Intelligente Softwaresysteme Bauhaus-Universitat
Prof. Dr.-Ing. Norbert Siegmund | Nicolai Ruckel

Weimar

Ubungsblatt 1

1. Softwarelebenszyklus

Zahlen Sie die Aktivitdten der Software Entwicklung auf, beschreiben Sie kurz deren Inhalt und
nennen Sie den jeweils dabei entstehenden Output.

Losung:
e Requirements Engineering: Die Anforderungen des Kunden werden ermittelt und im Las-
tenheft festgehalten.

e Analysis: Die Anforderungen werden modelliert und spezifiziert (ggf. formal). Die Ergeb-
nisse werden im Pflichtenheft hinterlegt.

e Design: Ein LOosungsansatz basierend auf den Ergebnissen der Analyse wird erstellt. Hier-
zu bietet es sich an, UML und ggf. ER-Diagramme zu erstellen.

e Implementierung Die Umsetzung des Designs in ausfiihrbaren Quellcode erfolgt.

e Validation: Es ist zu priifen, ob die Implementierung die Zielsetzung aus den Require-
ments erfillt. Hierzu werden z.B. Testfalle erstellt, anhand derer ein Testreport zur Ver-
fugung gestellt werden kann.

e Maintenance: Es ist die kontinuierliche Korrektur und Wartung der Implementierung zu
gewahrleisten, ggf. unter Beruicksichtigung geanderter oder neuer Anforderungen.

2. Programmieraufgabe: Universitats-Verwaltungs-Programm

Programmieren Sie die notigen Java Klassen fiir ein Universitats-Verwaltungs-Programm. Ach-
ten Sie dabei insbesondere auf eine einfache Erweiterbarkeit. Die Klassen sollen mindestens
Getter und Setter fiir jede Membervariable und einen Konstruktur enthalten.

e Es sind vorerst nur die Komponenten Professoren und Studierende zu beriicksichtigen.

e Beide Personengruppen haben je einen Vor- und Nachnamen, Professoren auBerdem
eine Personennummer, Studierende eine Matrikelnummer.

Losung:

: public class Person {
private String firstname;
private String lastname;

2

3

A

5 public Person(String firstname, String lastname) {
6 this.firstname = firstname;

7 this.lastname = lastname;

8

9

}
10 public String getFirstname() {
11 return this.firstname;
12 }
13
14 public String getLastname() {
15 return this.lastname;
16 }
17
18 [ Y ]

19}



public class Student extends Person {

1

2 private int matriculation_number;

3

4 public Student(

5 String firstname,

6 String lastname,

7 int matriculation_number) {

8 super(firstname, lastname);

9 this.matriculation_number = matriculation_number;
10 }

12 public String getMatriculationNumber() {
13 return this.matriculation_number;
14 }

15 }

1 public class Professor extends Person {

2 private int staff_number;

3

4 public Student(

5 String firstname,

6 String lastname,

7 int staff_number) {

8 super(firstname, lastname);

9 this.staff_number = staff_number;
10 }

11

12 public String getStaffNumber() {

13 return this.staff_number;

14 }

15 }

. Anforderungsbeschreibung mit Volere Snow Cards
Gegeben ist folgendes Szenario:

Die neue Bildbearbeitungssoftware intelliPhoto ist ein interaktives Tool zum Anzeigen und
Bearbeiten von Bildern. Jedes Bild wird durch ein zweidimensionales Array von Bytes repra-
sentiert, wobei jeder Byte-Wert fiir einen Farbwert des Bildpunktes steht. Der Benutzer soll in
der Lage sein die Bilddimensionen abzufragen. Es sollen zwei verschiedene Arten von Bildern
reprasentiert werden konnen: RasterImage und Shapedimage, wobei letzteres eine Spezial-
form vom Rasterimage ist. Ein Shapedimage besitzt eine nicht-rechteckige Form (Polygon),
wobei die Bytes im Array angeben, ob die jeweiligen Punkte transparent oder opak darge-
stellt werden sollen. Dariiber hinaus soll die Software einfache Manipulationen von Bildern
erlauben. So soll das Drehen, als auch das VergroBern und Verkleinern von Bildern, das Setzen
neuer Farbwerte im Bild und das Zusammenfiigen zweier Bilder zu einem neuen Bild innerhalb
von 0,2 Sekunden moglich sein.

Fihren Sie eine Anforderungsbeschreibung nach Volere fir jeweils eine funktionale und eine
nicht funktionale Anforderung durch. Eine ausfiihrliche Beschreibung zu Volere Snow Card
konnen Sie hier finden:

http://www.cse.chalmers.se/~feldt/courses/reqgeng/Volere Template versioni_
5.doc

Losung:
e Funktionale Anforderungen:
e Anzeigen und Bearbeiten von Bildern
e Benutzer kann Bilddimensionen Abfragen

e Software soll das Manipulieren von Bildern erlauben


http://www.cse.chalmers.se/~feldt/courses/reqeng/Volere_Template_version1_5.doc
http://www.cse.chalmers.se/~feldt/courses/reqeng/Volere_Template_version1_5.doc

drehen

vergroBern / verkleinern

e neue Farbwerte im Bild setzen
e Zusammenfligen zweier Bilder
e Nicht-funktionale Anforderungen:
e Manipulationen sollen innerhalb von 0,2 Sekunden erfolgen



Ubungsblatt 2

1. Responseability Driven Design
Gegeben ist folgende Requirement Spezifikation:

Die neue Bildbearbeitungssoftware intelliPhoto ist ein interaktives Tool zum Anzeigen und
Bearbeiten von Bildern. Jedes Bild wird durch ein zweidimensionales Array von Bytes repra-
sentiert, wobei jeder Byte-Wert fiir einen Farbwert des Bildpunktes steht. Der Benutzer soll in
der Lage sein die Bilddimensionen abzufragen. Es sollen zwei verschiedene Arten von Bildern
reprasentiert werden konnen: RasterImage und Shapedimage, wobei letzteres eine Spezial-
form vom Rasterimage ist. Ein Shapedimage besitzt eine nicht-rechteckige Form (Polygon),
wobei die Bytes im Array angeben, ob die jeweiligen Punkte transparent oder opak darge-
stellt werden sollen. Dariiber hinaus soll die Software einfache Manipulationen von Bildern
erlauben. So soll das Drehen, als auch das VergroBern und Verkleinern von Bildern, das Setzen
neuer Farbwerte im Bild und das Zusammenfiigen zweier Bilder zu einem neuen Bild innerhalb
von 0,2 Sekunden moglich sein.

Fihren Sie eine detaillierte Analyse durch und finden Sie mit ihrer Hilfe moglichst alle Klas-
sen, Verantwortlichkeiten, Kollaborationen und Beziehungen (bzw. Vererbungen). Begriinden
Sie lhre Entscheidung. Es miissen nur Klassen aus der Spezifikation betrachtet werden (zum
Beispiel keine GUI- oder OS-Elemente).

Losung:
Klassen
e Bild/Image
e Rasterlmage
e Shapelmage
e Form/Shape
e Rechteck
e Polygon
e Punkte/Points
Verantwortlichkeiten
e skalieren:
e vergroRern
e verkleinern
e rotieren
e einfarben
e zusammenfugen
Beziehungen
e RasterImage is kind of Image
e Shapelmage is kind of RasterImage
e Dimension is part of Image
e Rectangle is kind of Shape
e Polygon is kind of Shape
e Manipulation has knowledge of Image

Kollaborationen



e Image kann seine Responsibilities selbst erfiillen (sehr gute Kapselung der Daten mog-
lich)

e weitere Responsibilities sind nicht zu bertlicksichtigen

2. UML-Klassendiagramm

Erstellen Sie auf Grundlage der Spezifikation aus Aufgabe 1 einen geeigneten Entwurf der Klas-
senhierarchie als UML-Klassendiagramm. Geben Sie dabei die genauen Interfaces eventueller
Klassen an sowie die Attribute, welche die jeweiligen Klassen verwalten miissen. Begriinden
Sie Ihre Design-Entscheidung in wenigen Worten.

Losung:
e 7 Klassen: Image, Rasterlmage, ShapedRasterlmage, Shape, Rectangle, Polygon, Point
e 4 Methoden: scale, rotate, merge, setBit
e richtige Vererbungen zwischen Klassen

e zusatzliche Methoden eingefiigt (z.B. Transparenz oder Opaqueness an Point-Position
hinzufligen, draw(), getTopLeft(), getBottomRight() 0.3.)

<<interface>>
+ Image

+getBoundingRectangle() : Rectangle
+scale(factor : Integer) : Image + Rectangle
+scale(factorX : Integer,factorY : Integer) : Image
+rotateBy(degree : Integer) : Image
+merge(otherimage : Image) : Image +Rectangle(tl : Point,br : Point) : Rectangle
+draw() +getTopLeft() : Point

yAN +getBottomRight() : Point

| X
<<realize>> | -
| + Point

+ Rasterlmage + Shape -X : Integer
-y @ Integer

-boundingRectangle : Rectangle

-points : Collection

-shape : Shape -color : Byte
+getPoints() : Collection
+Rasterimage(rectangle : Rectangle) : Rectangle 9 0 +getX() : Integer
+getBitAt(point : Point) : Byte +getY() : Integer
+setBitAt(point : Point,color : Byte) : Rasterimage +getColor() : Byte
+isVisibleAt(point : Point) : Boolean
+ Polygon
+ ShapedRasterimage +Polygon{points : Collection) : Polygon

+Shapedimage(shape : Polygon) : ShapedRasterimage
+makeTransparentAt(point : Point)
+makeOpaqueAt(point : Point)

3. Kapselung

Was versteht man unter dem Begriff Kapselung im Kontext der (objektorientierten) Program-
mierung? Welche Vorteile bringt dieses Konzept mit sich?



Ubungsblatt 3

1. Modelling Behavoir: Use-Case Diagramm

Da Sie damit beauftragt wurden die neue Bildbearbeitungssoftware IntelliPhoto zu implemen-
tieren, fiihrten Sie eine Umfeldanalyse durch. In dieser haben Sie wertvolle Informationen
uber verschiedene Nutzergruppen sammeln konnen.

So erfuhren Sie, dass Casual User und Einsteiger die Software hauptsachlich fiir kurze Auf-
gaben wie das Zusammenschneiden von Bildern, das Andern der Bildauflosungen und dem
Drehen von Bildern benutzen wollen. AuBerdem mochten die Casual User die Software dazu
benutzen um bestimmte Regionen in einem Bild zu retuschieren.

Eine weitere Nutzergruppe, die freiberuflichen Fotografen, hingegen mochten neben der Bild-
retusche auch eine Reihe an Korrekturwerkzeugen, wie der Helligkeit/Kontrast, Farbton/Sdtti-
gung und den Gradationskurven, als auch Auswahlwerkzeuge und verschiedene Pinsel haben.

Die letzte Gruppe von potentiellen Benutzern, die 3D Kunstler, wiinschen sich eine Schnitt-
stelle fiir den Import von gangigen 3D-Dateien. Auch soll es fiir sie moglich sein, einfache
geometrische 3D-Objekte direkt im Bild zu erzeugen.

Jede Nutzergruppe gab an, dass sie sich eine Ebenendarstellung in der Software vorstellen
konnen und benutzen wurden.

Fassen Sie die beschriebenen Ergebnisse in einem UML-Use-Case-Diagramm zusammen.

T

3D Kinstler

Import 3D-Dateien 3D Objekte erzeugen
Helligkeit/Kontrast

Farbton/Sattigung

Losung:

Bilder Zusammenschneiden

Drehen von Bildern

N\

Einsteiger
Ebenendarstellung
Gradationskurven
A
—( Bildauflésung andern Auswahlwerkzeuge
Casual User
\

Bild retuschieren

freiberufliche Fotografen



2. UML Structure: UML-Klassendiagramm

Modellieren Sie ein Unternehmen als UML-Klassendiagramm, welches weltweit beliebig viele
Standorte besitzt.

Dabei setzt sich ein Standort aus mindestens einem Gebaude inklusive Adresse zusammen.

Ein Gebaude besitzt mehrere Biiros und exakt eine Mensa. Die Biiros haben Nummern sowie
ein Namensschild an der Tir.

In den Biiros sitzen Angestellte, welche entweder der Chef, das Management oder der Arbei-
terschaft zugeordnet sind.

Zu beachten ist, dass einem Standort ein Chef und 3-8 Personen aus dem Management zuge-
ordnet sind sowie mindestens 5 Arbeiter haben. Gekennzeichnet sind die Angestellten durch
eine ID.

Die Berufsgruppen haben zudem eigene Aufgabenfelder: Der Chef kontrolliert das Manage-
ment, welches wiederum die Arbeiter liberwacht, welche wiederum die Arbeit verrichten.

Das Unternehmen stellt verschiedene Produkte (PCs, Laptops, Server) her.

Losung:
+ Mensa
- 1 1
+ Unternehmen + Standort + Gebdude o —
« 1 1.* -
1 1. K>———————-adresse : String —
* + Biro
1 1.
1 > -
-nummer : Integer
1 1 1 -name : String
1. 5.% 3.8 !
+ Produkt + Arbeiterschaft + Management + Boss
1.* 1.%
-preis : Integer Fotallth
. stellt her
-herstellkosten : Integer +arbeiten() +Uiberwachen() +kontrollieren()
-bestand : Integer
+verkaufen()
+einlagern() + Angestellte
-ID : Integer
-name : String
+ PC + Laptop + Server -gehalt : Integer

. Adapter Pattern: Deque
Implementieren Sie die Datenstruktur Deque in Java mit Hilfe des Adapter Patterns.
Die Operationen der Deque sind:

e push und pop: Einfugen und Entnehmen eines Elementes am hinteren Ende der Deque.

e put und get: Einfugen und Entnehmen am vorderen Ende der Deque.

e first und last: Lesen des ersten oder letzten Elements, ohne es zu entfernen.
Achten Sie bei Ihrer Implementierung auf Java Generics und bauen Sie lhre Losung auf eine
bestehende “Collection”, wie z.B. java.util.ArrayList, auf. Vergewissern Sie sich, dass

Ihre neue Klasse keine weiteren Methoden als die oben genannten ausfiihren kann (z.B. add ()
oder clear()).

Losung:
Interface:

1 interface Deque<T> {
2 public void push(T element);
public T pop();

public void put(T element);
public T get();

® N o v W

public T first();


https://en.wikipedia.org/wiki/Double-ended_queue
http://openbook.rheinwerk-verlag.de/javainsel/javainsel_09_001.html
http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

9 public T last();

10

11 public void print();
1}
Adapter:

1 class ArraylListToDequeAdapter<T> implements Deque<T> {

2 private List<T> list = new ArraylList<T>();
3

4 a0verride

5 public void push(T element) {

6 list.add(element);

7 }

8

9 a0verride

10 public T pop() {

11 T element = last();

12 list.remove(list.size() - 1);
13

14 return element;

15 }

16

17 [...]

. Visitor Pattern: Termausgabe

Wir betrachten Terme iiber die Rechenarten op € {+, -}, die folgendermaRBen rekursiv definiert
sind:

e jedes Literal ist ein Term, z.B. 4
e istt ein Term, so ist (¢) ein Term
e sind ¢y, to Terme so ist t; op t5 ebenso ein Term
Beispiele fiir gultige Terme: 4 + 8,4 - 8 oder 4 + (4 - 8).
a) Implementieren Sie die entsprechenden Klassen Expression, Literal, Brackets,
BinaryExpression, AdditionundMultiplication im Sinne des Visitor Patterns.
b) Implementieren Sie danach die Visitor Klassen EvalVisitorund PrettyPrintVisitor.
EvalVisitor: Evaluiert bzw. berechnet den gegebenen Term und halt das Ergebnis
PrettyPrintVisitor: Gibt einen Term in leserlicher Form aus.
Priifen Sie Ihre Implementierung durch geeignete Tests!
Losung:
Abstract Visitable:

import visitors.Visitor;

public abstract class Expression {

o F W N R

public abstract void accept(Visitor v);

}

Concrete Visitable:

1 public class Literal extends Expression {

private int value;

public Literal(int v) {
value = v;
}

N o U~ W N



8

9 public int getValue() {

10 return value;
11 }
12
13 @0verride
14 public void accept(Visitor v) {
15 v.visit(this);
16 }
17 }
Visitor:
1 public interface Visitor {
2 void visit(Expression e);
3 void visit(Literal 1);
4 void visit(Brackets b);
5 void visit(Addition a);
6 void visit(Subtraction a);
7 void visit(Multiplication a);
8 void visit(Division a);
9
t

Concrete Visitor:

1 public class EvalVisitor implements Visitor {

2 private int result = o;

3

4 public int getResult() {

5 return result;

6 }

7

8 @0verride

9 public void visit(Expression e) {
10 e.accept(this);

11 }

12

13 a0verride

14 public void visit(Literal 1) {
15 result = l.getValue();
16

}

17

18 [...]



Ubungsblatt 4

1. Kohasion und Koppelung
In der Vorlesung wurden die Begriffe Kohdsion und Kopplung eingefiihrt.

a) Erklaren Sie mit eigenen Worten, was sich, im Kontext der objektorientierten Program-
mierung, hinter diesen Begriffen verbirgt.

b) Weshalb ist es vom Vorteil, wenn ein System hohe Kohasion und geringe Kopplung auf-
weist?

Losung:
Kohasion:
e Beschreibt die Beziehungen zwischen Elementen innerhalb einer Komponente.

e Idealzustand: Jede Komponente (Methode, Klasse) fiir genau eine Aufgabe verant-
wortlich, die sie eigenstandig losen kann.

e Starke Kohasion: Alle Elemente sind notig fur die Funktionstiichtigkeit der anderen
internen Elemente, das heift keine isolierten Elemente.

e Schwache Kohasion: Komponente erfiillt viele verschiedene Aufgabe oder die Ele-
mente sind nur zusammengefasst, weil sie ahnliche Funktionalitaten anbieten.
= Ausgliedern in neue Komponente bietet sich an.

Kopplung:

Beschreibt die Beziehungen zwischen verschiedenen Komponenten.

Idealzustand: Jede Komponente nur lose mit anderen verbunden.

Lose Kopplung: Komponenten besitzen nur wenige Abhangigkeiten untereinander.

Enge Kopplung: Komponenten besitzen viele Abhangigkeiten untereinander.
= Eine Anderung hat moglicherweise Auswirkungen auf viele andere Komponenten.

Hohe Kohasion und geringe Kopplung:

o Effekte von Anderungen auf engen Kreis von Komponenten beschrankt.
= Fordert die Wartbarkeit und Anpassbarkeit.

e Perfekter Zustand unerreichbar.
Beispiel Visitor Pattern:
e Kohasion:
e hoch, da jeder Visitor genau eine Funktionalitat anbietet
e hoch, da die Objektstruktur genau eine Funktionalitat anbietet
e Kopplung:
e hoch, da Visitor Zugriff auf interne Datenstruktur benotigt
e hoch, da Visitor durch die Objektstruktur iterieren konnen muss

2. Model-View-Controller (MVC)

a) Erstellen Sie ein Diagramm, welches die Beziehungen der einzelnen Komponenten des
Model-View-Controller visualisiert.

b) Welche Aufgaben haben die Komponenten?
c) Welche Vor- und Nachteile hat die MVC-Architektur?

Losung:



Zustandsabfrage
2 Model Zustandséanderung

* kapselt Zustand der Anwendung
* nimmt Zustandsanfragen entgegen

- - « benachrichtig Views tber Anderungen
Methodenaufruf I
- -) Event = R
I Anderungsbenachrichtigung
. View-Auswahl
View Controller
+ forder Daten von Model an « definiert Verhalten der Anwendung
« zeigt Model an « verknlpft User-Aktionen mit Model-Updates
« sendet User-Aktionen an Controller ?ser—Aﬂn } - wahlt entsprechendes View aus
Vorteile:

e hohere Kohasion und geringere Kopplung als mit naivem, monolithischem Ansatz
e einfaches Unit-Testing moglich durch Separation of Concerns
e mehrere Views pro Model moglich

e Anpassung (zum Beispiel neuer Button) an View maoglich ohne, dass das Model geandert
werden muss

e einfach verschiedene Views fiir zum Beispiel verschiedene Anzeigegerate (Laptop, Smart-
phone, etc.)

Nachteile:
e Must have strict rules on methods.
There is not much in the disadvantages part of the architecture. And the disadvantages are
not so huge and are very easy to ignore in comparison with all the benefits we get.
3. Begriffsdefinitionen

In der Vorlesung wurden die Begriffe Scattering, Tangling und Tyrannei der dominanten De-
komposition eingefiihrt. Erlautern Sie diese Begriffe mit eigenen Worten an einem geeigneten
von lhnen selbst gewahltem Beispiel.

4. Factory & Singleton Pattern

a) Erklaren Sie mit eigenen Worten, wofiir man das Factory Pattern und das Singleton Pat-
tern verwendet.

b) Gegeben ist folgendes UML-Klassendiagramm:

- + FactoryPatternDemo
<<interface>>

+ Shape

+draw() : void +main() : void

asks

___________ Creates
1 1 |
: <<realize>> : :
1 1 |

+ Circle + Square + Rectangle

+ ShapeFactory returns

-Instance : ShapeFactory

-ShapeFactory() : ShapeFactory
— +getinstance() : ShapeFactory
+getShape(s : String) : Shape

+draw() : void +draw() : void +draw() : void

Implementieren Sie auf dessen Grundlage das Factory Pattern mit allen angezeigten Klas-
sen. Die draw( )-Methoden sollen vereinfacht ausgeben, um welches Objekt es sich han-
delt. Die Factory-Klasse soll zudem das Singleton Pattern implementieren. Testen Sie lhre
Losung.



Ubungsblatt 5

1. Begriffsdefinitionen

a) Erklaren Sie den Unterschied zwischen Software Validierung und Software Verifikation!
Losung:
Software Validierung: Wird das richtige Produkt entwickelt
e Eignung der Software fiir den Einsatzzweck
e Vorher aufgestelltes Anforderungsprofil
Software Verifikation: Ist das System richtig gebaut?
e Entspricht die Software der Spezifikation?
e Fehler in der Spezifikation werden nicht berucksichtigt
b) Worin besteht der Unterschied zwischen Software-Failure und Software-Fault?
Losung:
Software-Failure:
e Nicht erwartetes Ergebnis der Software
e Wird durch Tests gefunden
Software-Fault:
e Grund fur einen Software-Failure
e Nicht jeder Software-Fault fiihrt zu einem Software-Failure
Beispielﬂ:

1 int double (int param) {
> int result;

result = param * param;
return result;

}

(€ Y]

e Wird double(3) aufgerufen, ist das Ergebnis 9, aber wir erwarten 6.
e Das Ergebnis 9 ist ein Software-Failure
e Der Grund fiir den Failure ist der Software-Fault in Zeile 3 (,* param” anstatt,* 2")
c) Was verbirgt sich hinter dem Begriff Regression Testing?
Losung:
e Nach jeder Anderung werden alle Tests ausgefiihrt

e Stellt sicher, dass alles, was vor der Anderung funktioniert hat, auch nach der Ande-
rung noch funktioniert

e Voraussetzung: Tests mussen deterministisch und wiederholbar sein
d) Nennen Sie die entscheidenden Vor- und Nachteile von Testing bzw. Model Checking!
Losung:
Model Checking
e System wird als Modell in einer formalen Sprache beschrieben
e Vollstandige Uberpriifung gegen das Modell
e Beweise moglich

"https://stackoverflow.com/a/47963772


https://stackoverflow.com/a/47963772

e Modelle sind in der Erstellung sehr komplex und zeitaufwandig
Testing
e Einfacher umzusetzen als Model Checking
e Fehler konnen gefunden, aber korrekte Funktionsweise nicht bewiesen werden

e) Birgt es Gefahren, wenn eine Test-Suite ausschlieBlich Unit-Tests enthalt? Wenn ja, war-
um?

Losung:
Es fehlen:
e Integration Tests
e Module werden kombiniert und als Gruppe getestet

e Erfiillen Module im Zusammenspiel funktionale und nicht-funktionale Anforde-
rungen?

e System Tests
e Black-Box-Test des kompletten Systems
e Orientierung oft an Use Cases
e GUI, Usability, Performance, Barrierefreiheit, Stresstests, ...
e Acceptance Tests
e Funktionstest, die der Kunde ausfiihrt, um Qualitat zu bewerten

e Echte statt simulierte Daten

2. Unit-Testing

Gegeben sind folgende Funktionen. Definieren Sie Testcases um eine moglichst gute Testab-
deckung zu erreichen.

e Eine Memberfunktion der BigInteger-Klasse:

1 [**
* gparam val value to be multiplied by this BigInteger.

z * greturn a BigInteger whose value is (this * val).
*
2 puélic BigInteger multiply(BigInteger val)
Losung:
Sinnvolle Werte fur this und val:
e (
o 1
o —1
e sehr kleine positive Zahl
e sehr groBe positive Zahl (groBer als Long .MAX_VALUE)
e sehr kleine negative Zahl
e sehr groRe negative Zahl
Damit kommt man auf 7 - 7 = 49 Testcases.
e Die Funktion max( ) aus Math:
1 k%

> * gQparam a an argument

3 * gparam b another argument

s+ * areturn the larger of a and b.
5 */

6

public static int max(int a, int b)


https://docs.oracle.com/javase/8/docs/api/?java/math/BigInteger.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

Losung:

e Verhaltnis zwischen a und b:
e a<b
e a=1"»
e a>b

e Werte fir a und b:
e (
e <0
e >0
e maximum Integer

e minimum Integer



Ubungsblatt 6

1. Kontrollflussgraph
Zeichnen Sie den Kontrollflussgraphen fiir folgendes Python-Programm. Wie viele Tests wer-
den fiir einen Co-Test benotigt?
1 #!/bin/env python3

2

def some_function(a, b):

3

4 if a > b:

5 while a > 1:

6 a=a-»>

7 return a, b

8 else:

9 while (b * b) > a:
10 b=Db-1

11 return a, b

1 def main():
15 a = int(input(”a = "))

16 b = int(input(”b = "))

17

18 a, b = some_function(a, b)
19 print(”"Results:”)

20 print(” a =", a)

21 print(” b =", b)

22

23

2 if __name__ == '__main__":

Fiir einen vollstandigen Co-Test werden mindestens drei verschiedene Inputs benétigt (zum
Beispiel (3, 1), (1, 1) und (1, 3)).



2. Softwarequalitat

Nennen Sie mindestens drei Softwaremetriken, die Sie benutzen wiirden um Code-Qualitat zu
bewerten? Warum haben sie sich fur diese Metriken entschieden?

Losung:

Beispiele fiir Softwaremetriken:
e Lines of code
e Bugs per lines of code

e Comment density

e Zyklomatische Komplexitat

e Execution time

e Test coverage

e Anzahl an Klassen

e Entwicklungszeit

e Kundenzufriedenheit

Metriken miissen stets an das Einsatzgebiet angepasst werden (keine universellen Standards)
und sind trotzdem oft nicht sinnvoll zur Messung von Softwarequalitat.

3. Softwareevolution

a) Was verbirgt sich hinter Lehman’s Laws und warum sind sie noch heute aktuell?
Losung:

Gesetze bzw. Hypothesen, die beschreiben, wie und warum ein grofRes Softwaresystem
sich weiterentwickelt.

e Continuing Change:
Ein System muss kontinuierlich angepasst werden, sonst sinkt die Zufriedenheit mit
der Zeit

e Increasing Complexity:
Die Komplexitat des Systems steigt stetig, es sei denn das System wird in Stand ge-
halten (Maintenance) oder an der Reduzierung dessen gearbeitet

e Self Regulation:
Systementwicklungsprozesse sind selbstregulierend mit der Verwaltung von Produkt-
und Prozessmalen

e Conservation of Organisational Stability:
Die durchschnittliche ,Effective Global Activity Rate” in einem entwickelnden System
bleibt liber die Lebensdauer des Produktes unveranderlich

e Conservation of Familiarity:
Um eine zufriedenstellende Evolution zu erreichen, miissen alle Beteiligten (z.B. Ent-
wickler, Vertriebsmitarbeiter und Kunden) ihre Verhaltensweisen beibehalten

e Continuing Growth:
Die Funktionalitat eines System muss konstant erweitert werden, um die Zufrieden-
heit zu gewahrleisten

e Declining Quality:
Die Qualitat eines Systems wird sinken, sofern keine Adaption an veranderte Um-
weltfaktoren geschieht

e Feedback System:
Evolutionsprozesse Stellen ein mehrstufiges Multi-Loop-, Multi-Agent-Feedback-System
dar


https://en.wikipedia.org/wiki/Cyclomatic_complexity

b) Beschreiben Sie mit eigenen Worten, was sich hinter den Begriffen Refactoring und Re-

engineering verbirgt.
Losung:
Refactoring:
e Veranderung interner Strukturen mit gleichbleibender Funktionalitat
e Zum Beispiel Auflosen von Gott-Klassen in mehrere Module
e Verbesserung der Lesbarkeit, Verstandlichkeit, Wartbarkeit und Erweiterbarkeit
Reengineering:
e Rekonstruktion eines Systems um Wartbarkeit und Verstandlichkeit zu verbessern
e Portierung auf andere Plattformen
e Alte Schnittstellen konne aufgelost und nur strukturiert werden

c) Warum werden Softwaresysteme iiber die Zeit hinweg immer komplexer und wie kann

man diesem entgegenwirken?
Losung:

e Ausbau des urspriinglichen Systems/Evolution der Software

Bug-Fixes, Implementierung neuer Funktionalitaten u.a. miissen in bestehendes Sys-
tem integriert werden

Refactoring und Reengineering

Loschen von nicht mehr verwendeten Code (Feature wurde anderweitig implemen-
tiert oder gar geloscht)

4. Softwarewartung

a)

Erlautern Sie, was unter dem Begriff Wartung im Umfeld der Softwareentwicklung zu ver-
stehen ist!

Losung:
Anderungen des Systems ab erster Installation (im Spiralmodell ab erstem Prototypen)

Welche Arten der Softwarewartung werden unterschieden? Zahlen Sie diese Arten auf
und geben Sie jeweils eine knappe Erklarung!

Losung:
Korrektive Wartung

e Auffinden und Korrigieren von Fehlern der Software
Adaptive Wartung

e Anpassung der Software an neue Systemumgebung, Hardware, Anderungen von Stan-
dards, ...

Praventive Wartung
e Vermeidung von potentiellen Problemen
Perfektionierende Wartung
e Reengineering mit Redesign und Refactoring
e Optimierung der Performance
e Verbesserung der Wartbarkeit

Ist ein gutes Design ein adaquater Ersatz fuir spateres Refactoring? Erlautern Sie ihre
Entscheidung.

Losung:

e Sehr schwer/unmoglich auf Anhieb einen korrekten Systementwurf zu erstellen



e unbekannte Problemdomane
e unverstandliche Anforderungen
e unvorhersehbar, wie sich das System weiterentwickeln wird
e Softwareevolution nur bis zu einem gewissen Grad berucksichtigen
e keine zu frilhen Optimierungen
e Abstraktion nicht immer sinnvoll
e Gutes Design ist nicht gleichbedeutend mit gutem Code

e Testdriven-Development: Refactoring als fester Bestandteil des Entwicklungsprozes-
ses



