a longer period
than the regular BRG, which should hamper time-memory-tradeoff attacks.

SHA-512 [12] was added as a hash function and can be used for both, H and H ′. While
SHA-512 is generally slower than BLAKE2bIX, some scenarios may require the use of
standardized primitives or it could be possible that there are systems for which only
optimized implementations of SHA-512 exists. The implementation of Catena-Variants
includes two more functions that can be used to instantiate H ′: MulHash and GFMul. The
former is an experimental implementation of a multiplication-based hash function by Bill
CoxX. The latter uses the multiplication in GF (2128) with the Galois/Counter Mode
reduction polynomial described in Section 2.5. While MulHash must be considered unsafe
and should rather be seen as an attempt to max out the memory bandwidth, Galois-Field
multiplication is a well-known and vetted hash function. Please be note that GFMul consists
of four independent multiplications; therefore, any instance using it will be vulnerable to
advanced TMTO attacks.

IXhttps://blake2.net/
Xhttps://github.com/medsec/catena/blob/3a3ce823d4c54f2da33757bf8f6389488c31bd93/src/

catena-multhash.c

https://blake2.net/
https://github.com/medsec/catena/blob/3a3ce823d4c54f2da33757bf8f6389488c31bd93/ src/catena-multhash.c
https://github.com/medsec/catena/blob/3a3ce823d4c54f2da33757bf8f6389488c31bd93/ src/catena-multhash.c
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A dummy random layer has been added that allows to skip this layer altogether. This
could be useful to increase the memory fill rate of Catena or when creating an instance
that is as similar as possible to Catena V1.

Build Process The Makefile of Catena-Variants was taken from the reference
implementation of Catena and adapted to support C++. It was also extended to compile
any source file found in the directories graphs, hashes, random_layers and algorithms.
Catena-Variants can then be extended with an alternative function by implementing
a class for it, instantiating a variable of type Registry with the class as the template
argument and placing the source file (and the optional header) in the corresponding
directory. Functions that depend on external implementations or libraries will require
changes to the Makefile.



Chapter 6

Discussion

Panel members believe that
Argon2 and Catena are the top
candidates in the category where
they’re playing.

Jean-Philippe AumassonI

The scope of this thesis focused on a fast and comprehensible reference implementation of
Catena. Aside from that, Catena-axungia made the concept of a variable-cost PHS
more approachable and Catena-Variants laid the foundation for further development.
This chapter will discuss the significance and implications of these contributions as well as
suggestions for the future of Catena.

6.1 Conclusion

Catena was selected for special recognition by the panel of the Password hashing Compe-
tition “for its agile framework approach and side-channel resistance” [2]. Both of these
crucial qualities were consolidated and elaborated during this thesis. First of all, Catena-
Variants is not only a logical consequence but also the pinnacle of the mentioned agility.
Furthermore, resistance against side-channel attacks must be covered by the specification
and the implementation. In contrast to the resistance against cache-timing attacks and
garbage-collector attacks that stem solely from the specification of Catena (see Section
4.2), the defense against weak garbage-collector attacks required additional measures from
the implementation. Additionally, the quality and readability of the implementation that
brought Catena into the finale of the PHC was maintained and further improved during
this thesis.

Ihttp://article.gmane.org/gmane.comp.security.phc/3010
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In addition to the emphasis on the agility of the Catena framework, Catena-Variants
also paves the way for future development. It is already used in the practical part of an
upcoming paper and a master’s thesis.

Catena has a unique feature set that distinguishes it from the other schemes that passed
the finale of the Password Hashing Competition. Aside from being the only one of those
PHS with support for standard hash functions, it is also the only side-channel resistant
finalist that has built-in support for client-independent updates. Due to Catena filling
these niches, it should find use in several applications and Catena-axungia offers a level
of assistance for all these applications seen in no other PHS.

6.2 Outlook

Although the development of Catena in the scope of the PHC was finished during this
thesis, further research and development on it should be continued.

First and foremost, explicit support for more application areas could be added to the
reference implementation. A set of interfaces for different proof-of-work approaches (see
Section 2.2) could help to establish Catena in this area. Furthermore, the current imple-
mentation of Catena-Butterfly would allow reducing the overall memory requirement
for computing several hashes in parallel by interleaving their computation. This could be
useful for any system that might face multiple authentications at once. Some scenarios
might also benefit from an implementation of the reduced-memory algorithm for computing
Catena-Butterfly as described in Section 5.1.2.

The amount and the variety of candidates in the PHC [2] shows that password hashing is
a broad field that requires research beyond the competition. Catena-Variants provides
not only an easy way to modify and extend Catena, but also an excellent starting point
for any further research. Among the currently developed extensions for Catena-Variants
are several hash functions, graphs and instances of Γ. Detailed explanations of these will
be given in an imminent scientific paper and an upcoming master’s thesis.

All finalists of the Password Hashing Competition use abstract cost parameters and could
potentially benefit from an adoption of Catena-axungia. Likewise, an implementation
similar to Catena-Variants could improve the flexibility of many PHS, that currently
require a lot of code changes for even simple modifications. The solid foundation of
Catena, given by the three implementations, establishes it for password hashing and takes
over the groundwork to tackle most security concerns regarding passwords.
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Appendix A

Benchmarks

A.1 Galois-Field Multiplication

The results from Table A.1 were acquired on an Intel(R) Core(TM) i7-3930K CPU @
3.20GHz using 12 million iterations to ensure stability. The gf2x benchmarks use version
1.1 of gf2x. It was configured using the configure script included in the package. The
Intrinsics specific approach and the optimized right-to-left (RtL) multiplication are im-
plemented as described in Section 2.5. An implementation of both can be found in the
file src/hashes/gfmul.cpp of Catena-Variants. The double-table approach for RtL
multiplication is based on the optimized right-to-left algorithm with the changes proposed
in Section 1.1 of [7]. All tests were compiled with GCC 4.9.2 and optimization level O3 [49]
[17]. Please note that clocks-per-byte measurements vary significantly between different
CPUs. The shown benchmark should only be used for relative comparisons.

Algorithm Median clocks per byte
gf2x (compiled for a generic 64-bit cpu) 12.38
gf2x (compiled for a cpu with pclmulqdq) 2.50
Intrinsics-specific approach 1.00
RtL optimized w = 3 36.19
RtL optimized w = 3 25.56
RtL optimized w = 4 8.00
RtL optimized w = 5 10.88
RtL optimized w = 6 22.88
RtL double table w = 2 · 2 28.25
RtL double table w = 2 · 3 10.31
RtL double table w = 2 · 4 10.12
RtL double table w = 2 · 5 13.19
RtL double table w = 2 · 6 26.12

Table A.1: Benchmark of several algorithms for 128 bit Galois-Field multiplication
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A.2 Compiler Choice & Optimization Options

The results from Table A.2 were acquired on an Intel(R) Core(TM) i7-3930K CPU @
3.20GHz using 20 iterations to ensure stability. Please note that glow was set to ghigh for this
benchmark. The test were compiled with clang 3.5.0 and GCC 4.9.2. Other optimization
levels, O1, Os and additionaly Oz for clang, were tested for the sake of completeness, but
they yielded no improvement. While GCC lists the flags enabled by the optimization levels
in the manual [17, Section 3.10], this information must be retrieved manually for clang
(see Section B.1).

Algorithm λ ghigh Compiler Median runtime in s
O2 O3 Ofast

Catena-Butterfly 4 16 GCC 0.3110 0.2912 0.2891
clang 0.2685 0.2623 0.2630

Catena-Dragonfly 2 21 GCC 0.3884 0.3838 0.3842
clang 0.3697 0.3714 0.3717

Table A.2: Runtime of Catena-Dragonfly and Catena-Butterfly with different compilers
(GCC and clang) and optimization levels (O2, O3, Ofast).



Appendix B

Additional Information

B.1 clang Optimization Levels

The list of flags enabled by the optimization levels can not be found in the clang man-
ual [48] and must therefore be received from the LLVM optimizer opt by using the
-debug-pass=Arguments flag. Table B.1 contains the output for clang 3.5.0 and the levels
O2 and O3. For unknown reasons, Ofast, which was likewise used in the benchmark from
Section A.2, can not be analyzed using opt. Please note that the documentation of clang is
incomplete regarding optimization flags, but due to the large similarities most explanations
from the GCC manual [17] should also apply to clang.

Optimization Level Flags

O2 -no-aa -tbaa -targetlibinfo -basicaa -notti -verify -simplifycfg -domtree -sroa -early-cse
-lower-expect -targetlibinfo -no-aa -tbaa -basicaa -notti -verify-di -ipsccp -globalopt
-deadargelim -instcombine -simplifycfg -basiccg -prune-eh -inline-cost -inline -functionattrs
-sroa -domtree -early-cse -lazy-value-info -jump-threading -correlated-propagation
-simplifycfg -instcombine -tailcallelim -simplifycfg -reassociate -domtree -loops
-loop-simplify -lcssa -loop-rotate -licm -loop-unswitch -instcombine -scalar-evolution
-lcssa -indvars -loop-idiom -loop-deletion -loop-unroll -memdep -mldst-motion -domtree
-memdep -gvn -memdep -memcpyopt -sccp -instcombine -lazy-value-info -jump-threading
-correlated-propagation -domtree -memdep -dse -loops -scalar-evolution -slp-vectorizer
-adce -simplifycfg -instcombine -barrier -domtree -loops -loop-simplify -lcssa -branch-prob
-block-freq -scalar-evolution -loop-vectorize -instcombine -simplifycfg -domtree -loops
-loop-simplify -lcssa -scalar-evolution -loop-unroll -strip-dead-prototypes -globaldce
-constmerge -verify -verify-di

O3 -no-aa -tbaa -targetlibinfo -basicaa -notti -verify -simplifycfg -domtree -sroa
-early-cse -lower-expect -targetlibinfo -no-aa -tbaa -basicaa -notti -verify-di -ipsccp
-globalopt -deadargelim -instcombine -simplifycfg -basiccg -prune-eh -inline-cost -inline
-functionattrs -argpromotion -sroa -domtree -early-cse -lazy-value-info -jump-threading
-correlated-propagation -simplifycfg -instcombine -tailcallelim -simplifycfg -reassociate
-domtree -loops -loop-simplify -lcssa -loop-rotate -licm -loop-unswitch -instcombine
-scalar-evolution -lcssa -indvars -loop-idiom -loop-deletion -loop-unroll -memdep
-mldst-motion -domtree -memdep -gvn -memdep -memcpyopt -sccp -instcombine
-lazy-value-info -jump-threading -correlated-propagation -domtree -memdep -dse -loops
-scalar-evolution -slp-vectorizer -adce -simplifycfg -instcombine -barrier -domtree
-loops -loop-simplify -lcssa -branch-prob -block-freq -scalar-evolution -loop-vectorize
-instcombine -simplifycfg -domtree -loops -loop-simplify -lcssa -scalar-evolution -loop-unroll
-strip-dead-prototypes -globaldce -constmerge -verify -verify-di

Table B.1: Flags enabled by the optimization levels O2 and O3 of clang 3.5.0.
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