Machine Learning for Software Engineering

Exploitative Multi-State Meta-Heuristics

Bauhaus-Universität Weimar

Recap I

- Important operations to find optimal solutions are crossover, individual selection, and mutation
- Individual selection:
 - Aims at selecting those individuals for the crossover operation that provide the best fitness values
 - (Stochastic) Proportionate Selection, Tournament Selection
- Crossover:
 - 1-point and 2-point cut regions out of an individual and cross this region with another one
 - Uniform crossover crosses randomly chosen genes
 - Crossover alone is not sufficient: Line Recombination

Recap II

- Mutation:
 - Gaussian Convolution for floating-point values
 - Adaptive mutation, e.g., using the one-fifth-rule
- Evolutionary strategies vs. genetic algorithm
 - ES use only mutation, which has its limits (hyper cube)
 - GA uses also crossover and is most often used with a fixedlength binary vector representation

Exploitative Variations of Population-Based Optimization Techniques

Elitism as a General Method

- Simple adaptation of GA: Insert the fittest individuals of the current generation into the next generation: the elites
- Very similar to $\mu + \lambda$ algorithm with same pros and cons (e.g., premature convergence)

 $popsize \leftarrow$ desired population sizefor $\frac{popsize - n}{2}$ time $n \leftarrow$ number of elite individuals $P \leftarrow \{ \ \}$ $P \leftarrow \{ \ \}$ $P \leftarrow P \cup \{random individual\}$ $Best \leftarrow empty$ $Q \leftarrow Q \cup \{Mut, P \leftarrow Q\}$ repeat $P \leftarrow Q$

for each individual $P_i \in P$ do $AssessFitness(P_i)$ for $\frac{\text{popsize-n}}{2}$ times do Parent $P_a \leftarrow SelectWithReplacement(P)$ Parent $P_b \leftarrow SelectWithReplacement(P)$ Children $C_a, C_b \leftarrow Crossover(Copy(P_a), Copy(P_b))$ $Q \leftarrow Q \cup \{Mutate(C_a), Mutate(C_b)\}$ $P \leftarrow Q$ until Best is optimum or out of time return Best

if Best == empty or $Fitness(P_i) > Fitness(Best)$ then $Best \leftarrow P_i$

 $Q \leftarrow \{\text{the } n \text{ fittest individuals in } P\}$

Steady-State Genetic Algorithm

 Alternative to the common generational GAs in the way that they do not update/replace the whole generation, but do it piecewise

```
popsize \leftarrow desired population size
P \leftarrow \{ \ \}
for popsize times do
P \leftarrow P \cup \{random individual\}
Best \leftarrow empty
for each individual P_i \in P do
AssessFitness(P_i)
if Best == empty or Fitness(P_i) > Fitness(Best) then
Best \leftarrow P_i
```

Steady-State GA II

repeat

Parent $P_a \leftarrow SelectWithReplacemnt(P)$ Parent $P_b \leftarrow SelectWithReplacemnt(P)$ Children $C_a, C_b \leftarrow Crossover(Copy(P_a), Copy(P_b))$ $C_a \leftarrow Mutate(C_a)$ $C_b \leftarrow Mutate(C_b)$ $AssessFitness(C_a)$ If $Fitness(C_a) > Fitness(Best)$ then $Best \leftarrow C_a$ If $Fitness(C_h) > Fitness(Best)$ then $Best \leftarrow C_h$ Individual $P_d \leftarrow SelectForDeath(P)$ Individual $P_e \leftarrow SelectForDeath(P)$ $P \leftarrow P - \{P_d, P_e\}$ $P \leftarrow P \cup \{C_a, C_b\}$ **until** *Best* is optimum or out of time **return** Best

Note that only two parents will be selected for breeding new children and only two individuals will be removed in the whole generation step

Discussion

- Benefits:
 - Requires only half memory (since only one population is maintained at a time)
 - Exploitative, because parents stay in the generation as long as they are not the worst individuals
- Drawbacks:
 - Premature convergence depending on SelectForDeath operation (removing only unfit individuals might remove explorative individuals -> we stay at a local optimum)
- Further knobs:
 - Replace not two, but n individuals; replace at random
 - Make mutation and crossover noise, etc.

Tree-Style Genetic Programming Pipeline

- What is genetic programming?
 - Research area of using meta-heuristics in finding an optimal program
- Common representation for a genetic programming problem is a tree (more on representations in the exercise)
- How to do the tweak operation?
 - With 0.9 probability do a crossover, with 0.1 probability copy the parents
 - No mutation operation (ie., not global)
 - Tournament selection with t=7

Hybrid Optimization Algorithms

- For ex. combine evolutionary algorithm with hill climbing
 - EA in the inner loop and hill climbing in the outer loop
 - Realized as extension to Iterated Local Search
- Or, use EA for exploration (outer loop) and local optimization as inner loop as exploitation
 - Implement hill climbing during the fitness assessment phase to revise and improve each individual at the time it's assessed
 - Revised individuals replace original ones

Hybrid Algorithm ES+HC

```
t \leftarrow \text{number of iterations for hill climbing} \leftarrow Adjusts exploitation}
P \leftarrow \{ \ \}
Best \leftarrow empty
repeat
AssessFitness(P)
for each individual P_i \in P do
P_i \leftarrow HillClimb(P_i) \text{ for } t \text{ iterations}
if Best == empty or Fitness(P_i) > Fitness(Best) then
Best \leftarrow P_i
P \leftarrow Join(P, Breed(P))
until Best is optimal or out of time
return Best
```

Other examples for combining global optimization with local refinement:

- Iterated local search (hill climbing inside more explorative hill climbing)
- Hill climbing with random restarts

Memetic Algorithm

 Idea: Individuals improve their self during fitness assessment and pass along this improvement to their

offspring

Jean-Baptiste Lamarck (wrong evolution theory)

Memetic Algorithm – Pseudo Code

- $t \leftarrow$ number of iterations for local improvement
- $p \leftarrow \text{probability of performing local improvement}$
- $P \leftarrow \{\text{initial population}\}$

 $Best \leftarrow empty$

repeat

```
AssessFitness(P)
```

 $P \leftarrow Mutate(Copy(P))$

 $W \leftarrow selectSubsetForLocalImprovement(P)$

for each individual $W_i \in W$ do

if random number between 0 and 1 < *p* then

Perform local improvement of W_i for t times

 $P \leftarrow Join(P, Breed(W))$

until Best is optimal or out of time

return Best

Further Hybrid Ideas

- Learnable Evolution Model
 - Alternate between evolution and machine-learning classification
- Meta-heuristics optimize tuning parameters of other metaheuristics (Meta-Optimization and Hyperheuristics)
 - E.g., use GA to tune optimal mutation rate, crossover operation, etc. for a second GA, working on the actual problem

Scatter Search

- Combination of evolutionary algorithm with hill climbing, line recombination, (μ + λ), and explicit injection of individuals for exploration
 - Combines several exploitative techniques
 - Enforces diversity of individuals
- Approach
 - Start with initially seeded individuals
 - Next, production of a large number of random individuals that are very different from one another and the seeds
 - Next, hill climbing on each of these individuals
 - Next loop:
 - Truncate population to a small size consisting of some very fit individuals and some very diverse individuals
 - On this small population, do line recombination (crossover) + mutation
 - Next, do hill climbing on these produced individuals and add them to the population; proceed with the loop

How to Produce Diverse Individuals?

- Distance measure to rate similarity of individuals
 - E.g. for real-valued vectors $\vec{v}, \vec{u}: \sqrt{\sum_i (v_i u_i)^2}$ use the Euclidean distance
 - Diversity of P_i is $\sum_j distance(P_i, P_j)$
- Rank the individuals based on their diversity and select the most diverse individuals
- Or, use tournament selection with diversity to the seed as size parameter

Algorithm I (initial setup)

Seeds \leftarrow initial collection of individuals provided by the user *initsize* \leftarrow initial sample size $t \leftarrow$ number of iterations for hill climbing $n \leftarrow$ number of individuals to be selected based on fitness $m \leftarrow$ number of individuals to be selected based on diversity $P \leftarrow Seeds$ for *initsize* – ||Seeds|| times do Inject new individuals to the first $P \leftarrow P \cup \{ProduceDiverseIndividual(P)\}$ population based on diversity measure $Best \leftarrow empty$ for each individual $P_i \in P$ do $P_i \leftarrow HillClimb(P_i)$ for t iterations Do hill climbing on each, so $AssessFitness(P_i)$ that we have a highly tuned if Best = empty or $Fitness(P_i) > Fitness(Best)$ then starting set of individuals $Best \leftarrow P_i$

Algorithm II (optimization loop)

repeat
$$B \leftarrow$$
 the fittest n individuals in P Store the best individuals seen so far (for $D \leftarrow$ the most diverse individuals in P Store the best individuals seen so far (for $P \leftarrow B \cup D$ Store the most diverse individuals seen so far (for exploration) $Q \leftarrow \{\}$ Store the most diverse individuals seen so far (for exploration)for each individual $P_i \in P$ dostore the most diverse individuals seen so far (for exploration)for each individual $P_i \in P$ doUse Line Recombination here $Children C_a, C_b \leftarrow Crossover (Copy(P_i), Copy(P_j))$ $C_a \leftarrow Mutate(C_a)$ $C_a \leftarrow Mutate(C_a)$ $C_b \leftarrow Mutate(C_b)$ $C_a \leftarrow HillClimb(C_a)$ for t iterations $AssessFitness(C_b)$ $AssessFitness(C_a)$ $AssessFitness(C_b)$ if $Fitness(C_a) > Fitness(Best)$ then $Best \leftarrow C_b$ $Q \leftarrow Q \cup \{C_a, C_b\}$ Mutate and hill climb each child $P \leftarrow Q \cup P$ Mutate and hill climb each childuntil Best is optimal or out of timefound the best solution so far

Differential Evolution

- Adaptive mutation algorithm
 - Specifies the size of mutations based on the current variance in the population
 - If population is wide spread (diverse), mutate operation will make large changes
 - If population is condensed in a certain region, mutate operation will make only small changes
- Works only for metric-based vector spaces

Idea of Differential Evolution

- For each individual \vec{i} in a population generate a child as follows:
 - Select three additional individuals \vec{a} , \vec{b} , \vec{c} at random
 - Subtract the two vectors to get their distance $\vec{d} = \vec{b} \vec{c}$
 - Add this distance vector to the individual: $\vec{a} \leftarrow \vec{a} + \vec{d}$
 - Do crossover of \vec{i} with \vec{a} to construct the child
- Build a group of children this way and replace a child with its parent if it has a better fitness score
- At the beginning, we are usually spread throughout the solutions space and do more exploration
- Later, we will converge to a smaller region and want then only small mutations
- Selection procedure is different here: first select random individuals and produce children, then do the selection—survival selection— (before it was first selection, then breeding—parent selection—)

Differential Evolution Algorithm

Particle Swarm Optimization (PSO)

- Stochastic optimization technique
- Idea inspired by swarm behavior (flocks) of animals
- Key difference: PSO has no selection operation (no resampling of the population)

PSO Approach

- Static population of individuals that are tweaked depending on new discoveries in the search space
 - Resembles directed mutation toward promising areas (i.e., best found solutions so far)
 - Works usually on real-valued genes
 - Requires a metric space (vs. eg., mutating a tree or graph toward a certain region)
- Assumes information exchange (social interactions) among the individuals
 - Keep track of global best, regional best, and self best solution
- Usually referred to as swarm of particles instead of population of individuals

Particles

- Location:
 - Vector in space $\vec{x} = \langle x_1, x_2, ... \rangle$
 - Same as genotype in ES
- Velocity:
 - Speed and direction at which a particle will move in each step, encoded as a vector $\vec{v} = \langle v_1, v_2, \dots \rangle$
- Example:
 - At time *t*, $\vec{v} = \vec{x}^{(t)} \vec{x}^{(t-1)}$

PSO Explained

- Initialization:
 - Each particle starts from a random position with a random velocity vector
 - Idea: select two random points in the space and use half of the distance as velocity vector
- Memorization (keep track of):
 - Local best location: \vec{x}^* that has \vec{x} discovered so far
 - Regional best location: \vec{x}^+ that any particle that exchanges information with \vec{x} has discovered so far (eg., grid neighbors or in each iteration randomly chosen particles)
 - Global best location: $\vec{x}^{!}$ that any particle globally has found so far

PSO Iterations

- Each time step, do the following:
 - Assess fitness of each particle and update best-discovered locations
 - Determine how to Mutate:
 - For each particle \vec{x} , we update its velocity vector \vec{v} by adding in (to some degree) a vector pointing towards \vec{x}^* + random noise for each dimension separately
 - Mutate each particle by moving it along its velocity vector

PSO Initialization

 $swarmsize \leftarrow desired population/swarm size$

- $\alpha \leftarrow$ proportion of velocity to be retained
- $\beta \leftarrow \text{proportion of personal best to be retained}$
- $\gamma \leftarrow$ proportion of the informants' best to be retained
- $\delta \leftarrow$ proportion of the global best to be retained
- $\varepsilon \leftarrow \text{jump size of a particle}$
- $P \leftarrow \{\} \text{ empty } set$
- for swarmsize times do

 $P \leftarrow P \cup \{\text{new random particle } \vec{x} \text{ with a random initial velocity } \vec{v}\}$

 $\overrightarrow{Best} \leftarrow empty$

 α : how much of the original velocity is retained

 β : how much of the personal best is mixed in (large β moves particles more to their own best solution, rather than towards the global best -> lot of separate hill climbers and no joint searchers)

 γ : how much of the informants' best is mixed in (in the middle of β and δ)

 δ : how much of the global best is mixed in (large d moves particles more to the best known location -> leads to a single large hill climber and no separate hill climbers -> threatens exploitation, so commonly set to 0)

 ε : how fast the particles move (large e leads to large jumps towards promising locations at the danger of overshooting; often set to 1)

Define the probabilities of keeping certain best positions

PSO Algorithm

repeat		
for each particle $\vec{x} \in P$ with velocity \vec{v} do	٦	
$AssessFitness(\vec{x})$		
if $\overrightarrow{Best} == empty$ or $Fitness(\vec{x}) > Fitness(\overrightarrow{Best})$ then		Update global best
$\overrightarrow{Best} \leftarrow \vec{x}$		
for each particle $\vec{x} \in P$ with velocity \vec{v} do		
$\overline{x^*} \leftarrow$ previous fittest location of \vec{x}		Update best locations to
$\overrightarrow{x^+} \leftarrow$ previous fittest location of informants of \vec{x} , including	\vec{x} –	prepare the according
$\overrightarrow{x^{!}} \leftarrow$ previous fittest location of any particle (global best)		mutation
for each dimension <i>i</i> do		matation
$b \leftarrow$ random number from 0.0 to β inclusive		
$c \leftarrow$ random number from 0.0 to γ inclusive		Stochastically update the
•		velocity depending on the
$d \leftarrow$ random number from 0.0 to δ inclusive		best locations
$v_i \leftarrow \alpha v_i + b(x_i^* - x_i) + c(x_i^+ - x_i) + d(x_i^! - x_i)$	Z	Sest locations
for each particle $\vec{x} \in P$ with velocity \vec{v} do		Lindata to now position
$\vec{x} \leftarrow \vec{x} + \varepsilon \vec{v}$	Γ	Update to new position
until \overrightarrow{Best} is optimal or out of time		
return \overrightarrow{Best}		

What Else Can We Do?

Coevolution

- Fitness of an individual depends on the presence of other individuals in the populations
- So, individual A is superior to B if it depends on the presence of an individual C
- Goal is to have *robust* solutions and solving complex, highdimensional problems by dividing them
- 1-Population Competitive Coevolution:
 - Fitness of individuals based on games they play against each other
- 2-Population Competitive Coevolution:
 - Two subpopulations: Fitness of individual in pop 1 depends on how many individuals in pop 2 it can defeat in some game (& vice versa)

What Else Can We Do?

- **Parallelization** of Metaheuristics: 5 ways
 - Do separate runs in parallel
 - Do one run and split the fitness assessment task (+ other operations) among multiple threads on the machine
 - Do separate runs in parallel and synchronize from time to time the best individuals (i.e., island models)
 - Do one run and distribute the fitness assessment to remote machines (i.e., master-slave/client-server/ distributed fitness assessment)
 - Do one run with a selection procedure presuming that individuals are spread out in a parallel array on a vector computer (i.e., spatially embedded / fine-grained models)

Take Home Message:

- Exploit more with the elites of a generation
- Save memory using steady state GA
- Genetic programming is a discipline to generate programs using genetic algorithms
 - Tree-based representation as opposed to vector-based
- Hybrid optimization techniques
 - Combine EAs with hill climbing or machine learning (memetic algorithms)
 - Scatter search goes even beyond that in producing diverse individuals

Take Home Message:

- Differential evolution as adaptive mutation algorithm
 - Current variance of the population specifies the kind and strength of the mutation
 - Survival selection instead of parent selection
- Particle swarm optimization with no selection operation
 - Particles store position, velocity, and best positions
 - Particles move based on the velocity and neighbors' best solutions

Next Lecture

- Multi-Objective Optimization
 - NSGA-II
 - Pareto Front