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Recap I

• Important operations to find optimal solutions are 
crossover, individual selection, and mutation

• Individual selection:
– Aims at selecting those individuals for the crossover operation 

that provide the best fitness values

– (Stochastic) Proportionate Selection, Tournament Selection

• Crossover:
– 1-point and 2-point cut regions out of an individual and cross 

this region with another one

– Uniform crossover crosses randomly chosen genes

– Crossover alone is not sufficient: Line Recombination
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Recap II

• Mutation:

– Gaussian Convolution for floating-point values

– Adaptive mutation, e.g., using the one-fifth-rule

• Evolutionary strategies vs. genetic algorithm

– ES use only mutation, which has its limits (hyper cube)

– GA uses also crossover and is most often used with a fixed-
length binary vector representation

3
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Exploitative Variations of
Population-Based Optimization
Techniques
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Elitism as a General Method

• Simple adaptation of GA: Insert the fittest individuals of the 
current generation into the next generation: the elites

• Very similar to µ+λ algorithm with same pros and cons (e.g., 
premature convergence)
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𝑝𝑜𝑝𝑠𝑖𝑧𝑒 ← desired population size
𝑛 ← number of elite individuals
𝑃 ←
for 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 times do
𝑃 ← 𝑃 ∪ {random individual}

𝐵𝑒𝑠𝑡 ← 𝑒𝑚𝑝𝑡𝑦
repeat

for each individual 𝑃𝑖 ∈ 𝑃 do
𝐴𝑠𝑠𝑒𝑠𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑃𝑖
if 𝐵𝑒𝑠𝑡 == 𝑒𝑚𝑝𝑡𝑦 or Fitness(𝑃𝑖 )> 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑒𝑠𝑡) then
𝐵𝑒𝑠𝑡 ← 𝑃𝑖

𝑄 ← {the 𝑛 fittest individuals in 𝑃}

for
popsize−n

2
times do

𝑃𝑎𝑟𝑒𝑛𝑡 𝑃𝑎 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑊𝑖𝑡ℎ𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑃)
𝑃𝑎𝑟𝑒𝑛𝑡 𝑃𝑏 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑊𝑖𝑡ℎ𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑃

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝐶𝑎 , 𝐶𝑏 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝐶𝑜𝑝𝑦 𝑃𝑎 , 𝐶𝑜𝑝𝑦 𝑃𝑏
𝑄 ← 𝑄 ∪ {𝑀𝑢𝑡𝑎𝑡𝑒 𝐶𝑎 , 𝑀𝑢𝑡𝑎𝑡𝑒 𝐶𝑏 }

𝑃 ← 𝑄
until 𝐵𝑒𝑠𝑡 is optimum or out of time
return 𝐵𝑒𝑠𝑡
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Steady-State Genetic Algorithm

• Alternative to the common generational GAs in the way that 
they do not update/replace the whole generation, but do it 
piecewise
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𝑝𝑜𝑝𝑠𝑖𝑧𝑒 ← desired population size
𝑃 ←
for 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 times do
𝑃 ← 𝑃 ∪ {random individual}

𝐵𝑒𝑠𝑡 ← 𝑒𝑚𝑝𝑡𝑦
for each individual 𝑃𝑖 ∈ 𝑃 do
𝐴𝑠𝑠𝑒𝑠𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑃𝑖
if 𝐵𝑒𝑠𝑡 == 𝑒𝑚𝑝𝑡𝑦 or Fitness(𝑃𝑖 )> 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑒𝑠𝑡) then
𝐵𝑒𝑠𝑡 ← 𝑃𝑖

Initialization
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Steady-State GA II
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repeat
𝑃𝑎𝑟𝑒𝑛𝑡 𝑃𝑎 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑊𝑖𝑡ℎ𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑛𝑡(𝑃)
𝑃𝑎𝑟𝑒𝑛𝑡 𝑃𝑏 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑊𝑖𝑡ℎ𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑛𝑡 𝑃

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝐶𝑎 , 𝐶𝑏 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝐶𝑜𝑝𝑦 𝑃𝑎 , 𝐶𝑜𝑝𝑦 𝑃𝑏
𝐶𝑎 ← 𝑀𝑢𝑡𝑎𝑡𝑒(𝐶𝑎)
𝐶𝑏 ← 𝑀𝑢𝑡𝑎𝑡𝑒(𝐶𝑏)
𝐴𝑠𝑠𝑒𝑠𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐶𝑎
If 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐶𝑎 > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐵𝑒𝑠𝑡 then
𝐵𝑒𝑠𝑡 ← 𝐶𝑎

If 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐶𝑏 > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐵𝑒𝑠𝑡 then
𝐵𝑒𝑠𝑡 ← 𝐶𝑏

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑃𝑑 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐹𝑜𝑟𝐷𝑒𝑎𝑡ℎ(𝑃)
𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑃𝑒 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐹𝑜𝑟𝐷𝑒𝑎𝑡ℎ(𝑃)
𝑃 ← 𝑃 − {𝑃𝑑 , 𝑃𝑒}
𝑃 ← 𝑃 ∪ {𝐶𝑎 , 𝐶𝑏}

until 𝐵𝑒𝑠𝑡 is optimum or out of time
return 𝐵𝑒𝑠𝑡

Note that only two parents will 
be selected for breeding new 
children and only two 
individuals will be removed in 
the whole generation step
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Discussion

• Benefits:

– Requires only half memory (since only one population is 
maintained at a time)

– Exploitative, because parents stay in the generation as long as 
they are not the worst individuals

• Drawbacks:

– Premature convergence depending on SelectForDeath
operation (removing only unfit individuals might remove 
explorative individuals -> we stay at a local optimum)

• Further knobs:

– Replace not two, but n individuals; replace at random

– Make mutation and crossover noise, etc.
8
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Tree-Style Genetic Programming 
Pipeline

• What is genetic programming?

– Research area of using meta-heuristics in finding an optimal 
program

• Common representation for a genetic programming problem 
is a tree (more on representations in the exercise)

• How to do the tweak operation?

– With 0.9 probability do a crossover, with 0.1 probability copy 
the parents

– No mutation operation (ie., not global)

– Tournament selection with t=7

9
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Hybrid Optimization Algorithms

• For ex. combine evolutionary algorithm with hill climbing

– EA in the inner loop and hill climbing in the outer loop

– Realized as extension to Iterated Local Search

• Or, use EA for exploration (outer loop) and local 
optimization as inner loop as exploitation

– Implement hill climbing during the fitness assessment phase 
to revise and improve each individual at the time it’s assessed

– Revised individuals replace original ones

10
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Hybrid Algorithm ES+HC
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𝑡 ← number of iterations for hill climbing
𝑃 ←
𝐵𝑒𝑠𝑡 ← 𝑒𝑚𝑝𝑡𝑦
repeat
𝐴𝑠𝑠𝑒𝑠𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑃
for each individual 𝑃𝑖 ∈ 𝑃 do
𝑃𝑖 ← 𝐻𝑖𝑙𝑙𝐶𝑙𝑖𝑚𝑏 𝑃𝑖 for 𝑡 iterations
if 𝐵𝑒𝑠𝑡 == 𝑒𝑚𝑝𝑡𝑦 or Fitness(𝑃𝑖 )> 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑒𝑠𝑡) then
𝐵𝑒𝑠𝑡 ← 𝑃𝑖

𝑃 ← 𝐽𝑜𝑖𝑛 𝑃, 𝐵𝑟𝑒𝑒𝑑 𝑃

until 𝐵𝑒𝑠𝑡 is optimal or out of time
return 𝐵𝑒𝑠𝑡

Adjusts exploitation

Other examples for combining global optimization with local refinement:
• Iterated local search (hill climbing inside more explorative hill climbing)
• Hill climbing with random restarts 
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Memetic Algorithm

• Idea: Individuals improve their self during fitness 
assessment and pass along this improvement to their 
offspring

12

Global optimization

Local optimization (could be problem-specific):
• Meta-heuristic, 
• Heuristic 
• Machine learning

Jean-Baptiste Lamarck
(wrong evolution theory)
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Memetic Algorithm – Pseudo Code
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𝑡 ← number of iterations for local improvement
𝑝 ← probability of performing local improvement
𝑃 ← initial population
𝐵𝑒𝑠𝑡 ← 𝑒𝑚𝑝𝑡𝑦
repeat
𝐴𝑠𝑠𝑒𝑠𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑃

𝑃 ← 𝑀𝑢𝑡𝑎𝑡𝑒 𝐶𝑜𝑝𝑦 𝑃

𝑊 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑆𝑢𝑏𝑠𝑒𝑡𝐹𝑜𝑟𝐿𝑜𝑐𝑎𝑙𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑃
for each individual 𝑊𝑖 ∈ 𝑊 do
𝐢𝐟 random number between 0 and 1 < 𝑝 𝐭𝐡𝐞𝐧
Perform local improvement of 𝑊𝑖 for 𝑡 times

𝑃 ← 𝐽𝑜𝑖𝑛(𝑃, 𝐵𝑟𝑒𝑒𝑑 𝑊 )
until 𝐵𝑒𝑠𝑡 is optimal or out of time
return 𝐵𝑒𝑠𝑡
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Further Hybrid Ideas

• Learnable Evolution Model

– Alternate between evolution and machine-learning 
classification

• Meta-heuristics optimize tuning parameters of other meta-
heuristics (Meta-Optimization and Hyperheuristics)

– E.g., use GA to tune optimal mutation rate, crossover 
operation, etc. for a second GA, working on the actual 
problem

14
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Scatter Search

• Combination of evolutionary algorithm with hill climbing, line 
recombination, (µ+λ), and explicit injection of individuals for 
exploration
– Combines several exploitative techniques
– Enforces diversity of individuals 

• Approach
– Start with initially seeded individuals
– Next, production of a large number of random individuals that are 

very different from one another and the seeds
– Next, hill climbing on each of these individuals
– Next loop: 

• Truncate population to a small size consisting of some very fit individuals 
and some very diverse individuals

• On this small population, do line recombination (crossover) + mutation
• Next, do hill climbing on these produced individuals and add them to the 

population; proceed with the loop

15
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How to Produce Diverse Individuals?

• Distance measure to rate similarity of individuals

– E.g. for real-valued vectors Ԧ𝑣, 𝑢: σ𝑖 𝑣𝑖 − 𝑢𝑖
2 use the 

Euclidean distance

– Diversity of 𝑃𝑖 is σ𝑗 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃𝑖 , 𝑃𝑗)

• Rank the individuals based on their diversity and select the 
most diverse individuals

• Or, use tournament selection with diversity to the seed as 
size parameter 

16
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Algorithm I (initial setup)

17

𝑆𝑒𝑒𝑑𝑠 ← initial collection of individuals provided by the user
𝑖𝑛𝑖𝑡𝑠𝑖𝑧𝑒 ← initial sample size
𝑡 ← number of iterations for hill climbing
𝑛 ← number of individuals to be selected based on fitness
𝑚 ← number of individuals to be selected based on diversity
𝑃 ← 𝑆𝑒𝑒𝑑𝑠

for 𝑖𝑛𝑖𝑡𝑠𝑖𝑧𝑒 − 𝑆𝑒𝑒𝑑𝑠 times 𝐝𝐨

𝑃 ← 𝑃 ∪ {𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑒𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑃 }
𝐵𝑒𝑠𝑡 ← 𝑒𝑚𝑝𝑡𝑦
for each individual 𝑃𝑖 ∈ 𝑃 do
𝑃𝑖 ← 𝐻𝑖𝑙𝑙𝐶𝑙𝑖𝑚𝑏 𝑃𝑖 for 𝑡 iterations
𝐴𝑠𝑠𝑒𝑠𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑃𝑖
if 𝐵𝑒𝑠𝑡 == 𝑒𝑚𝑝𝑡𝑦 or Fitness(𝑃𝑖 )> 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑒𝑠𝑡) then
𝐵𝑒𝑠𝑡 ← 𝑃𝑖

Inject new individuals to the first 
population based on diversity measure 

Do hill climbing on each, so 
that we have a highly tuned 
starting set of individuals
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Algorithm II (optimization loop)
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repeat
𝐵 ← the fittest 𝑛 individuals in 𝑃
𝐷 ← the most diverse individuals in 𝑃
𝑃 ← 𝐵 ∪ 𝐷
𝑄 ←
for each individual 𝑃𝑖 ∈ 𝑃 do

for each individual 𝑃𝑗 ∈ 𝑃 where 𝑖 ≠ 𝑗 do

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝐶𝑎 , 𝐶𝑏 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝐶𝑜𝑝𝑦 𝑃𝑖 , 𝐶𝑜𝑝𝑦 𝑃𝑗

𝐶𝑎 ← 𝑀𝑢𝑡𝑎𝑡𝑒(𝐶𝑎)
𝐶𝑎 ← 𝐻𝑖𝑙𝑙𝐶𝑙𝑖𝑚𝑏 𝐶𝑎 for 𝑡 iterations
𝐴𝑠𝑠𝑒𝑠𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐶𝑎
if Fitness(𝐶𝑎 )> 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑒𝑠𝑡) then
𝐵𝑒𝑠𝑡 ← 𝐶𝑎

𝑄 ← 𝑄 ∪ {𝐶𝑎 , 𝐶𝑏}
𝑃 ← 𝑄 ∪ 𝑃

until 𝐵𝑒𝑠𝑡 is optimal or out of time
return 𝐵𝑒𝑠𝑡

𝐶𝑏 ← 𝑀𝑢𝑡𝑎𝑡𝑒 𝐶𝑏
𝐶𝑏 ← 𝐻𝑖𝑙𝑙𝐶𝑙𝑖𝑚𝑏 𝐶𝑏 for 𝑡 iterations
𝐴𝑠𝑠𝑒𝑠𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐶𝑏

if Fitness(𝐶𝑏 )> 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑒𝑠𝑡) then
𝐵𝑒𝑠𝑡 ← 𝐶𝑏

Use Line Recombination here

Store the best individuals seen so far (for 
exploitation)

Store the most diverse individuals seen 
so far (for exploration)

Mutate and hill climb each child 
individually and check whether we 
found the best solution so far
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Differential Evolution

• Adaptive mutation algorithm

– Specifies the size of mutations based on the current variance 
in the population

– If population is wide spread (diverse), mutate operation will 
make large changes

– If population is condensed in a certain region, mutate 
operation will make only small changes

• Works only for metric-based vector spaces

19
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Idea of Differential Evolution

• For each individual Ԧ𝑖 in a population generate a child as follows:

– Select three additional individuals Ԧ𝑎, 𝑏, Ԧ𝑐 at random

– Subtract the two vectors to get their distance Ԧ𝑑 = 𝑏 − Ԧ𝑐

– Add this distance vector to the individual: Ԧ𝑎 ← Ԧ𝑎 + Ԧ𝑑
– Do crossover of Ԧ𝑖 with Ԧ𝑎 to construct the child 

• Build a group of children this way and replace a child with its parent if it 
has a better fitness score

• At the beginning, we are usually spread throughout the solutions space 
and do more exploration

• Later, we will converge to a smaller region and want then only small 
mutations 

• Selection procedure is different here: first select random individuals 
and produce children, then do the selection—survival selection—
(before it was first selection, then breeding—parent selection—)

20
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Differential Evolution Algorithm

21

𝛼 ← mutation rate
𝑝𝑜𝑝𝑠𝑖𝑧𝑒 ← desired population size
𝑃 ← empty vector of 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 size
𝑄 ←
for 𝑖 from 1 to 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 𝐝𝐨
𝑃𝑖 ← 𝑛𝑒𝑤 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

𝐵𝑒𝑠𝑡 ← 𝑒𝑚𝑝𝑡𝑦
repeat

for each individual 𝑃𝑖 ∈ 𝑃 do
𝐴𝑠𝑠𝑒𝑠𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑃𝑖
if 𝑄 ≠ 𝑒𝑚𝑝𝑡𝑦 and 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑄𝑖) > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑖) then
𝑃𝑖 ← 𝑄𝑖

if 𝐵𝑒𝑠𝑡 == 𝑒𝑚𝑝𝑡𝑦 or Fitness(𝑃𝑖 )> 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑒𝑠𝑡) then
𝐵𝑒𝑠𝑡 ← 𝑃𝑖

𝑄 ← 𝑃
for each individual 𝑄𝑖 ∈ 𝑄 do
Ԧ𝑎 ← a copy of an individual other than 𝑄𝑖chosen randomly with replacement from 𝑄

𝑏 ← a copy of an individual other than 𝑄𝑖𝑜𝑟 Ԧ𝑎 chosen rand.with replacement from 𝑄

Ԧ𝑐 ← a copy of an individual other than 𝑄𝑖 , Ԧ𝑎, 𝑜𝑟𝑏 chosen rand.with replacement from 𝑄
Ԧ𝑑 ← Ԧ𝑎 + 𝛼 ∗ 𝑏 − Ԧ𝑐

𝑃𝑖 ← one child from 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 Ԧ𝑑, 𝐶𝑜𝑝𝑦(𝑄𝑖)

until Best is optimal or out of time
return Best

Initialization

Keep a temporary population of 
the best individuals

Breed a child per parent, based on 
distances to other individuals in 
the population
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Particle Swarm Optimization (PSO)

• Stochastic optimization technique

• Idea inspired by swarm behavior (flocks) of animals

• Key difference: PSO has no selection operation (no 
resampling of the population)
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PSO Approach

• Static population of individuals that are tweaked depending 
on new discoveries in the search space

– Resembles directed mutation toward promising areas (i.e., 
best found solutions so far)

– Works usually on real-valued genes

– Requires a metric space (vs. eg., mutating a tree or graph 
toward a certain region)

• Assumes information exchange (social interactions) among 
the individuals

– Keep track of global best, regional best, and self bestsolution

• Usually referred to as swarm of particles instead of 
population of individuals
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Particles

• Location: 

– Vector in space Ԧ𝑥 = 𝑥1, 𝑥2, …

– Same as genotype in ES

• Velocity:

– Speed and direction at which a particle will move in each step, 
encoded as a vector Ԧ𝑣 = 𝑣1, 𝑣2, …

• Example:

– At time 𝑡, Ԧ𝑣 = Ԧ𝑥(𝑡) − Ԧ𝑥(𝑡−1)
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PSO Explained

• Initialization:

– Each particle starts from a random position with a random 
velocity vector

– Idea: select two random points in the space and use half of 
the distance as velocity vector

• Memorization (keep track of):

– Local best location: Ԧ𝑥∗ that has Ԧ𝑥 discovered so far

– Regional best location: Ԧ𝑥+ that any particle that exchanges 
information with Ԧ𝑥 has discovered so far (eg., grid neighbors 
or in each iteration randomly chosen particles)

– Global best location: Ԧ𝑥! that any particle globally has found so 
far
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PSO Iterations

• Each time step, do the following:

– Assess fitness of each particle and update best-discovered 
locations

– Determine how to Mutate: 
• For each particle Ԧ𝑥, we update its velocity vector Ԧ𝑣 by adding in (to 

some degree) a vector pointing towards Ԧ𝑥∗ + random noise for each 
dimension separately

– Mutate each particle by moving it along its velocity vector
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PSO Initialization

27

𝑠𝑤𝑎𝑟𝑚𝑠𝑖𝑧𝑒 ← desired population/swarm size
𝛼 ← proportion of velocity to be retained
𝛽 ← proportion of personal best to be retained
𝛾 ← proportion of the informants′ best to be retained
𝛿 ← proportion of the global best to be retained
𝜀 ← jump size of a particle
𝑃 ← {} empty 𝑠𝑒𝑡
for 𝑠𝑤𝑎𝑟𝑚𝑠𝑖𝑧𝑒 times 𝐝𝐨
𝑃 ← 𝑃 ∪ {new random particle Ԧ𝑥 with a random initial velocity Ԧ𝑣}

𝐵𝑒𝑠𝑡 ← 𝑒𝑚𝑝𝑡𝑦

Define the probabilities of keeping 
certain best positions

𝛼: how much of the original velocity is retained
𝛽: how much of the personal best is mixed in (large 𝛽 moves particles more to their own best 
solution, rather than towards the global best -> lot of separate hill climbers and no joint 
searchers)
𝛾: how much of the informants’ best is mixed in (in the middle of 𝛽 and 𝛿)
𝛿: how much of the global best is mixed in (large d moves particles more to the best known 
location -> leads to a single large hill climber and no separate hill climbers -> threatens 
exploitation, so commonly set to 0)
𝜀: how fast the particles move (large e leads to large jumps towards promising locations at 
the danger of overshooting; often set to 1)
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PSO Algorithm 

28

repeat
for each particle Ԧ𝑥 ∈ 𝑃 with velocity Ԧ𝑣 do
𝐴𝑠𝑠𝑒𝑠𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 Ԧ𝑥

if 𝐵𝑒𝑠𝑡 == 𝑒𝑚𝑝𝑡𝑦 or 𝐹𝑖𝑡𝑛𝑒𝑠𝑠( Ԧ𝑥) > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑒𝑠𝑡) then

𝐵𝑒𝑠𝑡 ← Ԧ𝑥
for each particle Ԧ𝑥 ∈ 𝑃 with velocity Ԧ𝑣 do

𝑥∗ ← previous fittest location of Ԧ𝑥

𝑥+ ← previous fittest location of informants of Ԧ𝑥, including Ԧ𝑥

𝑥! ← previous fittest location of any particle (global best)
for each dimension 𝑖 do
𝑏 ← random number from 0.0 to 𝛽 inclusive
𝑐 ← random number from 0.0 to 𝛾 inclusive
𝑑 ← random number from 0.0 to 𝛿 inclusive

𝑣𝑖 ← 𝛼𝑣𝑖 + 𝑏 𝑥𝑖
∗ − 𝑥𝑖 + 𝑐 𝑥𝑖

+ − 𝑥𝑖 + 𝑑(𝑥𝑖
! − 𝑥𝑖)

for each particle Ԧ𝑥 ∈ 𝑃 with velocity Ԧ𝑣 do
Ԧ𝑥 ← Ԧ𝑥 + 𝜀 Ԧ𝑣

until 𝐵𝑒𝑠𝑡 is optimal or out of time

return 𝐵𝑒𝑠𝑡

Update global best

Update best locations to 
prepare the according 
mutation

Stochastically update the 
velocity depending on the 
best locations

Update to new position
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What Else Can We Do?

• Coevolution
– Fitness of an individual depends on the presence of other 

individuals in the populations

– So, individual A is superior to B if it depends on the presence of an 
individual C

– Goal is to have robustsolutions and solving complex, high-
dimensional problems by dividing them

– 1-Population Competitive Coevolution:
• Fitness of individuals based on games they play against each other

– 2-Population Competitive Coevolution:
• Two subpopulations: Fitness of individual in pop 1 depends on how many 

individuals in pop 2 it can defeat in some game (& vice versa)

– …
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What Else Can We Do?

• Parallelization of Metaheuristics: 5 ways

– Do separate runs in parallel

– Do one run and split the fitness assessment task (+ other 
operations) among multiple threads on the machine

– Do separate runs in parallel and synchronize from time to time 
the best individuals (i.e., island models)

– Do one run and distribute the fitness assessment to remote 
machines (i.e., master-slave/client-server/ distributed fitness 
assessment)

– Do one run with a selection procedure presuming that 
individuals are spread out in a parallel array on a vector 
computer (i.e., spatially embedded / fine-grained models)
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Take Home Message:

• Exploit more with the elites of a generation

• Save memory using steady state GA

• Genetic programming is a discipline to generate programs 
using genetic algorithms

– Tree-based representation as opposed to vector-based

• Hybrid optimization techniques

– Combine EAs with hill climbing or machine learning (memetic 
algorithms)

– Scatter search goes even beyond that in producing diverse 
individuals
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Take Home Message:

• Differential evolution as adaptive mutation algorithm

– Current variance of the population specifies the kind and 
strength of the mutation

– Survival selection instead of parent selection

• Particle swarm optimization with no selection operation

– Particles store position, velocity, and best positions

– Particles move based on the velocity and neighbors’ best 
solutions
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Next Lecture

• Multi-Objective Optimization

– NSGA-II

– Pareto Front
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