
Bauhaus-University Weimar
Faculty of Media
Media Informatics

Do Features Matter for Energy Consumption?
A Case Study on Web Servers

Masterthesis

Clement Benedict Welsch Matriculation Number 30248
Born October 14, 1981 in Wiesbaden

Frist Referee: Prof. Dr. Norbert Siegmund
Second Referee: Prof. Dr. Benno Maria Stein

Submission: August 5, 2017

Declaration

Unless otherwise indicated in the text or references, this thesis is entirely the
product of my own scholarly work.

Weimar, August 5, 2017

ii

Abstract

As computers have become pervasive, their energy consumption can not be
neglected any more. Especially cloud systems with very long uptime are a
promising area for contributions of the IT industries to the global energy saving
efforts. This thesis takes a feature oriented perspective on webservers as an
instance of such systems. The case study aims to explore the influence of
configurable features on the energy consumption of those systems.

It can be demonstrated that features do have some effect on the energy con-
sumption and that they interact with each other. But it remains dubious if the
knowledge about that effects may lead to valuable guidelines for energy efficient
configurations. That is due to the documented influence of the systems load on
these effects. Moreover, the assumption that energy efficiency can be achieved
through performance optimization, must be rejected for webservers.

Contents

Abbreviations vi

1. Introduction 1

2. Background 5
2.1. Webserver . 5
2.2. Customizability . 7
2.3. Non-functional requirements . 8
2.4. Performance metrics . 9
2.5. Performance testing . 10
2.6. Electrical Models . 10

3. Related Work 13
3.1. Energy Efficiency . 13
3.2. Features and Configurations . 14

4. Study Design 15
4.1. Environment . 15
4.2. Webserver Software . 17
4.3. Feature Models . 20

4.3.1. Description of Features 22
4.4. Configurations . 24

4.4.1. Sampling Strategies . 25
4.4.2. Identification of Configurations 26

4.5. Workload Generation . 28
4.5.1. Load-Testing Tools . 28
4.5.2. Workload Plan . 31

4.6. Experiment Setup . 34

iv

4.7. Prestudy . 36
4.7.1. Lessons Learned . 36
4.7.2. Open Issues . 40

5. Research Question 41

6. Evaluation 44
6.1. Preprocessing . 44
6.2. Results and Discussion . 46

6.2.1. Features and their Interactions 46
6.2.2. Performance . 55
6.2.3. Workloads . 58

7. Validity 61

8. Conclusion 63
8.1. Future Work . 66

References 67

A. Featuremodels 71

B. Linear Model with Interactions 73

List of Tables 82

List of Figures 83

v

Abbreviations

AES Advanced Encryption Standard
API Application Programmer Interface

CPU Central Processing Unit

DSL Domain Specific Language

HDD Hard Disc Drive
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

MPM Multi Processing Module

OLS Ordinary Least Square

PDU Power Distribution Unit

SPL Software Product Line
SSD Solid State Drive

TCP Transmission Control Protocol
TDP Thermal Design Power
TLS Transport Layer Security

URI Uniform Resource Identifier

WWW World Wide Web

vi

1. Introduction

Despite living in times where it rather seems in vogue to believe than to
trust scientific evidence, the scientific community agrees on climate change
to be men made. Among the scientific publications that take some position
on global warming, roughly about 97% endorse consensus on human-caused
global warming [1]. As all industries, IT is asked to contribute its part in low-
ering greenhouse emissions, too. A very promising target are the ever growing
number of data centres. In Germany alone, the energy consumption of data
centres increased from 2010 to 2015 within five years from 10.5 to 12 billion
kilowatt-hours. The major share is caused by servers, followed by storage,
network, and – almost without any change – cooling and independent power
supply [2]. By comparison, US data centres consumed 70 billion kilowatt-hours
in 2014. The growth rate is 4% within four years from 2010 to 2014, which
is remarkable since it has been 24% from 2005 till 2010 and even 90% from
2000 till 2005. Newly calculated prognoses project a stable growth of data
centres energy consumption of about 4% until 2020, although the growth rate
of data centres is way higher. This effect can be mainly attributed to energy
efficiency efforts undertaken by large US companies, such as Goolge, Ama-

zon, and Apple [3]. Especially relocating data centres to regions that offer
natural cooling, consolidating servers, and favouring energy efficient standard
hardware in scale-out fashion were obviously fruitful strategies at the infras-
tructure layer.

Webservers are one of the workhorses the Internet economy heavily relies on.
They are omnipresent in the data centres that form what nowadays is called the
cloud. There, those systems are running 24 hours a day, 365 days throughout
a year and some are up and serving for far over a decade [4]. Moreover, they
became truly pervasive as they were utilized for serving configuration interfaces
on devices on the Internet of things, such as home routers. Thus, webservers

1

are suspect to contribute a non-negligible portion of the energy consumption
of information technology.

Webservers are complex, highly configurable software. As for all software sys-
tems, energy consumption can not be measured directly, but only be estimated
based on other metrics. Direct measurement of energy consumption is only pos-
sible for the underlying hardware. Energy measurements can be done either
for the entire computer system, just by intercepting the electrical wire or indi-
vidually for distinct components, such as CPU cores or hard disk. In order to
estimate the energy consumption of a software system, metrics are needed that
are more attributable to that software. Fine-grained, internal measurements
are possible for hardware utilization, such as CPU time or memory footprint,
and can go down even to level of a distinct processes. At the moment, most
practical estimations about energy consumption of software rely on hardware
utilization metrics.
Beside hardware utilization metrics, there are performance metrics as another
class of so-called non-functional properties. Those properties describe how a
system works, in contrast to what is does functionally. Several studies have
been conducted on influences and interactions between functional and non-
functional properties of a variety of different software systems that become
employed in data centres, from classical single node database systems to dis-
tributed map/reduce-like workflow systems [5, 6, 7, 8, 9]. Externally, the
response time of a webserver can be used as a performance metric. If the
energy consumption of a webserver could be estimated by its performance,
energy consumption would essentially come for free, since performance opti-
mization is common sense. But there still exists an unresolved dispute whether
performance correlates with energy consumption and can therefore lead to re-
liable estimations. For distributed workflow applications [9] and single node
databases, it was “found that the best performing configuration was also the
most energy efficient”[7]. On the other hand, this does not seem to hold for

2

changing workloads [5]. So, it remains unclear whether optimizing a web-
server’s performance also means to optimize its energy efficiency.

At the software layer, two different perspectives onto the energy efficiency topic
arise. First, developers might consider inefficiencies of platforms or algorithmic
design approaches [10, 11, 12]. For instance, it has been best practice to poll
for changing resources, to provide the best user interface experience. With
the success of the smartphone, this best practice shifted dramatically towards
push-services, since developers realised how much energy was wasted for polling
[12]. Second, application users are interested in an optimal energy-efficient
behaviour of their systems, which is actually the main stimulus for developers
to undertake efforts in energy-efficiency. Although, or even because, webserver
users are considered to be professionals, they are confronted with the bad
habit of developers to only add functionality, while never removing outdated
functionalities. That problem is called configuration space explosion [13].

The feature-oriented approach as a flavour of software engineering tries to
deal with the situation by comprehending a feature as an increment of func-
tionality [14]. By activating or deactivating features, a configuration space of
different variants of the software is span, which is yielding a software product
line (SPL). This abstraction allows to analyse the influences of features on
non-functional properties. Furthermore, interactions between features, mean-
ing effects that arise only when certain feature combinations are configured,
can be made visible[15].
The feature-oriented perspective offers another possible approach for energy
optimization. Knowledge about the energetic behaviour of features and the
influence of the overwhelming number of possible configurations on the energy
consumption, could lead to configuration choices that are optimized with re-
spect to performance and energy efficiency. Which is congruent to the users
aims for optimization in at least two dimensions: maximising performance
while minimizing cost [9]. This is the perspective chosen for this thesis.

3

The aim of this thesis is twofold: First, developing a sound and elaborate work-
load scenario that can be used to assess a webserver’s energy consumption.
Second, actually applying the workload scenario and analyse the behaviour of
four well-known webserver engines. The engines come from the two, at the
time, major open-source webservers Apache and Nginx [16]. In a black-box
approach, the engines are run with varying configurations, while exposed to
changing workload conditions. During those runs energy consumption, perfor-
mance, and hardware utilization metrics are tracked.
However, a sound empirical experiment requires careful preparation. Thus, a
prestudy was conducted to determine suitable workloads, metrics, and con-
figurations. It must be ensured to measure the actual load of the webserver.
In particular, the prestudy identified misleading external boundaries, such as
network capacity or file-handle limits. Moreover, the measurement bias was
assessed to adjust the number of experiment repetitions for the actual study.
Feature models were framed and edited to describe the variability of the sys-
tems, within the constraints of their features. Finally, all building blocks,
including measurement tools, load testing tool and customized compiled web-
server engines, were assembled in a scripting environment to be deployed in a
computing cluster.

For the final study 209,664 configurations were generated, executed and ran
for roughly 10 days, not taking parallelization into account. That produced
about 140 GB of raw data, which needed to be refined and analysed.

It turned out that the relation between the performance of a webserver and
its energy consumption is a trade-off. Despite the overarching question of
whether features do influence energy consumption can be answered with yes,
the observed effects, remain questionable and need further investigation. Con-
sidering feature-orientation as a user’s tool for saving energy is delusive. It is
the developers duty to free users from that burden.

4

2. Background

Subject of this thesis are webservers as an instance of configurable software
systems and their energy consumption. This chapter gives a brief description of
those systems, their properties and performance metrics, as well as introducing
and disambiguating important terms.

2.1. Webserver

The WWW is a service in the largest man-made distributed system, the Inter-
net. Its technological foundation constitutes of three pillars. URI for address-
ing, some hypermedia representation for the exchange of artefacts — histori-
cally HTML and HTTP. HTTP itself is a stateless request-response protocol
that strictly separates the roles of the client as requesting and the server as
responding party. Hence, webservers are programs that essentially run in an
infinite loop, listening for connection attempts by clients on some interface
provided by the underlying operating system. At the moment, this interface
generally is a TCP-socket, but subject to change in the near future[17]. Upon
that socket, webservers implement HTTP and serve static files by mapping
URIs to the local file system. Beside that, they provide that service to appli-
cations via an API. As such, webservers represent a very thin layer between
the operating system and a concrete application.

A webservers foremost work is parsing and interpreting requests. Part of that
means mapping URIs, conditions, mime-types, and so forth. Followed by as-
sembling the response headers and payload. Most of those tasks are delegated
to the operating system layer (e.g.: IO) or some external library (e.g.: en-
cryption or compression). That means that webservers usually delegate all the

5

heavy lifting to instances that are highly optimized for those jobs. For ex-
ample, delegating the sending of some static payload to the operating system
means that it can benefit from the capability of the kernel of directly copy-
ing from one file descriptor to another. Hence, the entire transfer is handled
within the kernel and has no need for further processing in user-space. That
small example shows that it is in fact impossible to observe a webserver iso-
lated from its environment. Anything measurable that can be used to describe
a webserver’s behaviour is limited or influenced by external factors, such as
hardware, operating system, network, or other services.

As a webserver is a component in a distributed system, some terms have to
be clarified before moving on. For any distributed system, three basic states
have to be distinguished:

1. A local computation is just what any computer usually does, even without
any network connection.

2. A sent event is defined as the state when a message from node A to node
B has entirely left the buffers of node A.

3. A delivery event is defined as the state when a message from node A to
node B entirely reached the buffers of node B.

It is important to distinguish those states precisely, since networks always
need to be assumed as unreliable. That means that, for instance, the delivery
of some sent message might occur with a huge delay, probably after other
succeeding messages already have been delivered, or even never if the message
got lost.

6

2.2. Customizability

Although webservers do represent only a very thin layer, as discussed be-
fore, they offer many configuration options to adapt them to individual needs.
Hence, a webserver can be seen as software product line. An SPL is the set
of all valid combinations of configuration options. Each member of the SPL
represents a variant of the same software product, but with a unique combi-
nation of features. Usually, a feature is defined as “an increment in program
functionality”[18]. For this thesis any configuration option will be considered as
a feature, regardless if it actually contributes functionality, e.g., via a module,
or if it just constrains system usage to certain limits. Through this, the entire
configuration space of the webserver system can be modelled by leveraging the
capabilities of feature diagrams, which is a typical approach in feature-oriented
software engineering[19].

optional mandatoryalternative
(xor) orand

Figure 1: Feature Diagram Notations

Feature diagrams are a graphical notation for feature models. They allow a
comprehensive overview of an SPL and its variants. Those graphs form a tree
structure were leave nodes represent concrete features whereas inner nodes
represent compounds and hence, groups of features. Groups might define the
relationship between their children as

And — all children must be selected.

Alternative or logical XOR — only one children can and must be selected.

Or — one or more children can be selected.

7

while childnodes can be specified independently from that as mandatory or
optional. Figure 1 depicts the visual notation for those relations.

A variant of the software product can be derived through different mechanisms.
It can take place at [19]:

Compile-time — through static linking or compiler flags.

Load-time — through configuration files or command-line flags.

Run-time — through input data, e.g. HTTP header fields.

For this study, customization solely took place via configuration at load-time.

2.3. Non-functional requirements

In contrast to what a software is supposed to do, therefore its functionality and
hence called functional requirements, non-functional requirements are assumed
somewhat orthogonal to that. They are describing how a system should be-
have fulfilling its functionality. Important quality attributes are meant by the
term, for instance: security, safety, fault tolerance, reliability, resilience,... and
performance. Naturally, any project should be vigilant about those important
features. However, they become widely under-represented and suppressed in
the development process, because of the vilification as not functional. That is
why an increasing number of enterprise developers aiming at proscribe the
term. Recently, the issue reached the scientific community and Eckhardt
et al.[20] mostly confirmed, that “there is no such thing as Non-Functional
Requirements”[21]. For this thesis, the term non-functional requirement can
be used synonymous to non-functional property, since the development process
that should take care of the property behaving accordingly to the requirement
should already be finalized for the systems discussed onwards.

8

2.4. Performance metrics

To quantify the performance of a webserver, common metrics from the area
of networking are borrowed. Usual computation performance metrics, such as
runtime are useless, since servers are defined to run endlessly. Measurements
like CPU- or memory-utilization are interesting from an efficiency perspective,
including energy consumption, but they do not help in judging the effectiveness
of the server. To describe the perceived performance of a server, the following
metrics are used:

Hit rate is the number of requests that reach a server in a time period without
paying attention if they are accepted in any way.

Latency is the time elapsed from the request message has started being sent
until the delivery of the response message has began.

Response time is the time elapsed from the request message has started being
sent until the entire response message has been delivered.

Throughput is the actual performance metric. It describes units of work per
unit of time. Sadly it is defined very ambiguously. (See below.)

Since throughput is such an ambiguous metric, a few more words must be spent
on that. In physical networks, it describes the data transferred per time unit
measured in bits per second (bit/s or bps). When it comes to network soft-
ware, a bad habit became established measuring in Bytes per second (Byte/s),
which is an annoying and regularly overseen detail. Beside that, another met-
ric which takes the volume of the transferred data out of the equation, is called
throughput as well. It is measured in requests per second (req/s or rps), but
sometimes per minute. Furthermore, it has never been clarified if only success-
ful or any communications count into throughput, including failed ones. For
this thesis, if not stated otherwise, it will be defined as all request attempts

9

that were made, regardless if they succeeded or failed. Of course, whenever
throughput is defined, it always requires the additional information of an error
rate.

2.5. Performance testing

To obtain any meaningful measurements, the system must be exposed to some
workload. “Workload is the stimulus applied to a system [...] to simulate a
usage pattern [...].”[22] Real-world workload, as occurring in production sys-
tems, is highly unpredictable. Nevertheless, it renders any comparison between
different measurements impossible. Therefore, performance testing usually is
performed in controlled environments running synthetic benchmark scenarios,
where benchmarking means a performance comparison against a self-defined
baseline. Creating a synthetic workload requires defining the number of sim-
ulated clients, their hit rate, and how many are acting concurrently, as well
as the data volumes they request. Performance testing can be distinguished
further into[22]:

Load testing which aims to expose the system to a load that represents av-
erage production usage.

Stress testing which aims to expose the system to load beyond normal pro-
duction. Therefore pushing the system to its limits, even until it fails.

2.6. Electrical Models

To prevent any misconceptions about the physical units that come into play
when dealing with electrical circuits, some clarifications shall be given. The
electric current (I) describes the flow of electric charge, which for circuits is

10

carried by moving electrons through a wire. It is measured in amperes (A).
The voltage (U) is measured in volts (V) describing the potential difference
or – more figurative – the electric pressure that is applied to the charges.
When those two basic units come together, electrical power (P) results as
their product P = I · U . Power is measured in watts (W).

Now, taking a different angle, electrical power is defined as the electrical work
that can be done per time interval ∆t, too.

P =
W

∆t
(1)

Electrical work is the result of the transformation of electrical energy into some
other kind of energy, e.g. kinetic or thermal energy. Sadly, it is denoted by W

exactly like the unit Watt, that power is measured in. Hence, it is pretty much
common to favour electric energy E for the same purpose. Electric energy
is the stored or transferred potential energy that can do work with a certain
power.

E = P ·∆t (2)

Both terms, work and energy are pretty much equivalent and both are mea-
sured in wattseconds (Ws) or the more useful scaled unit of kilowatthours
(kWh). It should be mentioned that the unit Joule is exactly equivalent to
wattseconds 1Ws = 1J , although it will not be used during this thesis. The
previous explanations shall motivate why the term energy consumption is the
accurate one, in contrast to power consumption. It is important to differentiate
those terms accurately, since a reduction of power does not imply a reduction
of energy consumption. It may just cause a longer runtime.[23]

11

Measurement and Calibration To measure the energy consumption of a
electric device, one has to measure the current and the voltage of the cir-
cuit. Since the voltage is relatively constant in the distribution networks and
is given with 230V , the power needed, is achieved by adjusting the current.
Nevertheless, due to fluctuations in the networks, a reliable measurement must
be based on both values. Integrating the power over time yields the energy
actually consumed. Hence, energy consumption is a cumulative value.

At the time, there are basically two suitable ways to measure all of those values
for a computer. First, intercepting the wire before the computer’s power plug.
That can be achieved by primitive wattmeters that are sold for home usage
and known to be highly unreliable or by sophisticated power distribution units
(PDUs) that become used in server racks or similar environments.

Second, modern CPUs have integrated measurement circuits that enable de-
tailed metrics per core. The Intelligent Platform Management Interface (IPMI)
is a standardized way to access those values. Older computers sometimes sup-
port measurement of the energy throughput of the mainboard. Although these
features are great to inspect the actual sink of energy in the system, they do
not surrogate the measurement of the power supply over all energy-consuming
parts, since those values lack the leakage of the power supply and the energy
consumption of internal devices, such as hard drives, which are usually di-
rectly connected to the power supply rather than obtain their energy through
the mainboard.

To calibrate a PDU, for instance, a consumer must be plugged in that offers a
reliable and trustworthy power consumption. There do exist load generators
with adjustable power levels for professional users, but in many cases a simple
light bulb of a certain power level is sufficient to ensure accuracy [24].

12

3. Related Work

3.1. Energy Efficiency

The energy efficiency of software systems is a cross-cutting concern for users
and developers alike.

Pang et al.[12] show that programmers are not sufficiently equipped with
knowledge about the reduction of software’s energy consumption. Most pro-
grammers assume performance optimization as a suitable substitute for energy
optimization, which is not always true, as they point out. Their survey sup-
ports the criticism on the concept of non-functional properties as mentioned
before in Chapter 2, since only 18% of the participants address energy effi-
ciency during development. One participant even claimed that clients “care
first and foremost about speed of development, and secondly about reasonable
quality and performance”. Note that energy efficiency again is substituted by
quality and performance. But even if energy consumption would be a major
concern in software development, extensive training would be required first.
Less than 1% was able to order the hardware components of a desktop com-
puter correctly by their energy consumption and only 5% identified polling
techniques for synchronization as a energy efficiency leak. Therefore, they
conclude that energy-efficiency-aware programming should become part of un-
dergraduate curricular.

Tsirogiannis et al.[7] made interesting observations on the energy consumption
of current datacenter hardware in scale out architectures, during their analysis
of the energy efficiency of database servers. As it turns out, more than 50% of
the energy consumption is already set by the idle state of a modern computer
and 85% of the remaining power at load is consumed by the CPUs. Only a
marginal portion can be accounted for HDDs and SSDs. While SSDs provide

13

perfect proportional energy consumption, HDDs require approximately 80%
of their energy consumption jump-fix for activation. Most interestingly “the
last 30% of a node’s CPU computation capacity comes essentially for free”.
That leads to the conclusion that hardware consolidation is a promising path
to reduce energy consumption in modern datacenters. Meaning to first fully
utilizing a computation core before activating another, and of course shut-
ting down under-utilized nodes. That charmingly corresponds with currently
vibrant development in virtualization techniques.

3.2. Features and Configurations

A more user-centric design philosophy is demanded by Xu et al.[13]. They
claim that flexibility and simplicity must be balanced more carefully. Devel-
opers most often expose features as configurable option to users for the sake
of flexibility, while not taking into their consideration the problem of config-
uration space explosion. The study focuses on system software, including the
Apache webserver which according to Xu et al.[13] provides more than 550
parameters. “Setting them correctly requires domain-specific knowledge and
experience.”. They were able to show that “too many knobs do come with
a cost: users encounter tremendous difficulties in knowing which parameters
should be set among the large configuration space.” Different suggestions for
reducing the configuration space are given, including automatic inference or
generation of values and the application of formal models or specifications. The
authors distinguish between vertical and horizontal reduction of the configu-
ration space. While vertical relates to the number of parameters, horizontal
refers to their possible values. It was possible to shrink the configuration space
of a system by half without affecting users by any means, simply by removing
unnecessary parameters and reducing the options for the remaining ones, e.g.
by transforming numeric ones to enumerative ones or boolean options.

14

4. Study Design

The fundament of any empirical study is the data it is based on, gathered
through experimentation. In the following, the experimental setup, as well as
the environment it is deployed in, will be described.

4.1. Environment

All experiments were conducted in a guarded, non-public cluster-environment.
Hence, they are laboratory experiments that do not represent any real-world
behaviour. On the other hand, external influences, such as random scan probes
that can not be foreseen, could be ruled out to a large extend, although the
cluster was not used exclusively.

Hardware The cluster provides two hardware variations as described in detail
in Table 2. From now on they will referred to as i5- , respectively i7-Nodes. As
it can be easily noticed, both hardware platforms do not diverge too much. The
only differences can be found in the local storage technology and the CPU.

name #nodes CPU (Intel) frequency #cores RAM local storage

i5 14 Core i5-4590 3.30 GHz 4 16 GB 256 GB SSD
i7 4 Core i7-4790 3.60 GHz 4(8 ht) 16 GB 500 GB HDD

Table 2: Hardware configurations available as cluster nodes, ht means hyperthreaded

The most obvious difference is the support of hyperthreading, which has no
effect for the experiments, since the cluster-management software does not
support it. The thermal design power (TDP) of the CPUs are the same: 84
W. Both processors are equipped with the Intel AES-NI, which accelerates

15

the Advanced Encryption Standard AES, as well as Intel Secure Key, which
is a random number generator.

All nodes are connected by a reliably switched 1 GBit ethernet and have access
to a shared NFS-mounted network storage.

All nodes are attached to PDUs, which provide monitoring of the utilization
of the power supply for each node. They provide measurements for voltage
in Volts, current in Amperes, power in kilowatts and energy consumption in
kilowatt-hours. All values are sampled with a frequency of one second. Un-
fortunately, the accuracy of the energy-consumption goes only down to 100
watthours, which is to rough for short-time experiments that do not run for
days. However, the power measurements provide accuracy down to a single
watt.

From previous calibration measurements it is known that the nodes do consume
power in between 20 W when idle and 80 W under full load. The accuracy of
the PDUs has been evaluated by attaching a 40 W light bulb. For this study
only nodes that were attached to a reliably and accurately measuring PDU are
used.

System Software The cluster disposes of a homogeneous software infras-
tructure, which was not customizable to a large extend due to missing admin-
istrative rights. Hence, all software that was subject to customizations had to
be compiled, installed, and run as an unprivileged user. That also implies the
concession of only being able to bind TCP ports above 1024. The following
components of the software stack were predetermined:

• The operating system Ubuntu 16.04.2 LTS

• The runtime environments for

16

– Python 3.5.2

– Java OpenJDK Runtime Environment Version 1.8.0_131

• The required libraries for Apache and Nginx

– Transport layer security (OpenSSL 1.0.2g)

– Regular expressions (pcre)

– Compression (zlib)

Theoretically possible variations in the operating system or the TLS (OpenSSL

vs. LibreSSL) implementations were not applicable.

The cluster is managed and accessed through the workload-management tool
slurm1. It takes care of delegating resources and scheduling jobs. It is un-
known in which way that influences the systems behaviour. It allows for limi-
tation of resources, such as memory, number of CPU cores, etc. but does not
represent a virtualization technology.

4.2. Webserver Software

Subject to this study is webserver software. Since Ubuntu Linux is the only
operating system used for this study, the according to Netcraft [16] at the
time most popular webserver could not be taken into account: Microsoft

IIS. Thus, only the two major open-source webservers have been chosen for this
study: Apache HTTPD and Nginx. The following versions were deployed:

• Apache 2.4.25 compiled with APR 1.5.2 and APR-Util 1.5.4

• Nginx 1.10.1

1https://slurm.schedmd.com

17

https://slurm.schedmd.com

They were compiled using the compile time configurations shown in listing
1, respective 2, linked to the libraries mentioned in the previous chapter and
deployed to user’s home directory.

./ configure
--with -included -apr
--prefix=$HOME/apache
--enable -ssl
--enable -mpms -shared=’prefork worker event ’
--with -port =8080
--with -sslport =8443

Listing 1: Configuration option chosen at compile time for Apache. Need to be passed as a single line.

./ configure
--prefix=$HOME/nginx
--user=nginx
--group=nginx
--with -http_ssl_module

Listing 2: Configuration option chosen at compile time for Nginx. Need to be passed as a single line.

The Apache webserver offers differentmulti-processing modules (MPMs), which
are interchangeable and implement fundamentally different approaches to server
design. Three such Apache MPMs and Nginx give a variance of four web-
server engines. The MPMs are compiled as shared libraries, what allows to
change them by load-time configuration rather than at compile-time. There-
fore, none of the used software needs to be compiled more than once.

Prefork is the classical multi-processing strategy of the Apache webserver.
Requests are handled by processes. Since starting up processes takes some
time a minimum amount is forked in preparation, which explains the name.
The advantage of this approach is true separation of different requests. Does
some external program need to be executed to answer the request, its own
process-environment already exists, for instance, the not thread-save scripting
language PHP can be used only with this MPM without additional efforts. The

18

disadvantages are obvious, too. A full process is a heavy object that consumes
a lot of memory and hence can only be scaled to a certain limit. The maximum
number of processes to be forked is defined by the serverlimit-option. At
the same time, this equals to the maximum number of simultaneous requests
that can be handled.

Worker favours threads over processes. Every request is handled by a thread,
but the processing module does not solely rely on threads and allows multiple
processes as well. Inverse to the previous module, it reduces memory usage and
scales faster, since threads can be spawned faster. However, still every thread
comes with a memory overhead and it must be taken care for thread-safety.
The number of requests that can be handled simultaneously is the product of
the maximum number of processes (serverlimit-option) and the maximum
of threads per process (threadlimit-option).

Event is the latest module and represents the adoption of the approach Ng-

inx uses. The basic idea is to handle all requests with a single eventloop
and dispatch time-consuming operations, such as I/O to dedicated threads.
This approach reduces memory consumption significantly, while it guaranties
thread-safety at the same time. The Apache-implementation allows the con-
figuration of process- and thread-count, analogous to the worker-MPM by
serverlimit- and threadlimit-option.

Nginx pioneered and still implements the same concept as Apache does
with the event-MPM, but the configuration is more simplistic. The maxi-
mum number of requests that can be handled simultaneously is defined by
the worker_connections-option. For comparability and easier configuration
generation, this is labelled as serverlimit from now on. There does not exist

19

any concept of configurable multi-threading like in the case for the Apache-
implementation, but there is an option to influence the number of processes,
which is by default equivalent to the number of CPU-cores of the system.

4.3. Feature Models

Only a small subset of the features that modern webservers offer were chosen
for this study. The reason is that many features do not affect energy con-
sumption or would require a distinct usage scenario, which makes it hard to
compare with other features. The models of the four engines were kept mostly
congruent, although even the different MPMs of Apache did not fully allow
that (e.g.: due to the already in previous section mentioned processing- and
threading-configurations). The options serverlimit and threadlimit are
numerical. For the sake of simplicity, they were transformed to enumerative
parameters for this experiment. Table 3 shows the values for the different
engines. They represent common choices. Note that for all engines except
prefork the theoretical count of simultaneous connections ranges from 1024 to
4096. The lowest values marked with a star are the configuration defaults of
the systems. These are the only features that are mandatory and they provide
alternative choices.

serverlimit threadlimit
low mid high low high

nginx 1024* 2048 4096 — —
prefork 256* 512 1024 — —
worker 16* — 32 64* 128
event 16* — 32 64* 128

Table 3: Details of the non-boolean mandatory feature options. (*default values)

20

Beside those two numeric features, up to eleven binary and one enumerative
feature with eight possible choices where selected as features. Some of the
binary features are not binary in the systems original appearance and have
been discretized. Three of them are not supported by Nginx, either because
they are Apache-specific like in case of htaccess or because they require third
party modules. All binary features are modelled truly optional. There are no
alternatives or dependencies. Table 3 presents an overview of the features
covered by the different systems. A graphical representation of the feature
models can be found in Appendix A, Figure 16. Most features are modelled
as binary choices.

feature Apache Nginx description
prefork worker event

serverlimit yes yes yes yes number of processes
threadlimit no yes yes no number of threads
keepalive yes yes yes yes boolean feature
errorlog yes yes yes yes boolean feature
accesslog yes yes yes yes boolean feature
clientcache yes yes yes yes boolean feature
servercache yes yes yes yes boolean feature
compression yes yes yes yes boolean feature
symlinks yes yes yes yes boolean feature
sendfile yes yes yes yes boolean feature
dns lookup yes yes yes no boolean feature
status yes yes yes no boolean feature
htaccess yes yes yes no boolean feature
encryption (TLS) yes yes yes yes 8 selected suites

Table 4: Comparative overview of the feature model for all servers. Yes means feature is supported, no
means not.

21

4.3.1. Description of Features

In the following the features are briefly described:

keepalive allows the TCP/IP stack to keep an established connection open
for succeeding communications, until the defined timeout. That became
introduced with HTTP 1.1. to reduce round trip times (RTT). When
activated, only new HTTP requests need to be established, while TCP
connections can be reused.

errorlog usually is not a boolean option and should never be turned off. It
allows adjusting the common syslog levels. The feature enables switching
between the levels error = false and warning = true.

accesslog allows detailed and fine-tuned logging of requests. Usually, it is
configured by format strings. For the study, it can be switched off or it
logs with the established default called combined log format.

clientcache takes advantage of the clients capability of caching previously
seen contents locally. So called conditional requests allow the server to
indicate that no changes were applied to the resource since the last re-
quest and therefore the cached version can be used. The HTTP response
code used for that is 304. By allowing the server to send these response
codes, the clientcache can be controlled by the server’s configuration.

servercache allows to keep a limited amount of data in main memory. Since
it prevents repetitive hard disk access, it should decrease latency of the
response.

compression reduces network traffic by compressing the data sent with the
commonly used deflate algorithm, also known as gzip.

22

symlinks allows the webserver to follow symlinks if they are encountered dur-
ing the request mapping.

sendfile takes advantage of the operating system capability for direct connec-
tion of two file descriptors in the kernel, mitigating further processing in
user space.

dns lookup requires the Apache webserver to do a reverse DNS lookup to
resolve the requesting clients IP address into a domain name. This may
cause additional network overhead, which, in turn means additional la-
tency.

status requires the server to keep track of some simple indicators of its own
performance.

htaccess is a feature of the Apache webserver that allows to distribute partial
configuration files all over the server folder structure. Since they can
change during runtime, they must be scanned at every request.

encryption is a complex feature that will be described in the following para-
graph.

Encryption Feature has its own complexity and requires a bunch of con-
figurations options to be set. For this study, it is reduced to eight distinct
TLS-Suites. Usually, the TLS feature is configured by a filter string that
constrains the possible combinations of different algorithms to a well defined
subset. A cipher suite consists of constraints for algorithms for up to four use
cases: key exchange, authentication, block cipher, and MAC-Hashes. To en-
sure a certain combination of algorithms during the experiments, negotiation
between client and server is prevented by fixating the cipher suite to a single

23

choice. The selection of those choices shown in Table 5 follows at current rec-
ommendations. The encryption feature is the only one beside the processing
options that is modelled as alternative choice.

Two self signed certificates according to the X.509 standard were generated.
One for encryption with an ECDSA key of type prime256v1 and a second
with an RSA key of 2048 bit size. Due to observed incompatibilities during
the prestudy experiments, ECDSA variants were discarded.

key exchange authentication block cipher MAC

DHE RSA 2048 AES128 SHA256
DHE RSA 2048 AES128-GCM SHA256
DHE RSA 2048 AES256 SHA256
DHE RSA 2048 AES256-GCM SHA384
ECDHE RSA 2048 AES128 SHA256
ECDHE RSA 2048 AES128-GCM SHA256
ECDHE RSA 2048 AES256 SHA384
ECDHE RSA 2048 AES256-GCM SHA384

Table 5: The eight fixed cipher suites for the TLS configuration

4.4. Configurations

Configurations are the specific instances of the feature model. They are de-
rived through selecting values for all options. The intuition of a configuration
space gives an impression of the challenges when configuring complex systems.
Its dimensions equal to the number of features and the value range of each
dimension equals the choices that are possible for that feature. Table 6 shows
how many configurations are possible, even with the limited subset chosen.
Over all 209,664 configurations could be generated and executed. Running

24

each for just 10 minutes would take almost four years. Even parallelization
would not help to run experiments within the time given for a thesis.

Apache Nginx

prefork worker event

serverlimit 3 2 2 3
threadlimit — 2 2 —
binary features 211 = 2048 2048 2048 28 = 256

encryption 9 9 9 9

dimensions 13 14 14 10

configuration space size 55296 73728 73728 6912
training samples 220 245 245 183
testing samples 10 10 10 10

Table 6: Size of the configuration spaces a.k.a. number of possible configurations.

4.4.1. Sampling Strategies

Due to the need of selecting a representative subset of configurations, different
sampling strategies have been applied. The basic dataset for all analysis con-
sists of configurations derived through the following sampling strategies taken
from [15]:

Feature-wise (FW) samples the subset of configurations where each feature
is kept default except for one. This sampling strategy intentionally avoids
any interactions among the features.

Negative feature-wise (NFW) is defined as the negation of feature-wise sam-
pling. All binary features are active or deviate from its default, except
for one.

25

Pair-wise (PW) chooses values that differ from default for any combinations
of two features at a time. This sampling obviously allows investigations
for pair-wise interactions.

It has been shown that the combination of those sampling strategies produce
sufficient data to train reliable performance models [25]. Table 11 in Chapter 6
provides numbers on the size of the samplings. Additionally, a separate set of
ten randomly chosen configurations was build for model evaluations. Those ten
configurations, listed in Table 7 were the same for all four webserver engines
and not part of any of the other samplings.

process/thread limit binary features cipher suite

high 01001100000 DHE-RSA-AES128-SHA256
low 00010110000 DHE-RSA-AES256-SHA256
low 01000101000 ECDHE-RSA-AES256-SHA384
low 01010100000 ECDHE-RSA-AES256-GCM-SHA384
low 10000000000 DHE-RSA-AES128-GCM-SHA256
low 10010101000 ECDHE-RSA-AES256-SHA384
low 10110000000 ECDHE-RSA-AES128-GCM-SHA256
low 11000001000 off
low 11000101000 ECDHE-RSA-AES128-SHA256
mid 10000000000 DHE-RSA-AES256-GCM-SHA384

Table 7: Randomly chosen configurations the test sets consist of. See Figure 2 for the mapping intuition.

4.4.2. Identification of Configurations

In order to assure quick resolution of configurations and results, a straight-
forward mapping of an entire configuration to a comprehensible string was
established. As illustrated in Figure 2, it starts with the engine, followed by

26

the values for serverlimit and threadlimit. In cases where threadlimit

is not defined, it is left blank. The next block is the ordered summary of all
binary features and encoded with Σ = {0, 1}. The last block is the unencoded
cipher suite string or if encryption is not in use, the string off. All five blocks
are separated by dashes for easy tokenization.

en
gin

e
se

rve
rlim

it
thr

ea
dlim

it

en
cry

ptio
nke

ep
aliv

e

err
orl

og

clie
ntc

ac
he

se
rve

rca
ch

e

sym
link

s

se
nd

file

dns
sta

tus

hta
cc

es
s

worker - ECDHE-RSA-AES128-SHA25616 64- - 1 1 0 0 0 01 1 0 0 0 -

ac
ce

ssl
og

co
mpres

sio
n

binary featuresnumeric features cipher suite

Figure 2: Mapping of configurations to identification labels

27

4.5. Workload Generation

To be able to measure any recognizable energy consumption above idle power, a
substantial workload must be applied. Load-testing tools2 are the appropriate
solution. Those applications are designed to perform repeatable scenarios of
real workloads for a server system. Therefore, they are capable of simulating
a variable number of clients in parallel and a variable request rate to different
resources. Fortunately, there exists a fair number of such tools. Sadly, however,
they strongly vary in their feature sets and there is no single tool with a
complete feature set, as the following short survey indicates.

4.5.1. Load-Testing Tools

The field can be roughly subdivided into three categories. Reading Table 8
from bottom to top, the first two tools wget and curl are not actually load-
testing tools, but protocol-testing tools. They provide very fine-grained access
to the protocol settings, but they do not support to do the same task rapidly
over and over again. Since they do not offer task repetitions, they do not offer
any statistical summaries as well, and therefore do not provide output, e.g., in
the form of CSV files. Both only offer command-line interfaces.

The quite heterogeneous middle field has the exclusive command-line interface
in common with the previous ones. Beside that, all tools are designed for
load and stress testing. There are veterans, such as the Apache Benchmark
(ab) and very modern tools, such as vegeta and wrk 2. While the new protocol
version HTTP/2 is already implemented by all servers and most clients, almost
all of the load-testing tools are lacking it; except for two out of that middle
field. Those two are relatively new competitors that started from scratch with
HTTP/2 in mind. Due to their simple command-line interfaces, most of the

2Also called: Performance-testing tools

28

middle field tools do not support plans of varying workloads, neither do they
provide any further statistical outputs than cumulative summaries. Therefore,
they are quite primitive compared to the last group of full-blown systems.

Tool Language HTTP/2 TLS Header Inferring CSV

jmeter Java no yes yes yes yes
gattling Scala no yes yes yes no
locoust Python no yes yes manual manual

vegeta Go yes yes yes no no
wrk 2 C no no
h2load C yes yes yes no no
ab C no yes no
tsung Erlang no no
yandx.tank Python SSL no

wget C no yes yes yes no
cURL C yes yes yes no no

Table 8: Overview of load testing tools.

The top three tools share the framework character, which allows custom exten-
sions, versatile logging of statistical data, and distributed load testing. None
of the tools does support HTTP/2 testing at the moment. JMeter and Lo-

coust do mention it on their issue tracker, but no support exists at the time.
For JMeter, an external plugin and patch exists, but it does lack to many
features.
There are two major differences between the established JMeter and the
two newcomers Gatling and Locoust. While JMeter is based on classical
multi-threading, the other two favour asynchronous event queues for load gen-
eration. Furthermore, load-testing plans for JMeter are configured through

29

a graphical user interface and stored in XML files. By contrast, Gatling

and Locoust both offer a domain specific language (DSL) for definition of a
load-test plan.
To simulate a webbrowser’s behaviour, embedded resources such as scripts,
style sheets, or images, must be loaded as well. The automated parsing and
downloading of embedded resources from the loaded HTML, also called re-
source inferring, is only usable with JMeter and Gatling without further
efforts. For Locoust, it can be realised through a custom extension.
Most disappointing is that only JMeter writes a full report of all requests and
measurements to a comma-separated-value (CSV) file. Again, Locoust can
be extended easily, but even though, it does not provide the same granularity.
At least, all tools throughout all three categories are capable of encrypted com-
munication (HTTPS) as well as they allow free manipulation of any header
fields.

JMeter Due to the sophisticated logging capabilities and the possibility of
embedded resource inferring, the decision was made for JMeter in version
3.1.
Unfortunately, practical problems arise that might discourage the usage of
JMeter in possible follow up studies. As it turned out, the logging capa-
bilities that could be achieved through extension of Locoust were sufficient,
too. First, load-testing plans that utilised the resource inferring feature were
discarded due to too many failed requests. Instead repetitive out of memory
exceptions occurred and required raising the heap size from 512 MB to 6 GB
in the startup shell script of JMeter in bin/jmeter, which is the tribute to
be paid for the multi-threaded approach.

HEAP="-Xms512m -Xmx512m"
HEAP="-Xms512m -Xmx6144m"

Listing 3: Adjustment for heap usage of JMeter. First line: Original configuration, second line: altered
version.

30

It remains unclear if observed performance limitations must be accounted to
the servers or to JMeter. A complete evaluation of load-testing tools was not
intended to be part of this thesis, but it is worth the effort to support further
research in this area.

4.5.2. Workload Plan

An extensive amount of time was spent on defining a load-testing plan that
generates enough workload to be able to measure a significant power usage
above idle.

First design approaches reflected the intention of a comparison of different
protocol versions from HTTP 1.0, HTTP 1.1, and HTTP/2 as one of the fea-
tures. Therefore, the first load-testing plan targeted specific advantages of
them, such as the multiplexing and server push in the case of HTTP/2. The
intuition was to embed larger resources, such as images into an HTML page,
such that the system should be able to benefit from the enhancements. Due to
the previously mentioned lack of HTTP/2 support from the load-testing tools,
the only feature that remained is the keepalive feature, which represents one
the major enhancements from HTTP 1.0 to HTTP 1.1.
A further finding of the prestudy was that, the concept of downloading em-
bedded resource caused problems. Embedded resources were not handled with
the same care as the main requests. Often, they failed and did not perform a
sufficient number of retries, because of too many concurrent connections. Since
an entire request becomes marked as failed if one subsequent request failed,
that resulted in many failures. Hence, the resources targeted by the load-test
plan were reduced to plain, solitary HTML files.

Another requirement for the load-testing plan were varying workloads. Large
resources saturate the network link with just a few requests, while tiny files

31

can reach upper bounds of simultaneous connections. More on that in Section
4.7, which summarizes the lessons learned during prestudy. Table 9 shows the
test plan as it was performed for the study. It consist of five different load
configurations, all separated by a 10 second pause. A 40 secound warmup
phase ensures that the startup processing of the server does not influence the
measurements. A 60 second wait to the end of the work loads is added to allow
queued requests to be worked off. All workloads are applied for 30 seconds.
Overall, one experiment takes 5 minutes.
Three HTML files of different sizes were deployed as resources. The workloads’
labels as printed in Table 9 refer to the filesize and whether the characteristic
of the load is the one of a ramp (R) or a plateau (P). As the names suggest,
a ramp should produce increasing load, whereas a plateau should aim to keep
the workload constatnt at a certain level. Interestingly, that effect can hardly
be recognized in the time-series visualizations in Figures 4 and 5.

label duration size threads repetitions target throughput
sec Byte # # req/sec req/sec MBit/s

— 40 sec warm up —

R1k 30 1 k 500 4,000 66,666 533
— 10 sec pause —

P1k 30 1 k 3,000 1,200 100,000 120,000 960
— 10 sec pause —

P7k 30 7 k 1,200 300 10,000 12,000 672
— 10 sec pause —

R7k 30 7 k 500 1,000 16,666 933
— 10 sec pause —

R3M 30 3 M 10 40 13 320
— 60 sec left until end —

Table 9: Description of the different workload intervals of the experiment.

32

As the local network offers a connection speed of 1 GBit/s, that is equal to
125 MByte/s theoretically maximum throughput, the different loads where
designed to keep below that boundary. Nevertheless, the number of simulta-
neous request appears to be limited at the boundary of approximately 15,000
requests per second, although two loads do apply a much higher pressure. The
reason for that behaviour remains unknown. Several factors could cause it:
The server itself is the most plausible candidate, probably due to overseen
misconfigurations. However, the same argument can be made for the load-
testing tool, or the TCP/IP stack of the operating system. They could be
configured too conservative as well. However, as Table 9 shows, the physical
network link can be ruled out, since the throughput definitely does not raise
above 1 GBit/s.

A final element of the workload plan worth an explanation is the variation
of the threads and repetitions parameters. The threads are used to simulate
clients. Therefore, they represent the number of simultaneous connections to
the server. By contrast, the repetitions tell one client how often to repeat the
request. The product of the two represents the number of requests performed
throughout the interval of half a minute. As a matter of fact, requests per-
formed by the same client simulating thread, should be able to leverage certain
features that are chosen for this study. For example, one client has one cache.
That means that a configuration with activated clientcache feature should per-
form only one request per thread and rely for all subsequent requests on its
local cache. Or, as another example, configurations with the keepalive feature
should be able to reuse the same connection.

33

4.6. Experiment Setup

As already mentioned, the experiments were deployed in the controlled envi-
ronment of a cluster. Moreover, the cluster can be considered homogeneous,
since the experiments were exclusively run on nodes of the i5 -type.

Figure 3 exemplifies the deployment of an experiment in the cluster. Every
experiment uses two nodes. One running the webserver, the other running
the load-testing tool. All scripts were designed such that the use of multiple
load-test clients would theoretically be possible, but the benefit gained out of
the workloads distribution did not pay of.

HTTP0 5 10
15

PDU

csv

Webserver Loadtesting Client

PDU
Monitoring

System
Monitoring

Loadtest
Monitoring

HTTP

csv

csv

Webserver Node Loadtesting Node

test
plan

config

Figure 3: Deployment of the experiment setup in the cluster.

A single experiment run takes five minutes. As discussed in Section 4.5.2,
the server becomes started immediately with its configuration, while the load
testing tool waits for 40 seconds before performing the test plan. From the first

34

moment, a system monitoring runs on the same node as the server, which logs
system performance metrics, such as CPU utilization, memory consumption,
and network load. The same monitoring was running at the client node, but
the data was only used during the prestudy.

Another monitoring script runs also at the client node from the first moment
to monitor the server-nodes PDU. It logs voltage, current, power, and energy
usage. The accuracy of those values has been already discussed in Section
4.1.

The load-testing tool itself logs every single request it performs. The data
logged includes the label of the workload, success and failure indicators, re-
sponse messages, transferred bytes in both directions, latency and response
time. Since those workload logfiles can become up to 100 MB for a single five
minute experiment, they were compressed with gzip immediately after they
were written.

All scripts log their data prefixed with UNIX epoch timestamps. The system
clocks are calibrated through the network time protocol (NTP). Therefore,
they are sufficiently exact for synchronizing the logfiles posterior, since NTP
guaranties milliseconds accuracy.

The two, so far unmentioned scripts for monitoring system utilization and
the PDU, are self-written in the Python programming language. Both benefit
extensively from the capabilities of the asynchronous IO libraries of Python
(aio). Hence, they provide reliable logging, while the impact on the systems
performance remains almost unrecognisable. Both scripts are configured to
perform a slight oversampling to increase precision. The PDU monitoring logs
every 0.3 seconds, whereas the system monitoring every 0.5 second. The data
logged will be sampled down to one second posterior.

35

4.7. Prestudy

A quite large amount of time was spent prior the actual study in finding a
suitable and realisable study design. This chapter aims to summarizes the
lessons learned during prestudy.

4.7.1. Lessons Learned

Protocol Versions As already mentioned in Section 4.5.2 incorporating HTTP/2
support as a feature would be of interest, but was not possible due to lack of
support by the current load-testing tools. This remains an open issue and
might be worth the custom development of an appropriate load-testing tool.

Conditional Requests The effect of this HTTP feature was already men-
tioned in Section 4.3.1. Conditional Requests do allow the client to send some
information about locally cached versions of the resource with its request. That
means a server can respond just by acknowledging the reuse of the cached ver-
sion. That behaviour is used exhaustive by real-world clients, but it had to be
disabled for the study’s purpose. That is because otherwise, the server would
not experience any further workload, after every virtual client has made its first
request and filled its cache. Therefore, it is deactivated for all configurations
except for the ones that have the feature clientcache activated.

Open File Descriptors Webservers heavily depend upon the infrastructure
that the underlying operating system offers. One important and often nec-
essary adjustment concerns the open file descriptors. In UNIX systems, any
opened file, data stream, network connection is represented as a file descriptor
in the system. The number of simultaneously allowed open file descriptors is

36

arbitrarily limited. Historically, the values chosen for that boundary are very
low. Decades ago those rigorous limits made sense for security reasons, but for
modern computers, they can be raised without harm. The current limit can
be inspected by the command ulimit -n. For the used Ubuntu systems, it
was set to 1024. That is obviously not sufficient, neither for the server, nor
the load-testing tool. It did limit the number of simultaneous connections to
that number. Therefore, the value was raised to 8192 for all the experiments
ran for this study.

Favor the many small over the few large! Requests that expect large
response payloads do rapidly fill up the network connection. A webserver has
only work to do until the response is assembled and it can be sent. Especially
for static files, as used exclusively in this study, the actual transmission of
the payload is delegated to the operating system. To keep a webserver busy,
many small requests are far more effective. Of course, the upper bound for
all requests is always capacity of the network link. For the same reason, the
embedded resource inferring feature of JMeter was not used, as discussed in
Section 4.5.2.

37

Figure 4: Observed performance degeneration of Nginx configurations with and without encryption. Exem-
plary configurations visualized as time series: nginx-1024–00000000000-DHE-RSA-AES128-GCM-
SHA256 and nginx-1024–00000000000-off

Figure 5: Observed performance degeneration of Apache worker configurations with and without encryp-
tion. Exemplary configurations visualized as time series: worker-16-64-00000000000-ECDHE-RSA-
AES128-GCM-SHA256 and worker-32-64-00000000000-off

4.7.2. Open Issues

Some issues remained unresolved. Taking a look at the Figures 4 and 5, it
must be acknowledged that the different servers perform significantly worse
with encryption turned on. But the CPU still has spare resources to offer.
It could not be resolved if that degeneration in throughput is caused by the
server, the operating system, or the load-testing client.

Even more mysterious is the sudden decline of throughput in Figure 5 for the
Apache worker engine, but similarly observed for the Apache event engine.
It occurs during the third load interval, after it reached a peak. Suddenly the
throughput declines and does not recover before the end of the fourth interval.
The best guess so far, is to blame the TCP stack for that behaviour, since
it could be caused by the flow control that tells a sending node to drop the
packet rate, if the receiving node is overwhelmed.

40

5. Research Question

This thesis is situated within a research field that aims for empirical exploration
of the influences of features of configurable software systems on the proper-
ties, especially the non-functional properties of those systems. Non-functional
properties can be any hardware utilization metric, any performance metric or,
with focus on this thesis “Do features matter for energy consumption?”: energy
consumption.

energy consumption

configuration

cpu

memory

disk

network

throughput

error rate

response time

independent variables dependent variables

workload

software

hardware

energy

hardware

performance

metrics

influencing factor

directed influence

Figure 6: Independent and dependent variables as influencing factors for energy consumption.

Nevertheless, energy consumption remains difficult to measure, even though
modern hardware became more sophisticated in that. Without special hard-
ware, users are reliant on estimations that are based on other non-functional
properties that are more straight forward to measure. Hardware metrics do

41

play an important role for that, since they inform about the utilization of the
components that actually do consume the energy.

The question if performance metrics can play a similar role like hardware met-
rics do for estimating energy consumption was already identified as controver-
sial in the introduction chapter. Figure 6 illustrates the constellation. The
explanatory or independent variables are the hardware, software, the work-
loads, and, of course, the features. The hardware and performance metrics are
kind of intermediate here. They are explained by the independent variables
themself, but they can be explanatory for the energy consumption as well.

The main interest lies on the influence of configuration choices on energy con-
sumption. Furthermore, there might be interactions between features to be
discovered. In particular the following research questions shall be answered
onwards.

RQ 1 Do features correlate with energy consumption?
Here, features are atomic parts, assembled to a configuration representing the
independent variables that may explain changes in the dependent variable,
the energy consumption. Therefore, a linear regression model will show up
whether relationships exist. Hence, subsequent questions are:

RQ 1.1 What are the effects of individual features?
To answer this question, the coefficients of a multiple regression for the
feature-activation matrix and the energy consumption values shall be
inspected.

RQ 1.2 Are there any interactions between features?
This is acomplished analogous to the previous one, except for an exten-
sion of the feature-activation matrix that has to incorporate the activa-
tions of feature pairings.

42

RQ 1.3 What is the distribution of relevant and irrelevant features with respect
to energy consumption?
To provide an intuition about this, a histogram of the coefficients of the
regression model will suffice.

RQ 2 Does performance correlate with energy consumption?
Here, performance is defined as response time. Hence, the question boils down
to: Are the mean values of response time and energy consumption drawn from
the same distribution?

RQ 3 What is the workload’s influence on the energy consumption of fea-
tures?
The workload is known to affect the performance of webservers. Does it influ-
ence the way features affect the energy consumption as well? As a first step,
the following question should be answered:

RQ 3.1 Do the most energy efficient configurations maintain rank for varying
workloads?
Therefore, the energy consumptions, separately calculated for the differ-
ent workload intervals, will be ranked and inspected, whether the top
ten configurations maintain position across the varying workloads.

To answer this questions the hardware was kept stable, throughout the exper-
iments. Same applies to the operating system software. The subjects of the
study, the webservers were varied.

43

6. Evaluation

Running all 933 configurations for training and testing, each 3 times for 5
minutes, took 233.25 hours, or more human readable 9 days 17 hours and 15
minutes, and produced 138.7 GB of logged data. That does not include any test
runs prior to the actual study. Table 10 provides statistics of the size for the
different samplings. Before evaluating the data gathered with respect to the
proposed research question, it needs some preprocessing described onwards.

sampling prefork worker event nginx

feature-wise 3.3 3.4 3.4 3.4
negative feature-wise 4.9 4.7 4.8 4.6
pair-wise 25 28 28 19
testset 1.6 1.5 1.5 1.6

sums (GB) 34.8 37.6 37.7 28.6
total (GB) 138.7

Table 10: Size of acquired data from experiments in Gigabytes

6.1. Preprocessing

The refinement of the raw data was realized in two separate processing steps.
First, a single experiment with its three repetitions, each of which produced
three log files, formatted as comma-separated values (csv), was aggregated to
a single second-wise log file of averaged values by the following steps:

1. Temporal alignment of different metrics in different logfiles according to
unix timestamp.

2. Redefining the index to time deltas beginning with zero at start.

44

3. Downsampling to a frequency of one second, while averaging all fields
except for success and failure counts which were summed up.

4. Joining the three runs of the same experiment to one timeline to account
for measurement bias.

5. Aggregating all values at the same timestamp by averaging again.

6. Cutting off the first 40 seconds of idle warm-up phase.

The second processing step aggregates all experiment runs with the same web-
server engine in a single table, in which each experiment is represented by a
single row. The first part of a row is the binary feature vector representing
the configuration of the according experiment. All vectors combined represent
the feature-activation matrix. The second part of a row repeats 6 times, once
for the entire experiment and 5 times for every individual workload. This part
provides averaged response times and electrical power, as well as summed up
success and failure counts, and energy consumption.

prefork worker event nginx

training set configurations 220 245 245 183
– feature-wise 21 22 22 19
– negative feature-wise 19 20 20 16
– pair-wise 180 203 203 148
erroneous executions 56 69 83 0
– mean of failed requests in % 1.1915 0.9112 0.7702 —

testing set configurations 10 10 10 10
erroneous executions 0 0 2 0
– mean of failed requests in % — — 0.0002 —

Table 11: Total number of configurations, respective errors during execution and the mean error quotient of
the erroneous executions.

45

Only the timelines in Figures 4 and 5 are produced based on the data of the first
refinement step. All other plots are based on data of the second preprocessing
step.

Beside the number of individual configurations run for each engine, Table 11
provides a first glimpse of the data. It shows how many of the experiments
had failed requests during execution. Furthermore, only for the erroneous
experiments, the averaged percentage of failed requests is stated. Figure 7
provides a more detailed view on the distribution and variance of failures
during the experiments. None of the outliers or the erroneous executions were
removed from the data for further analysis. Since the case of the failures and
outliers remains unclear, the were not treated differently.

(a) Distributions, outliers are cut off (b) Boxplots, including outliers

Figure 7: Visual descriptions of the failure rates occurred during all experiments.

6.2. Results and Discussion

6.2.1. Features and their Interactions

To investigate the influences of features and their interactions on the energy
consumption two linear regression analysis were performed. Initially, it was ex-

46

perimented with Lasso and Ridge regression in comparison to Ordinary-Least-
Squares (OLS) regression. While Lasso regression leads to more interpretable
and expressive models by enforcing certain coefficients of the model to be set
to zero, Ridge regression improves the prediction accuracy by reducing over-
fitting through limiting the size of the coefficients. Lasso and Ridge regression
do both work for ill-posed problems were a linear regression by OLS is not
able to provide an unambiguous model. So both can prevent overfitting, but
might lead to underfitting models. Since the learned models did not differ
significantly, the decision was made to stay with OLS regression. Both regres-
sions calculated are multiple regressions, as they must explain the relationship
of more than one explanatory variable to energy consumption. Multivariate
regression, which would be able to incorporate more than one value for energy
consumption per configuration, was not performed. The data sets achieved
through feature-wise, negative feature-wise, and pair-wise sampling were com-
bined to form the training data set used for both regressions.

RQ 1.1 What are the effects of individual features?
In order to answer RQ 1.1 a multiple regression model with the feature-
activation matrix as the explanatory variables and the vector of energy con-
sumptions as the explained variable was calculated. The effects obtained as
coefficients of the regression model are listed in Table 12. They are sorted
by the worker column to provide better intuition. The clientcache feature
is the energy saving feature for all Apache processing modules, but surpris-
ingly that is not the case for Nginx. Nginx seems to save energy through
encryption, which, however, is certainly not the case. A first attempt for ex-
planation can be made by the observation that only the cipher suites using the
elliptic curve variant of the Diffie Hellman key exchange (ECDHE) appear to
save energy, which could be true compared to the non elliptic curve variants.
But, that hypothesis, is contradicted by the Apache family. More realisti-

47

cally, the energy-saving effect is caused by the decline of the handled requests,
when encryption is activated. Further investigations are needed. Similarly, the
keepalive feature allows only Nginx to save energy.

feature nginx event worker prefork

ECDHE-RSA-AES256-SHA384 -129.42 537.31 426.63 640.86
servercache -122.13 405.99 325.37 115.40
compression 25.30 358.32 320.93 224.12
ECDHE-RSA-AES128-SHA256 -224.08 395.41 291.15 230.40
DHE-RSA-AES128-SHA256 209.38 349.15 274.55 330.94
DHE-RSA-AES256-SHA256 205.99 359.21 268.78 225.93
sendfile 93.57 300.87 199.09 131.35
keepalive -103.15 489.97 198.43 290.79
status — 152.38 158.50 51.06
threadlimit-high — 148.90 147.86 —
symlinks -43.04 176.22 144.39 49.01
errorlog 20.02 178.98 143.37 39.81
htaccess — 163.24 139.63 40.23
serverlimit-high 4.79 137.42 106.13 -0.00
accesslog 63.81 108.42 104.27 30.69
dns — 96.50 87.98 -14.84
ECDHE-RSA-AES128-GCM-SHA256 -317.76 211.45 81.57 31.21
ECDHE-RSA-AES256-GCM-SHA384 -305.60 217.21 74.80 41.89
DHE-RSA-AES128-GCM-SHA256 105.31 179.84 63.73 42.78
serverlimit-mid -3.62 0.00 0.00 32.26
DHE-RSA-AES256-GCM-SHA384 105.87 28.16 -49.05 47.92
clientcache 66.52 -1540.15 -1350.48 -1119.41

Table 12: Coefficients produced by the regression analysis for different servers; sorted by worker column.

48

It can be resumed that the different engines of the Apache family show a
similar effects for the different features, while Nginx shows very different
effects.

RQ 1.2 Are there any interactions between features?
When two or more features are active within the same configuration they
might cause effects, that can not be explained by the features individually.
Those unexplained effects are called interactions, since they arise out of the
interaction of features. For this study, pair-wise interactions, that is, effects
occurring when two features are interacting with each other, were incorporated
into the linear model. Therefore, the feature-activation matrix needs to be
extended by additional, virtual features. Those are active only when their
corresponding features are simultaneously activated. This results in up to 225
coefficients of the models incorporating pair-wise interactions. An overview can
be found in appendix B. Roughly, it can be stated that interactions contribute
large effects to the model. Interestingly, the feature serverlimit-mid, that
does not have any effect in the interaction-free model for the Apache event and
worker, has the largest effect in the model with interactions, in order of 1015, for
the two engines. The same effect can be observed for the serverlimit-high

feature in case of the Apache prefork. In contrast to the Apache family, the
coefficients of Nginx do not change by that order of magnitude.

RQ 1.3 What is the distribution of relevant and irrelevant features with re-
spect to energy consumption?
The histograms in the Figures 8 – 11 show the distributions of the features’
effects on energy consumption for each webserver engine. The distributions af-
firm the observations made while answering RQ 1.1 and RQ 1.2. The majority
of features do have a minor or no influence at all.

49

(a) without interactions (b) with interactions

Figure 8: Distribution of effect sizes of Apache event. 4 outliers are removed from (b) (max: 4.4 · 1015)

(a) without interactions (b) with interactions

Figure 9: Distribution of effect sizes of Apache worker. 5 outliers are removed from (b) (max: 3.9 · 1015)

Without regard to any interactions, the Apache family (Figures 8 – 10) shares,
as already mentioned, one energy saving feature, the clientcache, that has
a large effect. The energy consuming features outnumber the energy saving
ones, but their individual effects are smaller.

Incorporating interactions increases the range of effect sizes by magnitudes.
As already discussed that does affect not only the effects of interactions, but
the effects of individual features, as well. Beside that, the majority of effects
are still close or equal to zero, such that they are irrelevant.

50

(a) without interactions (b) with interactions

Figure 10: Distribution of effect sizes of Apache prefork. 5 outliers are removed from (b) (max: 7.5 · 1015)

In contrast, Nginx (Figure 11) shows an even distribution of small effects.
Interestingly, incorporating interactions leads to a normal-distributed charac-
teristic. Although the range of the effect size for Nginx does increase as well,
the increase is rather moderate in comparison to the Apache family.

(a) without interactions (b) with interactions

Figure 11: Distribution of effect sizes of Nginx. no outliers are removed from (b)

Discussion So far, it could be shown that features have an influence on the
energy consumption of webservers. The majority have a minor or no effect.
But, some certainly have an impact. Furthermore, there do exist interactions

51

between features. Incorporating them into the linear model causes serious
changes in the effect sizes by order of magnitudes.

In order to judge the quality of the two regression models, they were applied to
predict the energy consumption of configurations for the test data set described
in Table 7. The boxplots in Figure 12 compare the predicted values of the two
models to the measured ground-truth. The dashed line marks the idle energy
consumption of 5200 Ws by the systems, which is calculated by an idle power
of 20 watts over an interval of 4 minutes and 20 seconds due to the cut-off of
the first 40 seconds. The intercepts of models are provided in Table 13.

(a) Nginx (b) Apache event

(c) Apache worker (d) Apache prefork

Figure 12: Comparison of the predicted energy variances for the different server engines’ models.

While Nginx roughly maintains its variance in the predictions, for the Apache

family, a substantial increase of variance can be observed for the predictions

52

that do not include interactions. Including the interactions reduces the vari-
ance to the order of the ground-truth. This is a first indicator that the models
that include the interactions are able to predict the energy consumption better.
As a second indicator, the mean absolute errors provided in Table 13 can be
consulted. Analogous to the variance the error decreases across all webserver
engines, when interactions are taken into account.

Another observation concerns the deviation of the median in comparison to
the ground-truth. It can be seen as the bias of the model. The models for
Apache worker and prefork keep the median stable. While Nginx shows
a slightly positive shift of the median, the Apache event shift represents a
drastic bias. Those biases become reflected in the interceptions provided in
Table 13.

feature nginx event worker prefork

— model without feature interactions —

intercept (Ws) 6915.298 7545.995 6772.361 6712.407
mean absolute error (Ws) 354.20 1188.70 718.13 574.36
mean squared error 167066.13 1910317.64 551196.36 376160.21
R2-Score for training set 0.72560 0.74568 0.74334 0.6351
R2-Score for testing set -5.00885 -4.31699 -0.93295 -0.26174

— model with feature interactions —

intercept (Ws) 7001.894 7983.689 7039.996 6800.644
mean absolute error (Ws) 310.43 784.36 235.54 207.31
mean squared error 103777.92 738269.88 79131.51 70308.39
R2-Score for training set 0.99598 0.99355 0.99827 0.99883
R2-Score for testing set -2.73257 -1.05483 0.72250 0.76417

Table 13: Quality metrics of the learned models for the different servers.

53

Finally, the standard quality metric R2-Score can be consulted. It describes
the portion of variance in the data that can be explained by the model. Its
value range reaches from a complete explanation with 1.0, and can become
arbitrarily bad below 0.0.

Table 13 provides the R2-Score for all the models, not only with respect to the
testing data set, but with respect to the training data set, as well. The R2-
Scores of the models for the training set confirm that the models incorporating
the interactions are substantially better in fitting the variance of the observed
data. The R2-Scores of the models without any interactions applied to the
test-data set are all below 0.0, but for Nginx and Apache event they are
even below −4.0. Including the interactions into the models, the R2-Scores of
Nginx and Apache event keep values below −1.0, while Apache worker and
prefork show scores above 0.7.

To resume, it can be said, that the models incorporating feature interactions
provide substantially better predictions than the models ignoring the inter-
actions. The models learned for Apache worker and prefork do not fit any
better to the training data, but they do provide better predictions for the
testing data. In contrast Nginx and Apache event do not provide optimal
predictions. In case of the Apache event that could be accounted to a bias
that tends to predict higher energy consumptions. In case of Nginx, it is
difficult to pin-point what causes the low R2-Score, since the variances of the
predictions do not diverge that much; the bias is comparatively low and the
absolute error is the lowest of all the models. Maybe, it must be accounted
to a scaling effect, since the variance of the coefficients of the Nginx model
is substantially smaller compared to the other models. Therefore, the energy
consumption of Nginx is less influenced by features, than it is the case for the
Apache family.

54

6.2.2. Performance

If it could be shown, that performance correlates with energy consumption,
life would be easy, since optimization for minimal response times is a common
goal among webserver administrators already. To investigate whether that is
the case, the correlation between the average response times of all training-set
experiments and their averaged energy consumption is calculated. The cal-
culation of the correlation coefficient according to Pearson requires the two
variables to be normally distributed. Anderson-Darling-, as well as Shapiro-
Wilk-test indicate that this is not the case. Hence, the Spearman’s rank corre-
lation remained as an appropriate tool to verify whether energy consumption
and response time correlate.

feature nginx event worker prefork

Spearman’s coefficent 0.04794 -0.32137 -0.31715 -0.41724
p-Value 0.51925 2.72519 · 10−7 3.97258 · 10−7 1.11852 · 10−10

Table 14: Correlations between energy consumption and response time for the different servers.

Table 14 provides the correlation coefficients calculated with Spearman’s rank
correlation for the different webserver engines, accompanied by the p-values
for the hypothesis test, whose null hypothesis is that the two variables are
uncorrelated.

Discussion For Nginx a correlation can be rejected. The p-value indicates
that the null hypothesis can not be rejected and therefore the variables are
uncorrelated. Beside that, the correlation coefficient is only marginal.
For the Apache family things look different. The p-values indicate that the
null hypothesis can clearly be rejected. The correlations are weak, but they

55

are significant. Furthermore, all the correlation coefficients for the Apache

family are negative. That means that one of the variables increases, while the
other decreases. Hence, it is not the case that a webserver’s optimization for
performance does lead to energy efficiency, but it appears to be a trade-off
between the two. Longer response times mean less energy consumption and
vice versa.

It remains questionable whether response time alone represents a sufficient
metric for a webserver’s performance. Other possible metrics were already
mentioned in Chapter 2.4. They all do influence each other. The response time
is influenced by the data rate, since it takes more time to transfer the same
amount of data with a slower connection. The transfer of more data, while
keeping the connection speed constant, will result in a drop of the response
time. The number of responses received in an interval of time can be converted
to the response time per request by the division of time through response
count.

(a) Distributions (b) Boxplots

Figure 13: Visual descriptions of the response times observed during all the experiments.

This relation between the performance metrics is visualized by Figures 13 – 15.
For all servers, the median in the boxplots for both of the throughputs (Figures
14 and 15) has a tension downwards, whereas the response time (figure 13) has

56

a tension upwards. That gives a hint to the existence of correlations between
the different performance metrics and henceforth, they can be interchanged by
each other. But, evaluating that remains a future task.

(a) Distributions (b) Boxplots

Figure 14: Visual descriptions of the throughput of responses observed during all the experiments.

(a) Distributions (b) Boxplots

Figure 15: Visual descriptions of the throughput of data observed during all the experiments.

All performance measures presented in Figures 13 – 15 do not reflect failures,
which were shown in Figure 7. But, a throughput measurement, as a count
of responses, can change its meaning substantially, when set in context to
failures. For instance: According to Figure 7, there do not exist any failures
for Nginx. However, bearing in mind that, while reviewing the throughput of
responses in Figure 14, it is conspicuous that Nginx is the only webserver that

57

has a median close to zero, meaning, that a substantial number of requests was
not served at all. For an unknown reason, those unserved requests were not
counted as failures. All figures indicate a substantially different behaviour of
Nginx in comparison to the Apache family.

6.2.3. Workloads

Finally, to gain some intuition about the workloads’ influence on the energy
consumption of features (RQ 3), it was analysed whether the most energy
efficient configurations maintain their rank for varying workloads (RQ 3.1).
Therefore, Tables 15 – 18 provide the top-10 configurations of the webserver
engines, with respect to the energy consumption under workload P7k, as de-
scribed in Chapter 4.5.2. The other columns of the table show the ranks of the
configurations under different workloads, including a cumulative column (all),
which represents the ranks for the entire experiment.

configuration all R1k P1k P7k R7k R3M

worker-16-64-00010000100-off 6 2 2 1 1 2
worker-16-64-00010010000-off 4 1 2 1 1 2
worker-16-64-00010001000-off 5 1 3 1 1 2
worker-16-64-00010000010-off 7 1 4 1 1 3
worker-16-64-00010000000-off 11 1 7 1 3 6
worker-16-64-10010000000-off 10 1 9 2 2 2
worker-16-128-00010000000-off 9 2 6 3 7 2
worker-16-64-00010000000-off 2 3 7 4 1 1
worker-16-64-00010000001-off 1 1 8 5 1 2
worker-16-64-01010000000-off 8 6 4 6 1 2

Table 15: Top-10 Apache Worker configurations aligned to the P7K load and their respective ranks for other
loads. The minimum among the maximum ranks is 226 for the R3M load.

The minimum among the maximal ranks is provided in the caption of the
tables. That should provide an intuition about the actual variance of the
ranks within the top-10.

58

configuration all R1k P1k P7k R7k R3M

prefork-256–00010010000-off 10 4 1 1 1 4
prefork-256–01010000000-off 3 5 5 1 1 7
prefork-256–00010000001-off 7 3 3 1 1 7
prefork-256–00010000000-off 8 5 7 1 1 5
prefork-256–10010000000-off 12 5 11 1 1 7
prefork-256–00010000010-off 2 1 2 1 1 7
prefork-256–00010001000-off 5 2 4 1 1 1
prefork-256–00010000100-off 6 5 6 1 1 6
prefork-512–00010000000-off 4 7 9 1 2 4
prefork-256–00010000000-off 1 5 8 1 3 7

Table 16: Top-10 Apache Prefork configurations aligned to the P7K load and their respective ranks for other
loads. The minimum among the maximum ranks is 205 for the R3M load.

configuration all R1k P1k P7k R7k R3M

event-16-64-00100000100-off 22 22 18 1 22 12
event-16-128-00010000000-off 3 10 9 2 10 5
event-16-64-00010000100-off 8 7 6 3 4 1
event-16-64-00010000001-off 1 5 3 4 3 3
event-32-64-00010000000-off 9 6 7 5 6 1
event-16-64-00110000000-off 10 8 10 6 2 2
event-16-64-00010000010-off 6 4 4 7 5 3
event-16-64-01010000000-off 2 9 8 8 9 2
event-16-64-00010010000-off 7 2 5 9 7 1
event-16-64-00010001000-off 4 1 2 10 1 1

Table 17: Top-10 Apache Event configurations aligned to the P7K load and their respective ranks for other
loads. The minimum among the maximum ranks is 232 for the R3M load.

Discussion The values confirm previous observations. The Apache engines
worker and prefork expose a relatively stable and predictable behaviour. That
still holds under varying workloads. As the Tables 15 and 16 show, the ranks
throughout the top-10 configurations varies only slightly. That suggests that
varying workload does not have a relevant influence on the energy efficiency of
features. Although the ranks vary more in case of the Apache event (figure
17), that claim appears still to be valid.

59

However, the variations of the ranks for the Nginx webserver challenge this
observation. As Figure 18 shows, the ranks for the R1k load jumps from top-10
to worse-10, while the rank for the R3M load varies in the upper middle. The
data appears to be arbitrary and it can neither be concluded that the energy
efficiency of Nginx is influenced by the workload nor by configurations. The
data obtained through the experiments does not reveal any observable pattern
for the Nginx webserver.

configuration all R1k P1k P7k R7k R3M

nginx-1024–10001000000-off 1 9 1 1 1 33
nginx-1024–10000010000-off 2 72 54 2 2 32
nginx-1024–10000000000-off 71 142 158 3 10 73
nginx-1024–10000000000-ECDHE-RSA-AES128-GCM-SHA256 4 58 56 4 6 82
nginx-1024–10000000000-off 70 141 141 5 12 50
nginx-4096–10000000000-off 63 140 83 6 11 53
nginx-2048–11101111000-DHE-RSA-AES256-GCM-SHA384 38 57 59 7 4 112
nginx-2048–10000000000-ECDHE-RSA-AES128-GCM-SHA256 6 55 55 8 5 91
nginx-2048–10000000000-off 74 174 135 9 9 29
nginx-1024–10000000000-DHE-RSA-AES128-GCM-SHA256 18 59 58 10 7 88

Table 18: Top-10 Nginx configurations aligned to the P7K load and their respective ranks for other loads.
The minimum among the maximum ranks is 178 for the R3M load.

To resume, it can be stated that the influence of features on the energy con-
sumption of the webservers of Apache family keeps stable under varying work-
loads. For Nginx, this is not the case, but it remains unclear why.

60

7. Validity

Internal Validity Most effort was spent in maximizing internal validity. The
extensive prestudy aimed to discover and eliminate limitations drawn by the
operating system, the network, or the load-testing tool. There are still seri-
ous threads to validity, including the trustworthiness of the load-testing tool,
possible imprecision of energy measurement, and the unknown influences and
arbitrary behaviour of the underlying operating system, the cluster manage-
ment software, and the network. Nevertheless, the prestudy showed that the
webservers’ behaviour in principle is reproducible, the possibility of failure is
always present, especially in distributed systems.

A serious problem arises when comparing performance measurements of dif-
ferent configuration runs. Throughput is used as the common metric for per-
formance, either in the meaning of data rate or request rate. It is unclear
whether they can be used alternatively. The investigations done throughout
this study suggest that they are possibly correlated. However, an deeper eval-
uation is needed, including varying workloads, to draw a sound conclusion.
Furthermore, both of the throughput metrics lack information about the rate
of failure. A combined metric that incorporates the different throughput met-
rics, as well as the failure rate could not be found. Therefore, all three metrics
were presented separately in the evaluation (Chapter 6). Developing such a
combined metric could be suspect for future research.

External Validity This study does not aim for external validity. Never-
theless, the software used are widespread standard systems. This applies to
Ubuntu as the operating system, and the subjected webservers Apache and
Nginx, alike. The features that were selected are well-known and part of many

61

real-world configurations. The HTML files utilized as workloads contained re-
alistic contents. The fact that the webservers did only serve static files is no
thread to external validity, since the serving of so called assets is a common
task.

However, the load-testing plan designed and applied for this study is optimized
to enforce the consumption of energy. Therefore, it does not emulate realistic
traffic shaping, but mimics a moderate denial of service attack. Moreover, since
the load-testing tool is the only source of requests, the study must be accepted
as a lab experiment, which provides external validity only by accident.

Moreover, since all experiments were run on homogeneous hardware and op-
erating system, the results can not be generalized for arbitrary setups by any
means.

62

8. Conclusion

This thesis aimed at exploring the influences of features on the energy con-
sumption in case of webservers. The resulting models were expected to support
the users of those systems in discovering energy-saving potentials in their sys-
tem’s configuration. Henceforth, a feature-oriented perspective was taken onto
four webserver engines as the study’s subjects.

Do Features Matter for Energy Consumption? Yes, they do. At least in case
of webservers. Roughly, that distils the conclusion of this thesis and thereby
contradicts Hinchliffe’s rule [26].

It could be shown, that some features have a relevant influence on the energy
consumption of webservers and that incorporating interactions between them
leads to substantially more precise predictions. That holds for all webservers
that were subject to this thesis.
A weak, negative correlation between performance and energy consumption
could be discovered only for the Apache family. Thus, it is likely, that per-
formance must be sacrificed for energy efficiency. Moreover, the features’ in-
fluences on the energy consumption of the Apache family appears not to be
affected by varying workloads. The data gathered refused to reveal any pat-
terns for Nginx. Neither, in case of influences of varying workloads, nor a
significant correlation between performance and energy consumption.

The behaviour of Nginx is influenced by factors, which could not be identified
during this study. Nevertheless, it also grants two insights:
First, a black-box approach is insufficient to understand or even model the be-
haviour of integrated systems, such as webservers, that are indistinguishable
from their environment. The black-box has already been opened by adjusting
operating system properties. Gathering reliable data for Nginx, requires fur-
ther unfolding of the black-box.

63

With regard to empiric black-box studies, the reader should be reminded, that
correlation does not mean causation. Tyler Vigen [27] collected great examples
of Spurious Correlations, visualizing, what Benno Stein formulated during an
interview: “Correlations are everywhere, where searched for them.”[28]
Second, the largest differences of the obtained models are in-between the sys-
tems, that do not share any code. Although, the Apache family differs in
their multi processing models, they share most of their code-base, which ap-
pears to guarantee comparable behaviour. Therefore, the most relevant choice
a user has, is the choice of the system. Recommendations, which system to use,
to achieve energy-efficiency for certain combinations of features, is a possible
outcome of future research.

Furthermore, the second insight suggests a possible design flaw in the feature
models. The three MPMs of the Apache family and Nginx were treated
as four independent software product lines (SPLs) with disjoint feature mod-
els. That allowed for comparative discussions of the different processing ap-
proaches, but it also dissembled the actual SPL characteristic of the Apache

family. Neglecting the different MPMs as a feature of a joint feature model,
means rejecting a feature, that offers alternative choices.
This observation becomes relevant, when recurring to the goal of discovering
energy-efficient configurations for the SPLs through application of the gained
models. The assumption about the benefit gained through the models ignores
the nature of most features. By definition, features provide an increment of
functionality [14]. Hence, they do not offer alternative choices. Beside the
discarded MPMs, the only alternative choice throughout the feature space of
this study are the values for the process- and thread-counts. All other features
are binary choices, that can be switched off or on. If a feature like encryp-
tion is required for a setup, it will be activated, no matter what its impact on
energy consumption is. It has always been best practice among administra-
tors to leave unneeded features deactivated. The only energy saving feature

64

revealed during the study is active by default for all servers. That underlines,
the appeal for reverting the configuration space explosion [13]. Following good
old engineering practice:

“Perfection is achieved, not when there is nothing more to add, but
when there is nothing left to take away.”3

The reduction of the configuration space is the best way to prevent miscon-
figuration that may result in unnecessary energy consumption. However, this
is the duty of the developers. It can not be the burden of the administrators
or the users. As it is the responsibility of the developers to design software
systems with energy efficiency in mind. Hence, developers must be equipped
with the knowledge needed for that challenge [12].
It should not be withheld that effective and reliable energy saving opportu-
nities have already been discovered in the major upfront energy consumption
of current hardware. Meanwhile, administrators can exploit them through
consolidation of server systems [7].

Consolidation of installations, reduction of configuration options, and applica-
tion of energy efficient algorithms are promising approaches for saving energy.
Yet, all these are aspects, that need to be addressed by design.

Henceforth, the author questions the worthwhile applicability of the feature-
oriented approach to support users in optimizing their webserver’s configura-
tion with regard to energy efficiency. Even though, it might be a useful tool to
help developers identifying energy-wasting features in their product lines.

Computer systems are man-made. They did not evolve from nature. Their
design, implementation, and behaviour must be comprehensible by humans.
Delegating energy efficiency to configurations, recommended by empirically
derived correlation models, means surrendering to complexity.

3Antoine de Saint-Exupéry

65

8.1. Future Work

The time spent for a thesis is limited. Unresolved issues remain, new questions
arise. Most irritating are the results gained for Nginx. It remains unclear what
causes the arbitrary behaviour observed. An independent reproduction of the
study is advised. That may include:

• Extending the field of subject systems.

• Treating different engines, such as the Apache MPMs, as features.

• Including parameters of the operating system into the feature space.

But, it is possible, that the reason can only be discovered by inspection of the
source code of Nginx. Another suspicious component in the study is the load
testing tool. It is strongly recommended to conduct an evaluation of existing
load testing tools. In case they all reveal unreliability, a new one must be
developed. However, there are chances, that the extension of an existing tool
might be sufficient.

The observations in Chapter 6.2.2 suggest that different performance metrics
of webservers might correlate with each other. Further investigation could
lead to a more reliable performance metric that incorporates failures and the
different flavours of throughput.

66

References

[1] John Cook, Naomi Oreskes, Peter T Doran, William RL Anderegg, Bart
Verheggen, Ed W Maibach, J Stuart Carlton, Stephan Lewandowsky, An-
drew G Skuce, Sarah A Green, et al. Consensus on consensus: a synthesis
of consensus estimates on human-caused global warming. Environmental
Research Letters, 11(4):048002, 2016.

[2] Ralph Hintemann. Energy consumption of data centers continues to
increase–2015 update. Borderstep Institut, Berlin, 2015.

[3] Arman Shehabi, Sarah Josephine Smith, Dale A. Sartor, Richard E.
Brown, Magnus Herrlin, Jonathan G. Koomey, Eric R. Masanet,
Nathaniel Horner, Inês Lima Azevedo, and William Lintner. United states
data center energy usage report. Berkeley Lab, June 2016.

[4] Peter Bright. Epic uptime achievement unlocked. Can you beat 16
years? https://arstechnica.com/information-technology/2013/

03/epic-uptime-achievement-can-you-beat-16-years/, March 2013.

[5] Lauro Beltrao Costa, Samer Al-Kiswany, Raquel Vigolvino Lopes, and
Matei Ripeanu. Assessing data deduplication trade-offs from an energy
and performance perspective. In Green Computing Conference and Work-
shops (IGCC), 2011 International, pages 1–6. IEEE, 2011.

[6] Boliang Feng, Jiaheng Lu, Yongluan Zhou, and Nan Yang. Energy effi-
ciency for mapreduce workloads: An in-depth study. In Proceedings of
the Twenty-Third Australasian Database Conference-Volume 124, pages
61–70. Australian Computer Society, Inc., 2012.

[7] Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A Shah. Analyz-
ing the energy efficiency of a database server. In Proceedings of the 2010

67

https://arstechnica.com/information-technology/2013/03/epic-uptime-achievement-can-you-beat-16-years/
https://arstechnica.com/information-technology/2013/03/epic-uptime-achievement-can-you-beat-16-years/

ACM SIGMOD International Conference on Management of data, pages
231–242. ACM, 2010.

[8] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. Exploring power-
performance tradeoffs in database systems. In Data Engineering (ICDE),
2010 IEEE 26th International Conference on, pages 485–496. IEEE, 2010.

[9] Hao Yang. Energy prediction for I/O intensive workflow applications.
PhD thesis, University of British Columbia, 2014.

[10] Frederico G Alvares de Oliveira Jr, Thomas Ledoux, et al. Self-
optimisation of the energy footprint in service-oriented architectures. In
Proceedings of the 1st Workshop on Green Computing, pages 4–9, 2010.

[11] Suparna Bhattacharya, Karthick Rajamani, Kanchi Gopinath, and Man-
ish Gupta. Does lean imply green?: a study of the power performance
implications of java runtime bloat. In ACM SIGMETRICS Performance
Evaluation Review, volume 40, pages 259–270. ACM, 2012.

[12] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E. Hassan. What
do programmers know about software energy consumption? IEEE Softw.,
33(3):83–89, May 2016.

[13] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy,
and Rukma Talwadker. Hey, you have given me too many knobs!: under-
standing and dealing with over-designed configuration in system software.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 307–319. ACM, 2015.

[14] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-
wise refinement. In Proceedings of the 25th International Conference on
Software Engineering, ICSE ’03, pages 187–197, Washington, DC, USA,
2003. IEEE Computer Society.

68

[15] Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kästner, Sven Apel,
Don Batory, Marko Rosenmüller, and Gunter Saake. Predicting perfor-
mance via automated feature-interaction detection. In Proceedings of the
34th International Conference on Software Engineering, ICSE ’12, pages
167–177, Piscataway, NJ, USA, 2012. IEEE Press.

[16] Netcraft. Web Server Survey. https://news.netcraft.com/archives/
category/web-server-survey/, March 2017. Last visited 2017-04-20.

[17] Wikipedia. Quick UDP Internet Connections. https://en.wikipedia.

org/wiki/QUIC. Last visited 2017-05-29.

[18] Don Batory. Feature models, grammars, and propositional formulas.
In International Conference on Software Product Lines, pages 7–20.
Springer, 2005.

[19] Norbert Siegmund. Measuring and predicting non-functional properties of
customizable programs. PhD thesis, Magdeburg, Universität, Diss., 2012,
November 2012.

[20] Jonas Eckhardt, Andreas Vogelsang, and Daniel Méndez Fernández. Are
non-functional requirements really non-functional?: an investigation of
non-functional requirements in practice. In Proceedings of the 38th In-
ternational Conference on Software Engineering, pages 832–842. ACM,
2016.

[21] Neil Ernst. There is no such thing as a non-
functional requirement. http://www.neilernst.net/

there-is-no-such-thing-as-a-non-functional-requirement/,
March 2009. Last visited 2017-05-27.

[22] J.D. Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis
Rea. Performance Testing Guidance for Web Applications. https://

69

https://news.netcraft.com/archives/category/web-server-survey/
https://news.netcraft.com/archives/category/web-server-survey/
https://en.wikipedia.org/wiki/QUIC
https://en.wikipedia.org/wiki/QUIC
http://www.neilernst.net/there-is-no-such-thing-as-a-non-functional-requirement/
http://www.neilernst.net/there-is-no-such-thing-as-a-non-functional-requirement/
https://msdn.microsoft.com/en-us/library/bb924356.aspx
https://msdn.microsoft.com/en-us/library/bb924356.aspx
https://msdn.microsoft.com/en-us/library/bb924356.aspx

msdn.microsoft.com/en-us/library/bb924356.aspx, September 2007.
Last visited 2017-06-04.

[23] Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, Albert Zomaya,
et al. A taxonomy and survey of energy-efficient data centers and cloud
computing systems. Advances in computers, 82(2):47–111, 2011.

[24] Frank Leferink, Cees Keyer, and Anton Melentjev. Static energy meter
errors caused by conducted electromagnetic interference. IEEE Electro-
magnetic Compatibility Magazine, 5(4):49–55, 2017.

[25] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Käst-
ner. Performance-influence models for highly configurable systems. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 284–294. ACM, 2015.

[26] Stuart Merrill Shieber. Is this article consistent with hinchliffe’s rule?
Annals of Improbable Research, 21(3), 2015.

[27] Tyler Vigen. Spurious correlations. http://www.tylervigen.com/

spurious-correlations, May 2015.

[28] Petra Löffler and Benno Stein. Korrelationen sind überall da, wo sie
gesucht werden. Zeitschrift für Medienwissenschaft, 10:91–96, April 2014.

70

https://msdn.microsoft.com/en-us/library/bb924356.aspx
https://msdn.microsoft.com/en-us/library/bb924356.aspx
https://msdn.microsoft.com/en-us/library/bb924356.aspx
http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations

A. Featuremodels

71

optional
mandatory

alternative
(xor)

or

Legend

compression cachekeep alive error log

client server

access log symlinks dns lookup sendfile status htaccess

Suite 1 Suite n…

encrytionserver limit thread limit

16 32 64 128

Apache Event/Worker

compression cachekeep alive error log

client server

access log symlinks dns lookup sendfile status htaccess

Suite 1 Suite n…

encrytionserver limit

256 512

Apache Prefork

compression cache keep aliveerror log

client server

access log symlinks sendfile

Suite 1 Suite n…

encrytionconnections

nginx

1024 40962048

Figure 16: Assembled featuremodels of all four server. Apache Event and Worker share the same featuremodel.

B. Linear Model with Interactions

73

nginx event worker prefork

compression # serverlimit-mid -2.56245 -1.459667e+03 1.157085e+05 89.6569
clientcache # compression 32.0502 2.099779e+03 1.839735e+03 1656.55
servercache -234.79 4.625029e+02 4.889935e+02 517.252
clientcache # DHE-RSA-AES256-GCM-SHA384 -97.4911 3.597302e+02 3.699444e+02 256.782
clientcache # DHE-RSA-AES128-GCM-SHA256 -50.9162 3.137247e+02 3.274008e+02 271.233
ECDHE-RSA-AES256-SHA384 -303.134 2.495445e+02 2.649878e+02 384.83
accesslog # compression -53.4176 2.423333e+02 2.390117e+02 222.404
compression # dns — 2.023688e+02 1.908327e+02 178.802
accesslog # servercache 18.3005 3.480004e+02 1.873309e+02 226.081
accesslog # keepalive 123.807 2.644168e+02 1.730121e+02 158.442
ECDHE-RSA-AES128-SHA256 -334.69 1.681484e+02 1.716086e+02 278.169
dns # sendfile — 3.007256e+02 1.697083e+02 137.582
DHE-RSA-AES128-SHA256 180.851 1.524814e+02 1.579691e+02 294.783
clientcache # DHE-RSA-AES128-SHA256 -185.643 2.029456e+02 1.563840e+02 100.664
DHE-RSA-AES256-SHA256 165.408 1.594974e+02 1.545319e+02 273.575
clientcache # DHE-RSA-AES256-SHA256 -158.789 1.976267e+02 1.534889e+02 123.822
clientcache # dns — 2.146530e+02 1.528706e+02 179.253
accesslog # ECDHE-RSA-AES256-SHA384 -53.6587 1.896786e+02 1.522507e+02 129.966
dns # servercache — 2.229613e+02 1.484402e+02 181.384
accesslog # DHE-RSA-AES256-GCM-SHA384 -43.4355 1.498136e+02 1.426670e+02 167.87
accesslog # ECDHE-RSA-AES128-SHA256 -27.9413 1.773838e+02 1.386842e+02 151.738
dns # symlinks — 3.117709e+01 1.358512e+02 68.7464
dns # DHE-RSA-AES256-GCM-SHA384 — 1.330858e+02 1.347687e+02 106.823
accesslog # serverlimit-high -4.40019 1.181244e+02 1.317654e+02 4.76007e+14
accesslog # clientcache 41.1294 2.427343e+02 1.301026e+02 170.063
accesslog # ECDHE-RSA-AES128-GCM-SHA256 39.986 1.442433e+02 1.269256e+02 158.593
dns # ECDHE-RSA-AES256-SHA384 — 8.726668e+01 1.226136e+02 90.6855
dns # DHE-RSA-AES128-SHA256 — 1.190050e+02 1.205177e+02 100.443
keepalive -239.377 3.703700e+02 1.202826e+02 397.278

Continued on next page

74

nginx event worker prefork

servercache # serverlimit-high 3.82986 1.082892e+02 1.192213e+02 8.26087e-14
dns # ECDHE-RSA-AES128-SHA256 — 1.612552e+02 1.172499e+02 106.582
dns # serverlimit-high — 2.206717e+02 1.155946e+02 5.51055e-14
accesslog # ECDHE-RSA-AES256-GCM-SHA384 6.39481 1.208304e+02 1.130962e+02 146.659
dns # threadlimit-high — 8.861779e+01 1.130807e+02 —
accesslog # sendfile 28.1787 3.821288e+01 1.082469e+02 162.296
keepalive # ECDHE-RSA-AES256-SHA384 621.057 1.024647e+02 1.048195e+02 -35.7676
servercache # threadlimit-high — 1.005540e+02 1.047014e+02 —
dns # ECDHE-RSA-AES128-GCM-SHA256 — 1.414675e+02 1.027441e+02 129.687
accesslog # symlinks -13.2179 1.463973e+02 9.924990e+01 63.0144
dns # keepalive — 2.345979e+02 9.823813e+01 108.709
dns # htaccess — 4.563079e+01 9.668516e+01 85.5605
sendfile 102.743 1.294610e+02 9.391275e+01 148.631
compression # DHE-RSA-AES256-GCM-SHA384 47.1623 2.631419e+01 9.316779e+01 81.131
dns # status — 7.688249e+01 9.266163e+01 57.411
dns # DHE-RSA-AES256-SHA256 — 1.120024e+02 9.079037e+01 85.441
accesslog # DHE-RSA-AES128-SHA256 -42.7749 1.494149e+02 8.998528e+01 98.4826
accesslog # DHE-RSA-AES256-SHA256 -6.42827 1.664112e+02 8.936871e+01 154.239
compression # ECDHE-RSA-AES128-SHA256 21.6165 1.390095e+02 8.732008e+01 129.637
compression # keepalive 56.6982 1.919293e+02 8.185889e+01 138.955
accesslog # errorlog -13.6611 1.257836e+02 7.250083e+01 48.2489
compression # ECDHE-RSA-AES128-GCM-SHA256 79.9145 1.267733e+02 7.088634e+01 105.33
errorlog # servercache 9.30591 1.037109e+02 6.955143e+01 55.3848
dns # DHE-RSA-AES128-GCM-SHA256 — 6.997847e+01 6.897893e+01 66.287
compression # ECDHE-RSA-AES256-SHA384 10.9421 1.079147e+02 6.756285e+01 91.4818
accesslog # DHE-RSA-AES128-GCM-SHA256 -21.4156 9.134767e+01 6.651651e+01 133.304
servercache # status — 1.197247e+02 6.632618e+01 121.991
compression # DHE-RSA-AES256-SHA256 -19.9704 1.233239e+02 6.413212e+01 127.118
accesslog # htaccess — 1.164401e+02 6.308946e+01 110.642
servercache # symlinks 153.042 7.034093e+01 6.105917e+01 72.5093

Continued on next page

75

nginx event worker prefork

clientcache # ECDHE-RSA-AES256-GCM-SHA384 -79.9058 3.081862e+01 6.068986e+01 12.8116
dns # ECDHE-RSA-AES256-GCM-SHA384 — 1.439561e+02 5.834715e+01 113.322
accesslog # threadlimit-high — 1.756059e+02 5.825196e+01 —
clientcache # threadlimit-high — 7.103667e+01 5.789986e+01 —
sendfile # threadlimit-high — 1.276630e+02 5.738469e+01 —
clientcache # ECDHE-RSA-AES128-GCM-SHA256 -83.4729 3.701553e+01 5.331485e+01 33.4656
accesslog # status — 1.222147e+02 5.291441e+01 99.6682
htaccess # servercache — 8.740944e+01 5.181742e+01 90.8892
keepalive # ECDHE-RSA-AES128-SHA256 501.394 -7.789030e+00 5.168542e+01 -159.138
keepalive # status — 4.957067e+01 5.146342e+01 47.8091
sendfile # symlinks 42.4892 6.566836e+01 4.972534e+01 -7.21347
compression # serverlimit-high 26.1176 1.361110e+02 4.935170e+01 -162745
status # DHE-RSA-AES256-GCM-SHA384 — 1.812384e+01 4.674880e+01 -10.0807
compression # DHE-RSA-AES128-SHA256 3.50293 9.541154e+01 4.493955e+01 51.4015
serverlimit-high # threadlimit-high — 3.172882e+01 4.016240e+01 —
compression # ECDHE-RSA-AES256-GCM-SHA384 64.0626 1.431627e+02 3.998561e+01 113.062
htaccess # sendfile — 1.087133e+02 3.972166e+01 46.5241
compression # threadlimit-high — 4.671712e+01 3.556913e+01 —
clientcache # serverlimit-high 31.6586 9.510780e+01 3.553023e+01 -7.12153e+11
threadlimit-high # DHE-RSA-AES256-GCM-SHA384 — 5.587812e+01 3.354115e+01 —
compression # status — 1.121847e+02 3.264758e+01 66.0436
errorlog # sendfile 13.176 2.998530e+01 3.251820e+01 5.04926
htaccess # ECDHE-RSA-AES128-SHA256 — 2.350779e+01 3.239018e+01 -11.3834
serverlimit-high # DHE-RSA-AES128-SHA256 -12.6328 7.339506e+01 2.896716e+01 1.70206e-14
serverlimit-high # ECDHE-RSA-AES128-SHA256 24.0604 7.009082e+01 2.844904e+01 1.23715e-13
threadlimit-high # DHE-RSA-AES256-SHA256 — 4.672917e+01 2.617398e+01 —
compression # DHE-RSA-AES128-GCM-SHA256 99.0522 1.175250e+02 2.610266e+01 113.741
keepalive # serverlimit-high 1.98514 -6.091146e+01 2.563063e+01 6.85704e-14
compression # htaccess — 1.386955e+02 2.363291e+01 115.398
symlinks # threadlimit-high — 2.735636e+01 2.294071e+01 —

Continued on next page

76

nginx event worker prefork

keepalive # threadlimit-high — -5.445575e+01 2.282902e+01 —
sendfile # serverlimit-high 48.2247 6.876335e+01 2.161989e+01 -1.73954e-14
htaccess # DHE-RSA-AES256-GCM-SHA384 — -4.688715e+01 2.090256e+01 -28.0975
symlinks # DHE-RSA-AES256-GCM-SHA384 147.556 2.038815e+01 2.088801e+01 11.7023
errorlog # ECDHE-RSA-AES128-SHA256 21.8741 2.474454e+00 2.028405e+01 21.6273
errorlog # DHE-RSA-AES256-GCM-SHA384 41.9799 1.177166e+01 1.976761e+01 15.1333
compression # symlinks -31.0371 5.736012e+01 1.960151e+01 24.5917
clientcache # errorlog 26.7866 3.472566e+01 1.906741e+01 44.5192
threadlimit-high # ECDHE-RSA-AES256-GCM-SHA384 — 2.144232e+01 1.880394e+01 —
dns # errorlog — 1.204076e+02 1.836702e+01 121.438
compression # errorlog -2.1503 4.681173e+01 1.777811e+01 -11.3442
clientcache # symlinks 57.2698 5.310756e+01 1.763022e+01 55.9658
sendfile # status — 4.372861e+00 1.534358e+01 -83.477
status # ECDHE-RSA-AES256-GCM-SHA384 — 1.268832e+01 1.465557e+01 17.0966
serverlimit-high # ECDHE-RSA-AES256-GCM-SHA384 46.175 7.731579e+01 1.456592e+01 8.20955e-14
threadlimit-high # ECDHE-RSA-AES128-SHA256 — 2.100649e+01 1.423686e+01 —
threadlimit-high # DHE-RSA-AES128-SHA256 — -9.588020e+00 1.382023e+01 —
errorlog # DHE-RSA-AES128-SHA256 -9.52949 -3.302732e+01 1.369109e+01 -24.0807
errorlog # ECDHE-RSA-AES256-GCM-SHA384 69.3402 4.496831e+01 1.333942e+01 13.2418
htaccess # ECDHE-RSA-AES128-GCM-SHA256 — -2.381281e+01 1.302181e+01 7.12765
htaccess # keepalive — -9.190407e+01 1.109971e+01 -36.3517
serverlimit-high # DHE-RSA-AES256-GCM-SHA384 -22.6884 1.061666e+02 1.033112e+01 3.66607e-14
threadlimit-high # ECDHE-RSA-AES256-SHA384 — 1.155824e+01 1.023290e+01 —
serverlimit-high # DHE-RSA-AES128-GCM-SHA256 65.9334 8.354528e+01 8.878621e+00 -8.33831e-14
status # ECDHE-RSA-AES256-SHA384 — 1.791372e+01 8.812066e+00 4.59861
serverlimit-high # ECDHE-RSA-AES128-GCM-SHA256 50.9662 6.121697e+01 7.827788e+00 1.53784e-14
symlinks # ECDHE-RSA-AES256-GCM-SHA384 174.237 -9.102600e+00 5.856426e+00 7.10986
errorlog # threadlimit-high — -9.349032e+01 5.626083e+00 —
clientcache # htaccess — 2.662393e+01 5.597671e+00 59.8479
threadlimit-high # ECDHE-RSA-AES128-GCM-SHA256 — 5.320492e+01 3.595630e+00 —

Continued on next page

77

nginx event worker prefork

errorlog # ECDHE-RSA-AES128-GCM-SHA256 68.1329 6.598621e+01 2.151258e+00 22.6087
status # ECDHE-RSA-AES128-SHA256 — 5.313886e+01 2.026268e+00 14.3639
errorlog # DHE-RSA-AES256-SHA256 17.7571 1.784526e+01 4.270108e-01 41.8783
ECDHE-RSA-AES128-GCM-SHA256 -450.307 5.205601e+01 4.195689e-01 102.92
serverlimit-high # serverlimit-mid -3.28573e-14 -1.545190e-13 1.489193e-13 -4.25671e-14
servercache # serverlimit-mid 16.6954 1.655157e-13 1.113557e-13 82.7227
serverlimit-mid # ECDHE-RSA-AES256-SHA384 0.451272 -1.414562e-13 1.014152e-13 -6.40699
serverlimit-mid # DHE-RSA-AES128-GCM-SHA256 39.3 2.611295e-14 7.421710e-14 41.5743
sendfile # serverlimit-mid 1.43223 5.246434e-14 4.287837e-14 35.3246
serverlimit-mid # threadlimit-high — 3.025948e-14 4.222026e-14 —
serverlimit-mid # DHE-RSA-AES256-SHA256 26.9792 1.212707e-13 2.162007e-14 12.2796
keepalive # serverlimit-mid 28.5026 -8.131260e-14 1.676243e-14 54.0188
serverlimit-mid # DHE-RSA-AES256-GCM-SHA384 4.21315 -1.826556e-14 9.966223e-15 48.7235
errorlog # serverlimit-mid 1.53594 -4.615837e-14 1.678369e-15 -49.3512
serverlimit-mid # symlinks -31.3699 9.271674e-14 -2.637492e-14 -44.3314
serverlimit-mid # ECDHE-RSA-AES128-GCM-SHA256 18.0058 9.889170e-14 -3.559265e-14 29.5868
serverlimit-mid # status — -3.868491e-14 -5.553992e-14 -33.7011
serverlimit-mid # DHE-RSA-AES128-SHA256 -7.10359 -1.947616e-14 -6.587928e-14 -5.65656
serverlimit-mid # ECDHE-RSA-AES128-SHA256 9.9869 -3.132851e-14 -7.932287e-14 19.8663
serverlimit-mid # ECDHE-RSA-AES256-GCM-SHA384 32.1015 -7.806881e-14 -1.054253e-13 23.4201
htaccess # serverlimit-mid — -3.858620e-13 -2.079507e-13 -94.7392
dns # serverlimit-mid — 1.468904e-13 -4.000772e-13 103.624
status — -1.241249e+02 -6.701263e-01 -13.7359
htaccess # DHE-RSA-AES128-SHA256 — -9.580554e+00 -1.268152e+00 25.7722
clientcache # status — 8.609847e+01 -1.296584e+00 27.6817
htaccess # ECDHE-RSA-AES256-SHA384 — -4.210222e+01 -4.990026e+00 -62.7515
status # threadlimit-high — -1.627480e+01 -5.141075e+00 —
errorlog # ECDHE-RSA-AES256-SHA384 -1.80148 2.864951e+01 -5.464194e+00 13.6698
symlinks # ECDHE-RSA-AES128-SHA256 130.17 2.797686e+01 -7.293490e+00 -15.2638
symlinks # ECDHE-RSA-AES128-GCM-SHA256 195.057 2.160190e+01 -7.451104e+00 1.76501

Continued on next page

78

nginx event worker prefork

htaccess # ECDHE-RSA-AES256-GCM-SHA384 — 1.426663e+01 -7.502446e+00 -22.7554
symlinks # ECDHE-RSA-AES256-SHA384 144.732 -2.543227e+01 -7.672063e+00 7.45273
ECDHE-RSA-AES256-GCM-SHA384 -424.775 4.801745e+01 -8.395560e+00 127.112
status # DHE-RSA-AES256-SHA256 — -3.372876e+01 -8.993203e+00 61.0996
errorlog -28.8474 -8.327332e+01 -1.294215e+01 -23.3923
symlinks -139.944 -9.269461e+01 -1.326541e+01 -8.06103
status # DHE-RSA-AES128-SHA256 — 1.517665e+01 -1.521360e+01 -9.69098
htaccess # DHE-RSA-AES128-GCM-SHA256 — -3.962885e+01 -1.724156e+01 4.50205
serverlimit-high # DHE-RSA-AES256-SHA256 1.09267 5.878677e+01 -1.822684e+01 5.61412e-14
htaccess — -8.989361e+01 -1.875960e+01 -22.2966
serverlimit-high # ECDHE-RSA-AES256-SHA384 6.78474 5.205184e+01 -2.125696e+01 -1.44528e-14
htaccess # threadlimit-high — -5.100081e+01 -2.150407e+01 —
serverlimit-high -23.9241 -1.177028e+02 -2.152152e+01 7.48984e+15
status # DHE-RSA-AES128-GCM-SHA256 — 4.722622e+00 -2.254563e+01 15.4696
DHE-RSA-AES128-GCM-SHA256 65.077 2.838590e+01 -2.359298e+01 108.55
serverlimit-high # symlinks -12.5785 -7.291866e+01 -2.360985e+01 -2.4083e-15
errorlog # serverlimit-high 7.89522 -4.163432e+01 -2.380593e+01 -3.35324e-14
symlinks # DHE-RSA-AES128-GCM-SHA256 129.956 4.837620e+01 -2.502379e+01 -14.2174
keepalive # DHE-RSA-AES256-SHA256 119.337 -1.487370e+02 -2.529792e+01 -252.251
errorlog # status — -1.581181e+01 -2.751103e+01 -100.832
errorlog # keepalive 25.6247 -2.183594e+01 -2.826934e+01 26.7955
status # ECDHE-RSA-AES128-GCM-SHA256 — -2.427203e+01 -3.077852e+01 24.4245
keepalive # symlinks -122.092 1.030988e+02 -3.225680e+01 -1.11886
htaccess # DHE-RSA-AES256-SHA256 — -6.842174e+01 -3.241058e+01 -1.22723
threadlimit-high # DHE-RSA-AES128-GCM-SHA256 — -2.154748e+01 -3.399185e+01 —
threadlimit-high — -1.113483e+02 -3.709167e+01 —
errorlog # htaccess — -5.125787e+01 -4.279145e+01 -53.0574
symlinks # DHE-RSA-AES256-SHA256 109.593 2.654188e+01 -4.415538e+01 6.91582
htaccess # serverlimit-high — -1.898691e+01 -4.661420e+01 8.62626e-14
serverlimit-high # status — -3.590183e+01 -4.773168e+01 2.03935e-14

Continued on next page

79

nginx event worker prefork

DHE-RSA-AES256-GCM-SHA384 100.989 -6.506298e+00 -4.935262e+01 115.087
symlinks # DHE-RSA-AES128-SHA256 99.3068 3.139370e+01 -5.705454e+01 -34.3308
compression -28.4999 -1.863229e+02 -5.774974e+01 -86.9201
sendfile # servercache 77.8753 -1.278669e+02 -6.094423e+01 -67.1171
keepalive # DHE-RSA-AES128-SHA256 66.5804 -1.442637e+02 -6.436555e+01 -241.108
htaccess # status — -7.413180e+01 -6.556643e+01 -81.5474
errorlog # DHE-RSA-AES128-GCM-SHA256 60.3098 -3.081500e+01 -6.599983e+01 54.29
htaccess # symlinks — -3.755975e+01 -7.156345e+01 -77.076
clientcache # sendfile -69.8335 -1.317077e+02 -7.534835e+01 -97.9324
errorlog # symlinks -28.1406 -1.196897e+02 -7.569580e+01 -99.6179
sendfile # DHE-RSA-AES256-GCM-SHA384 -166.321 -1.814957e+02 -9.417953e+01 -167.148
compression # sendfile 34.8395 -1.556941e+02 -1.008295e+02 -64.1585
clientcache # keepalive 16.3652 -3.382973e+02 -1.039169e+02 -305
status # symlinks — -7.444757e+01 -1.039687e+02 -13.1578
accesslog 33.278 -2.363019e+02 -1.097639e+02 -102.075
clientcache # ECDHE-RSA-AES128-SHA256 -155.502 -8.154020e+01 -1.101814e+02 -164.288
sendfile # DHE-RSA-AES128-SHA256 -131.74 -2.446224e+02 -1.184113e+02 -157.584
dns — -2.263627e+02 -1.210012e+02 -123.528
sendfile # DHE-RSA-AES128-GCM-SHA256 -69.2307 -2.318935e+02 -1.295240e+02 -152.577
sendfile # DHE-RSA-AES256-SHA256 -113.833 -2.325662e+02 -1.340189e+02 -151.5
sendfile # ECDHE-RSA-AES256-SHA384 -98.0516 -1.829796e+02 -1.358094e+02 -143.801
sendfile # ECDHE-RSA-AES128-SHA256 -97.8965 -1.868206e+02 -1.435042e+02 -113.287
sendfile # ECDHE-RSA-AES256-GCM-SHA384 -63.6104 -2.100134e+02 -1.505025e+02 -169.064
sendfile # ECDHE-RSA-AES128-GCM-SHA256 -61.8108 -1.662847e+02 -1.517443e+02 -158.369
clientcache # ECDHE-RSA-AES256-SHA384 -158.419 -1.459778e+02 -2.160189e+02 -228.376
keepalive # sendfile -13.6055 -2.239205e+02 -2.454103e+02 -234.491
keepalive # DHE-RSA-AES256-GCM-SHA384 -223.52 -5.584029e+02 -2.987718e+02 -509.189
keepalive # ECDHE-RSA-AES256-GCM-SHA384 246.36 -4.686236e+02 -3.065695e+02 -537.716
keepalive # DHE-RSA-AES128-GCM-SHA256 -238.82 -5.942171e+02 -3.339850e+02 -519.857
keepalive # ECDHE-RSA-AES128-GCM-SHA256 227.09 -5.734060e+02 -3.579388e+02 -478.911

Continued on next page

80

nginx event worker prefork

servercache # DHE-RSA-AES256-GCM-SHA384 198.292 -3.911225e+02 -4.268028e+02 -411.27
servercache # ECDHE-RSA-AES128-GCM-SHA256 251.949 -3.755116e+02 -4.272586e+02 -477.626
servercache # ECDHE-RSA-AES256-GCM-SHA384 247.981 -3.621592e+02 -4.526059e+02 -410.662
servercache # DHE-RSA-AES128-GCM-SHA256 210.709 -4.719053e+02 -4.684665e+02 -446.109
compression # servercache 4.39833 -5.567940e+02 -4.839253e+02 -453.458
servercache # DHE-RSA-AES256-SHA256 214.948 -5.328524e+02 -5.676146e+02 -528.048
servercache # ECDHE-RSA-AES128-SHA256 227.246 -4.323488e+02 -5.680030e+02 -516.921
servercache # DHE-RSA-AES128-SHA256 192.353 -5.998628e+02 -5.928876e+02 -583.711
servercache # ECDHE-RSA-AES256-SHA384 203.2 -4.961530e+02 -5.994492e+02 -553.147
keepalive # servercache -255.104 -6.093050e+02 -6.657037e+02 -625.119
accesslog # dns — -1.272809e+03 -1.098180e+03 -1054.4
clientcache 55.9786 -2.144093e+03 -1.803392e+03 -1596.12
clientcache # serverlimit-mid 25.4084 -3.419546e+10 -3.877677e+12 69.7144
clientcache # servercache 3.29383e-14 -5.627306e+10 -5.924486e+12 -3.24025e+11
accesslog # serverlimit-mid -22.701 8.239777e+13 -1.112204e+15 46.6786
serverlimit-mid -14.5507 -4.383150e+15 -3.941224e+15 -42.8298

Table 19: The full models for all server, including all pairwise interactions. Sorted by the worker column.

81

List of Tables

2. Hardware configurations available as cluster nodes 15

3. Details of the non-boolean mandatory feature options 20

4. Comparative overview of the feature model for all servers 21

5. The eight fixed cipher suites for the TLS configuration 24

6. Size of the configuration spaces 25

7. Configurations of the test set 26

8. Overview of load testing tools. 29

9. Description of the different workload intervals of the experiment. 32

10. Size of acquired data from experiments in Gigabytes 44

11. Total number of configurations and erroneous executions. 45

12. Coefficients produced by the regression for different servers. . . . 48

13. Quality metrics of the learned models for the different servers. . 53

14. Correlations between energy consumption and response time. . . 55

15. Top-10 Apache Worker configurations. 58

16. Top-10 Apache Prefork configurations. 59

17. Top-10 Apache Event configurations. 59

18. Top-10 Nginx configurations. 60

19. The full models for all server, including all pairwise interactions. 81

82

List of Figures

1. Feature Diagram Notations . 7

2. Mapping of configurations to identification labels 27

3. Deployment of the experiment setup in the cluster. 34

4. Observed performance degeneration of Nginx. 38

5. Observed performance degeneration of Apache. 39

6. Independent and dependent variables as influencing factors for
energy consumption. 41

7. Visual descriptions of the failures rates for all the experiments. . 46

8. Distribution of effect sizes of Apache event. 50

9. Distribution of effect sizes of Apache worker. 50

10. Distribution of effect sizes of Apache prefork. 51

11. Distribution of effect sizes of Nginx. 51

12. Comparison of the predicted energy variances for the different
models. 52

13. Visual descriptions of the response times observed. 56

14. Visual descriptions of the throughput of responses observed. . . 57

15. Visual descriptions of the throughput of data observed. 57

16. Assembled featuremodels of all four server. 72

83

	Abbreviations
	Introduction
	Background
	Webserver
	Customizability
	Non-functional requirements
	Performance metrics
	Performance testing
	Electrical Models

	Related Work
	Energy Efficiency
	Features and Configurations

	Study Design
	Environment
	Webserver Software
	Feature Models
	Description of Features

	Configurations
	Sampling Strategies
	Identification of Configurations

	Workload Generation
	Load-Testing Tools
	Workload Plan

	Experiment Setup
	Prestudy
	Lessons Learned
	Open Issues

	Research Question
	Evaluation
	Preprocessing
	Results and Discussion
	Features and their Interactions
	Performance
	Workloads

	Validity
	Conclusion
	Future Work

	References
	Featuremodels
	Linear Model with Interactions
	List of Tables
	List of Figures

