
Intelligente Softwaresysteme
Prof. Dr.-Ing. Norbert Siegmund | Nicolai Ruckel

Übungsblatt 1

1. Softwarelebenszyklus
Zählen Sie die Aktivitäten der Software Entwicklung auf, beschreiben Sie kurz deren Inhalt und
nennen Sie den jeweils dabei entstehenden Output.
Lösung:

• Requirements Engineering: Die Anforderungen des Kunden werden ermittelt und im Las-
tenheft festgehalten.

• Analysis: Die Anforderungen werden modelliert und spezifiziert (ggf. formal). Die Ergeb-
nisse werden im Pflichtenheft hinterlegt.

• Design: Ein Lösungsansatz basierend auf den Ergebnissen der Analyse wird erstellt. Hier-
zu bietet es sich an, UML und ggf. ER-Diagramme zu erstellen.

• Implementierung Die Umsetzung des Designs in ausführbaren Quellcode erfolgt.
• Validation: Es ist zu prüfen, ob die Implementierung die Zielsetzung aus den Require-
ments erfüllt. Hierzu werden z.B. Testfälle erstellt, anhand derer ein Testreport zur Ver-
fügung gestellt werden kann.

• Maintenance: Es ist die kontinuierliche Korrektur und Wartung der Implementierung zu
gewährleisten, ggf. unter Berücksichtigung geänderter oder neuer Anforderungen.

2. Programmieraufgabe: Universitäts-Verwaltungs-Programm
Programmieren Sie die nötigen Java Klassen für ein Universitäts-Verwaltungs-Programm. Ach-
ten Sie dabei insbesondere auf eine einfache Erweiterbarkeit. Die Klassen sollen mindestens
Getter und Setter für jede Membervariable und einen Konstruktur enthalten.

• Es sind vorerst nur die Komponenten Professoren und Studierende zu berücksichtigen.
• Beide Personengruppen haben je einen Vor- und Nachnamen, Professoren außerdem
eine Personennummer, Studierende eine Matrikelnummer.

Lösung:
1 public class Person {
2 private String firstname;
3 private String lastname;
4

5 public Person(String firstname, String lastname) {
6 this.firstname = firstname;
7 this.lastname = lastname;
8 }
9

10 public String getFirstname() {
11 return this.firstname;
12 }
13

14 public String getLastname() {
15 return this.lastname;
16 }
17

18 [...]
19 }

1 public class Student extends Person {
2 private int matriculation_number;
3

4 public Student(
5 String firstname,
6 String lastname,
7 int matriculation_number) {
8 super(firstname, lastname);
9 this.matriculation_number = matriculation_number;
10 }
11

12 public String getMatriculationNumber() {
13 return this.matriculation_number;
14 }
15 }

1 public class Professor extends Person {
2 private int staff_number;
3

4 public Student(
5 String firstname,
6 String lastname,
7 int staff_number) {
8 super(firstname, lastname);
9 this.staff_number = staff_number;
10 }
11

12 public String getStaffNumber() {
13 return this.staff_number;
14 }
15 }

3. Anforderungsbeschreibung mit Volere Snow Cards
Gegeben ist folgendes Szenario:
Die neue Bildbearbeitungssoftware intelliPhoto ist ein interaktives Tool zum Anzeigen und
Bearbeiten von Bildern. Jedes Bild wird durch ein zweidimensionales Array von Bytes reprä-
sentiert, wobei jeder Byte-Wert für einen Farbwert des Bildpunktes steht. Der Benutzer soll in
der Lage sein die Bilddimensionen abzufragen. Es sollen zwei verschiedene Arten von Bildern
repräsentiert werden können: RasterImage und ShapedImage, wobei letzteres eine Spezial-
form vom RasterImage ist. Ein ShapedImage besitzt eine nicht-rechteckige Form (Polygon),
wobei die Bytes im Array angeben, ob die jeweiligen Punkte transparent oder opak darge-
stellt werden sollen. Darüber hinaus soll die Software einfache Manipulationen von Bildern
erlauben. So soll das Drehen, als auch das Vergrößern und Verkleinern von Bildern, das Setzen
neuer Farbwerte im Bild und das Zusammenfügen zweier Bilder zu einem neuen Bild innerhalb
von 0,2 Sekunden möglich sein.
Führen Sie eine Anforderungsbeschreibung nach Volere für jeweils eine funktionale und eine
nicht funktionale Anforderung durch. Eine ausführliche Beschreibung zu Volere Snow Card
können Sie hier finden:
http://www.cse.chalmers.se/~feldt/courses/reqeng/Volere_Template_version1_
5.doc
Lösung:

• Funktionale Anforderungen:
• Anzeigen und Bearbeiten von Bildern
• Benutzer kann Bilddimensionen Abfragen
• Software soll das Manipulieren von Bildern erlauben

http://www.cse.chalmers.se/~feldt/courses/reqeng/Volere_Template_version1_5.doc
http://www.cse.chalmers.se/~feldt/courses/reqeng/Volere_Template_version1_5.doc

• drehen
• vergrößern / verkleinern
• neue Farbwerte im Bild setzen
• Zusammenfügen zweier Bilder

• Nicht-funktionale Anforderungen:
• Manipulationen sollen innerhalb von 0,2 Sekunden erfolgen

Übungsblatt 2

1. Responseability Driven Design
Gegeben ist folgende Requirement Spezifikation:
Die neue Bildbearbeitungssoftware intelliPhoto ist ein interaktives Tool zum Anzeigen und
Bearbeiten von Bildern. Jedes Bild wird durch ein zweidimensionales Array von Bytes reprä-
sentiert, wobei jeder Byte-Wert für einen Farbwert des Bildpunktes steht. Der Benutzer soll in
der Lage sein die Bilddimensionen abzufragen. Es sollen zwei verschiedene Arten von Bildern
repräsentiert werden können: RasterImage und ShapedImage, wobei letzteres eine Spezial-
form vom RasterImage ist. Ein ShapedImage besitzt eine nicht-rechteckige Form (Polygon),
wobei die Bytes im Array angeben, ob die jeweiligen Punkte transparent oder opak darge-
stellt werden sollen. Darüber hinaus soll die Software einfache Manipulationen von Bildern
erlauben. So soll das Drehen, als auch das Vergrößern und Verkleinern von Bildern, das Setzen
neuer Farbwerte im Bild und das Zusammenfügen zweier Bilder zu einem neuen Bild innerhalb
von 0,2 Sekunden möglich sein.
Führen Sie eine detaillierte Analyse durch und finden Sie mit ihrer Hilfe möglichst alle Klas-
sen, Verantwortlichkeiten, Kollaborationen und Beziehungen (bzw. Vererbungen). Begründen
Sie Ihre Entscheidung. Es müssen nur Klassen aus der Spezifikation betrachtet werden (zum
Beispiel keine GUI- oder OS-Elemente).
Lösung:
Klassen

• Bild/Image
• RasterImage
• ShapeImage
• Form/Shape

• Rechteck
• Polygon

• Punkte/Points
Verantwortlichkeiten

• skalieren:
• vergrößern
• verkleinern

• rotieren
• einfärben
• zusammenfügen

Beziehungen
• RasterImage is kind of Image
• ShapeImage is kind of RasterImage
• Dimension is part of Image
• Rectangle is kind of Shape
• Polygon is kind of Shape
• Manipulation has knowledge of Image

Kollaborationen

• Image kann seine Responsibilities selbst erfüllen (sehr gute Kapselung der Daten mög-
lich)

• weitere Responsibilities sind nicht zu berücksichtigen

2. UML-Klassendiagramm
Erstellen Sie auf Grundlage der Spezifikation aus Aufgabe 1 einen geeigneten Entwurf der Klas-
senhierarchie als UML-Klassendiagramm. Geben Sie dabei die genauen Interfaces eventueller
Klassen an sowie die Attribute, welche die jeweiligen Klassen verwalten müssen. Begründen
Sie Ihre Design-Entscheidung in wenigen Worten.
Lösung:

• 7 Klassen: Image, RasterImage, ShapedRasterImage, Shape, Rectangle, Polygon, Point
• 4 Methoden: scale, rotate, merge, setBit
• richtige Vererbungen zwischen Klassen
• zusätzliche Methoden eingefügt (z.B. Transparenz oder Opaqueness an Point-Position
hinzufügen, draw(), getTopLeft(), getBottomRight() o.ä.)

3. Kapselung
Was versteht man unter dem Begriff Kapselung im Kontext der (objektorientierten) Program-
mierung? Welche Vorteile bringt dieses Konzept mit sich?

Übungsblatt 3

1. Modelling Behavoir: Use-Case Diagramm
Da Sie damit beauftragt wurden die neue Bildbearbeitungssoftware IntelliPhoto zu implemen-
tieren, führten Sie eine Umfeldanalyse durch. In dieser haben Sie wertvolle Informationen
über verschiedene Nutzergruppen sammeln können.
So erfuhren Sie, dass Casual User und Einsteiger die Software hauptsächlich für kurze Auf-
gaben wie das Zusammenschneiden von Bildern, das Ändern der Bildauflösungen und dem
Drehen von Bildern benutzen wollen. Außerdem möchten die Casual User die Software dazu
benutzen um bestimmte Regionen in einem Bild zu retuschieren.
Eine weitere Nutzergruppe, die freiberuflichen Fotografen, hingegen möchten neben der Bild-
retusche auch eine Reihe an Korrekturwerkzeugen, wie derHelligkeit/Kontrast, Farbton/Sätti-
gung und den Gradationskurven, als auch Auswahlwerkzeuge und verschiedene Pinsel haben.
Die letzte Gruppe von potentiellen Benutzern, die 3D Künstler, wünschen sich eine Schnitt-
stelle für den Import von gängigen 3D-Dateien. Auch soll es für sie möglich sein, einfache
geometrische 3D-Objekte direkt im Bild zu erzeugen.
Jede Nutzergruppe gab an, dass sie sich eine Ebenendarstellung in der Software vorstellen
können und benutzen würden.
Fassen Sie die beschriebenen Ergebnisse in einem UML-Use-Case-Diagramm zusammen.
Lösung:

2. UML Structure: UML-Klassendiagramm
Modellieren Sie ein Unternehmen als UML-Klassendiagramm, welches weltweit beliebig viele
Standorte besitzt.
Dabei setzt sich ein Standort aus mindestens einem Gebäude inklusive Adresse zusammen.
Ein Gebäude besitzt mehrere Büros und exakt eine Mensa. Die Büros haben Nummern sowie
ein Namensschild an der Tür.
In den Büros sitzen Angestellte, welche entweder der Chef, das Management oder der Arbei-
terschaft zugeordnet sind.
Zu beachten ist, dass einem Standort ein Chef und 3–8 Personen aus dem Management zuge-
ordnet sind sowie mindestens 5 Arbeiter haben. Gekennzeichnet sind die Angestellten durch
eine ID.
Die Berufsgruppen haben zudem eigene Aufgabenfelder: Der Chef kontrolliert das Manage-
ment, welches wiederum die Arbeiter überwacht, welche wiederum die Arbeit verrichten.
Das Unternehmen stellt verschiedene Produkte (PCs, Laptops, Server) her.
Lösung:

3. Adapter Pattern: Deque
Implementieren Sie die Datenstruktur Deque in Java mit Hilfe des Adapter Patterns.
Die Operationen der Deque sind:

• push und pop: Einfügen und Entnehmen eines Elementes am hinteren Ende der Deque.
• put und get: Einfügen und Entnehmen am vorderen Ende der Deque.
• first und last: Lesen des ersten oder letzten Elements, ohne es zu entfernen.

Achten Sie bei Ihrer Implementierung auf Java Generics und bauen Sie Ihre Lösung auf eine
bestehende “Collection”, wie z.B. java.util.ArrayList, auf. Vergewissern Sie sich, dass
Ihre neue Klasse keineweiterenMethoden als die oben genannten ausführen kann (z.B. add()
oder clear()).
Lösung:
Interface:
1 interface Deque<T> {
2 public void push(T element);
3 public T pop();
4

5 public void put(T element);
6 public T get();
7

8 public T first();

https://en.wikipedia.org/wiki/Double-ended_queue
http://openbook.rheinwerk-verlag.de/javainsel/javainsel_09_001.html
http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

9 public T last();
10

11 public void print();
12 }

Adapter:
1 class ArrayListToDequeAdapter<T> implements Deque<T> {
2 private List<T> list = new ArrayList<T>();
3

4 @Override
5 public void push(T element) {
6 list.add(element);
7 }
8

9 @Override
10 public T pop() {
11 T element = last();
12 list.remove(list.size() - 1);
13

14 return element;
15 }
16

17 [...]

4. Visitor Pattern: Termausgabe
Wir betrachten Terme über die Rechenarten op∈ {+, ·}, die folgendermaßen rekursiv definiert
sind:

• jedes Literal ist ein Term, z.B. 4
• ist t ein Term, so ist (t) ein Term
• sind t1, t2 Terme so ist t1 op t2 ebenso ein Term

Beispiele für gültige Terme: 4 + 8, 4 · 8 oder 4 + (4 · 8).

a) Implementieren Sie die entsprechenden Klassen Expression, Literal, Brackets,
BinaryExpression, Addition und Multiplication im Sinne des Visitor Patterns.

b) Implementieren Sie danach die Visitor KlassenEvalVisitor undPrettyPrintVisitor.
EvalVisitor: Evaluiert bzw. berechnet den gegebenen Term und hält das Ergebnis
PrettyPrintVisitor: Gibt einen Term in leserlicher Form aus.
Prüfen Sie Ihre Implementierung durch geeignete Tests!

Lösung:
Abstract Visitable:
1 import visitors.Visitor;
2

3 public abstract class Expression {
4

5 public abstract void accept(Visitor v);
6 }

Concrete Visitable:
1 public class Literal extends Expression {
2

3 private int value;
4

5 public Literal(int v) {
6 value = v;
7 }

8

9 public int getValue() {
10 return value;
11 }
12

13 @Override
14 public void accept(Visitor v) {
15 v.visit(this);
16 }
17 }

Visitor:
1 public interface Visitor {
2 void visit(Expression e);
3 void visit(Literal l);
4 void visit(Brackets b);
5 void visit(Addition a);
6 void visit(Subtraction a);
7 void visit(Multiplication a);
8 void visit(Division a);
9 }

Concrete Visitor:
1 public class EvalVisitor implements Visitor {
2 private int result = 0;
3

4 public int getResult() {
5 return result;
6 }
7

8 @Override
9 public void visit(Expression e) {
10 e.accept(this);
11 }
12

13 @Override
14 public void visit(Literal l) {
15 result = l.getValue();
16 }
17

18 [...]

Übungsblatt 4

1. Kohäsion und Koppelung
In der Vorlesung wurden die Begriffe Kohäsion und Kopplung eingeführt.
a) Erklären Sie mit eigenen Worten, was sich, im Kontext der objektorientierten Program-

mierung, hinter diesen Begriffen verbirgt.
b) Weshalb ist es vom Vorteil, wenn ein System hohe Kohäsion und geringe Kopplung auf-

weist?

Lösung:
Kohäsion:
• Beschreibt die Beziehungen zwischen Elementen innerhalb einer Komponente.
• Idealzustand: Jede Komponente (Methode, Klasse) für genau eine Aufgabe verant-
wortlich, die sie eigenständig lösen kann.

• Starke Kohäsion: Alle Elemente sind nötig für die Funktionstüchtigkeit der anderen
internen Elemente, das heißt keine isolierten Elemente.

• Schwache Kohäsion: Komponente erfüllt viele verschiedene Aufgabe oder die Ele-
mente sind nur zusammengefasst, weil sie ähnliche Funktionalitäten anbieten.
⇒ Ausgliedern in neue Komponente bietet sich an.

Kopplung:
• Beschreibt die Beziehungen zwischen verschiedenen Komponenten.
• Idealzustand: Jede Komponente nur lose mit anderen verbunden.
• Lose Kopplung: Komponenten besitzen nur wenige Abhängigkeiten untereinander.
• Enge Kopplung: Komponenten besitzen viele Abhängigkeiten untereinander.

⇒ Eine Änderung hat möglicherweise Auswirkungen auf viele andere Komponenten.
Hohe Kohäsion und geringe Kopplung:
• Effekte von Änderungen auf engen Kreis von Komponenten beschränkt.

⇒ Fördert die Wartbarkeit und Anpassbarkeit.
• Perfekter Zustand unerreichbar.

Beispiel Visitor Pattern:
• Kohäsion:

• hoch, da jeder Visitor genau eine Funktionalität anbietet
• hoch, da die Objektstruktur genau eine Funktionalität anbietet

• Kopplung:
• hoch, da Visitor Zugriff auf interne Datenstruktur benötigt
• hoch, da Visitor durch die Objektstruktur iterieren können muss

2. Model-View-Controller (MVC)
a) Erstellen Sie ein Diagramm, welches die Beziehungen der einzelnen Komponenten des

Model-View-Controller visualisiert.
b) Welche Aufgaben haben die Komponenten?
c) Welche Vor- und Nachteile hat die MVC-Architektur?

Lösung:

Model
• kapselt Zustand der Anwendung
• nimmt Zustandsanfragen entgegen
• benachrichtig Views über Änderungen

View
• forder Daten von Model an
• zeigt Model an
• sendet User-Aktionen an Controller

Controller
• definiert Verhalten der Anwendung
• verknüpft User-Aktionen mit Model-Updates
• wählt entsprechendes View aus

Zustandsabfrage
Zustandsänderung

View-Auswahl

User-Aktion

Änderungsbenachrichtigung

Methodenaufruf

Event

Vorteile:
• höhere Kohäsion und geringere Kopplung als mit naivem, monolithischem Ansatz
• einfaches Unit-Testing möglich durch Separation of Concerns
• mehrere Views pro Model möglich
• Anpassung (zum Beispiel neuer Button) an View möglich ohne, dass das Model geändert
werden muss

• einfach verschiedene Views für zum Beispiel verschiedene Anzeigegeräte (Laptop, Smart-
phone, etc.)

Nachteile:
• Must have strict rules on methods.

There is not much in the disadvantages part of the architecture. And the disadvantages are
not so huge and are very easy to ignore in comparison with all the benefits we get.

3. Begriffsdefinitionen
In der Vorlesung wurden die Begriffe Scattering, Tangling und Tyrannei der dominanten De-
komposition eingeführt. Erläutern Sie diese Begriffe mit eigenen Worten an einem geeigneten
von Ihnen selbst gewähltem Beispiel.

4. Factory & Singleton Pattern
a) Erklären Sie mit eigenen Worten, wofür man das Factory Pattern und das Singleton Pat-

tern verwendet.
b) Gegeben ist folgendes UML-Klassendiagramm:

Implementieren Sie auf dessen Grundlage das Factory Patternmit allen angezeigten Klas-
sen. Die draw()-Methoden sollen vereinfacht ausgeben, umwelches Objekt es sich han-
delt. Die Factory-Klasse soll zudem das Singleton Pattern implementieren. Testen Sie Ihre
Lösung.

Übungsblatt 5

1. Begriffsdefinitionen
a) Erklären Sie den Unterschied zwischen Software Validierung und Software Verifikation!

Lösung:
Software Validierung: Wird das richtige Produkt entwickelt
• Eignung der Software für den Einsatzzweck
• Vorher aufgestelltes Anforderungsprofil

Software Verifikation: Ist das System richtig gebaut?
• Entspricht die Software der Spezifikation?
• Fehler in der Spezifikation werden nicht berücksichtigt

b) Worin besteht der Unterschied zwischen Software-Failure und Software-Fault?
Lösung:
Software-Failure:
• Nicht erwartetes Ergebnis der Software
• Wird durch Tests gefunden

Software-Fault:
• Grund für einen Software-Failure
• Nicht jeder Software-Fault führt zu einem Software-Failure

Beispiel1:
1 int double (int param) {
2 int result;
3 result = param * param;
4 return result;
5 }

• Wird double(3) aufgerufen, ist das Ergebnis 9, aber wir erwarten 6.
• Das Ergebnis 9 ist ein Software-Failure
• Der Grund für den Failure ist der Software-Fault in Zeile 3 („* param” anstatt „* 2”)

c) Was verbirgt sich hinter dem Begriff Regression Testing?
Lösung:
• Nach jeder Änderung werden alle Tests ausgeführt
• Stellt sicher, dass alles, was vor der Änderung funktioniert hat, auch nach der Ände-
rung noch funktioniert

• Voraussetzung: Tests müssen deterministisch und wiederholbar sein
d) Nennen Sie die entscheidenden Vor- und Nachteile von Testing bzw. Model Checking!

Lösung:
Model Checking
• System wird als Modell in einer formalen Sprache beschrieben
• Vollständige Überprüfung gegen das Modell
• Beweise möglich

1https://stackoverflow.com/a/47963772

https://stackoverflow.com/a/47963772

• Modelle sind in der Erstellung sehr komplex und zeitaufwändig
Testing
• Einfacher umzusetzen als Model Checking
• Fehler können gefunden, aber korrekte Funktionsweise nicht bewiesen werden

e) Birgt es Gefahren, wenn eine Test-Suite ausschließlich Unit-Tests enthält? Wenn ja, war-
um?
Lösung:
Es fehlen:
• Integration Tests

• Module werden kombiniert und als Gruppe getestet
• Erfüllen Module im Zusammenspiel funktionale und nicht-funktionale Anforde-
rungen?

• System Tests
• Black-Box-Test des kompletten Systems
• Orientierung oft an Use Cases
• GUI, Usability, Performance, Barrierefreiheit, Stresstests, …

• Acceptance Tests
• Funktionstest, die der Kunde ausführt, um Qualität zu bewerten
• Echte statt simulierte Daten

2. Unit-Testing
Gegeben sind folgende Funktionen. Definieren Sie Testcases um eine möglichst gute Testab-
deckung zu erreichen.

• Eine Memberfunktion der BigInteger-Klasse:
1 /**
2 * @param val value to be multiplied by this BigInteger.
3 * @return a BigInteger whose value is (this * val).
4 */
5 public BigInteger multiply(BigInteger val)

Lösung:
Sinnvolle Werte für this und val:
• 0

• 1

• −1

• sehr kleine positive Zahl
• sehr große positive Zahl (größer als Long.MAX_VALUE)
• sehr kleine negative Zahl
• sehr große negative Zahl

Damit kommt man auf 7 · 7 = 49 Testcases.
• Die Funktion max() aus Math:

1 /**
2 * @param a an argument
3 * @param b another argument
4 * @return the larger of a and b.
5 */
6 public static int max(int a, int b)

https://docs.oracle.com/javase/8/docs/api/?java/math/BigInteger.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

Lösung:
• Verhältnis zwischen a und b:

• a < b

• a = b

• a > b

• Werte für a und b:
• 0

• < 0

• > 0

• maximum Integer
• minimum Integer

Übungsblatt 6

1. Kontrollflussgraph
Zeichnen Sie den Kontrollflussgraphen für folgendes Python-Programm. Wie viele Tests wer-
den für einen C0-Test benötigt?
1 #!/bin/env python3
2

3 def some_function(a, b):
4 if a > b:
5 while a > 1:
6 a = a - b
7 return a, b
8 else:
9 while (b * b) > a:
10 b = b - 1
11 return a, b
12

13

14 def main():
15 a = int(input(”a = ”))
16 b = int(input(”b = ”))
17

18 a, b = some_function(a, b)
19 print(”Results:”)
20 print(” a =”, a)
21 print(” b =”, b)
22

23

24 if __name__ == ’__main__’:
25 main()

Lösung:

Für einen vollständigen C0-Test werden mindestens drei verschiedene Inputs benötigt (zum
Beispiel (3, 1), (1, 1) und (1, 3)).

2. Softwarequalität
Nennen Sie mindestens drei Softwaremetriken, die Sie benutzen würden um Code-Qualität zu
bewerten? Warum haben sie sich für diese Metriken entschieden?
Lösung:
Beispiele für Softwaremetriken:

• Lines of code
• Bugs per lines of code
• Comment density
• Zyklomatische Komplexität
• Execution time
• Test coverage
• Anzahl an Klassen
• Entwicklungszeit
• Kundenzufriedenheit
• …

Metriken müssen stets an das Einsatzgebiet angepasst werden (keine universellen Standards)
und sind trotzdem oft nicht sinnvoll zur Messung von Softwarequalität.

3. Softwareevolution
a) Was verbirgt sich hinter Lehman’s Laws und warum sind sie noch heute aktuell?

Lösung:
Gesetze bzw. Hypothesen, die beschreiben, wie und warum ein großes Softwaresystem
sich weiterentwickelt.
• Continuing Change:
Ein System muss kontinuierlich angepasst werden, sonst sinkt die Zufriedenheit mit
der Zeit

• Increasing Complexity:
Die Komplexität des Systems steigt stetig, es sei denn das System wird in Stand ge-
halten (Maintenance) oder an der Reduzierung dessen gearbeitet

• Self Regulation:
Systementwicklungsprozesse sind selbstregulierendmit der Verwaltung von Produkt-
und Prozessmaßen

• Conservation of Organisational Stability:
Die durchschnittliche „Effective Global Activity Rate“ in einem entwickelnden System
bleibt über die Lebensdauer des Produktes unveränderlich

• Conservation of Familiarity:
Um eine zufriedenstellende Evolution zu erreichen, müssen alle Beteiligten (z.B. Ent-
wickler, Vertriebsmitarbeiter und Kunden) ihre Verhaltensweisen beibehalten

• Continuing Growth:
Die Funktionalität eines System muss konstant erweitert werden, um die Zufrieden-
heit zu gewährleisten

• Declining Quality:
Die Qualität eines Systems wird sinken, sofern keine Adaption an veränderte Um-
weltfaktoren geschieht

• Feedback System:
Evolutionsprozesse Stellen einmehrstufigesMulti-Loop-, Multi-Agent-Feedback-System
dar

https://en.wikipedia.org/wiki/Cyclomatic_complexity

b) Beschreiben Sie mit eigenen Worten, was sich hinter den Begriffen Refactoring und Re-
engineering verbirgt.
Lösung:
Refactoring:
• Veränderung interner Strukturen mit gleichbleibender Funktionalität
• Zum Beispiel Auflösen von Gott-Klassen in mehrere Module
• Verbesserung der Lesbarkeit, Verständlichkeit, Wartbarkeit und Erweiterbarkeit

Reengineering:
• Rekonstruktion eines Systems um Wartbarkeit und Verständlichkeit zu verbessern
• Portierung auf andere Plattformen
• Alte Schnittstellen könne aufgelöst und nur strukturiert werden

c) Warum werden Softwaresysteme über die Zeit hinweg immer komplexer und wie kann
man diesem entgegenwirken?
Lösung:
• Ausbau des ursprünglichen Systems/Evolution der Software
• Bug-Fixes, Implementierung neuer Funktionalitäten u.ä. müssen in bestehendes Sys-
tem integriert werden

• Refactoring und Reengineering
• Löschen von nicht mehr verwendeten Code (Feature wurde anderweitig implemen-
tiert oder gar gelöscht)

4. Softwarewartung
a) Erläutern Sie, was unter dem BegriffWartung im Umfeld der Softwareentwicklung zu ver-

stehen ist!
Lösung:
Änderungen des Systems ab erster Installation (im Spiralmodell ab erstem Prototypen)

b) Welche Arten der Softwarewartung werden unterschieden? Zählen Sie diese Arten auf
und geben Sie jeweils eine knappe Erklärung!
Lösung:
Korrektive Wartung
• Auffinden und Korrigieren von Fehlern der Software

Adaptive Wartung
• Anpassung der Software an neue Systemumgebung, Hardware, Änderungen von Stan-
dards, …

Präventive Wartung
• Vermeidung von potentiellen Problemen

Perfektionierende Wartung
• Reengineering mit Redesign und Refactoring
• Optimierung der Performance
• Verbesserung der Wartbarkeit

c) Ist ein gutes Design ein adäquater Ersatz für späteres Refactoring? Erläutern Sie ihre
Entscheidung.
Lösung:
• Sehr schwer/unmöglich auf Anhieb einen korrekten Systementwurf zu erstellen

• unbekannte Problemdomäne
• unverständliche Anforderungen
• unvorhersehbar, wie sich das System weiterentwickeln wird

• Softwareevolution nur bis zu einem gewissen Grad berücksichtigen
• keine zu frühen Optimierungen
• Abstraktion nicht immer sinnvoll

• Gutes Design ist nicht gleichbedeutend mit gutem Code
• Testdriven-Development: Refactoring als fester Bestandteil des Entwicklungsprozes-
ses

