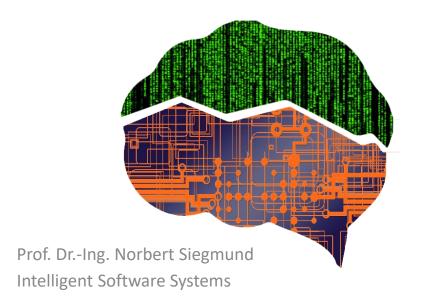
Machine Learning for Software Engineering

Multi-State Meta-Heuristics Continued



Bauhaus-Universität Weimar

Recap I

- What is Gaussian Convolution?
 - With a certain probability change a gene of an individual
 - Use the Gaussian distribution for the actual change
 - Adjust σ^2 to control exploration vs. exploitation
- What is the approach of Tabu Search and Iterative Local Search to leave a local optimum?
- What is the difference between single- and multi-state meta-heuristics?

Recap II

- What does (μ,λ) stand for?
- Difference between (μ,λ) and (μ+λ) ?

$$P \leftarrow \{\}$$
 $P \leftarrow \{Q\}$

- Relation to Steepest Ascent Hill Climbing (with Replacement)?
- Basic operations of evolutionary algorithms?
 - Breed (how to select parents and how to tweak them to make children)
 - Join (replacing parents with children? How?)
 - Initialization (random? With bias?)

Genetic Algorithms (GA)

Introduction to GA

Invented by John Holland in 1970s

- Approach is similar to the (μ,λ) algorithm
- Difference in selection and breeding operation
 - ES selects parents before breeding children
 - GA selects little-by-little parents to breed new children

Breeding:

- Select two parents, copy them, crossover them, mutate results, and add the two children to the new population
- Repeat until population is full

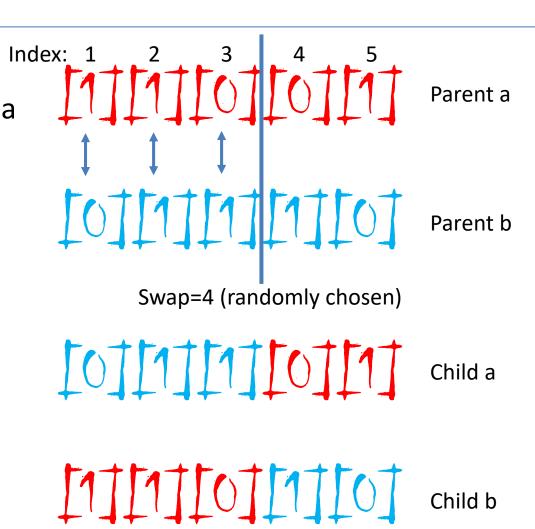
GA Algorithm

```
size \leftarrow population size
P \leftarrow \{\}
for size times do
  P \leftarrow P \cup \{\text{random individual}\}\
Best \leftarrow empty
repeat
  for each individual P_i \in P do
     AssessFitness(P_i)
     if Best = empty \text{ or } Fitness(P_i) > Fitness(Best) \text{ then}
       Best \leftarrow P_i
  0 \leftarrow \{\}
                                                            From here it deviates from (\mu,\lambda)
  for size/2 times do
     Parent P_a \leftarrow SelectWithReplacement(P)
     Parent P_b \leftarrow SelectWithReplacement(P)
     Children C_a, C_b \leftarrow Crossover(Copy(P_a), Copy(P_b))
     Q \leftarrow \cup \{Mutate(C_a), Mutate(C_b)\}
  P \leftarrow 0
until Best is optimum or out of time
return Best
```

How to Do the Crossover?

One-Point Crossover

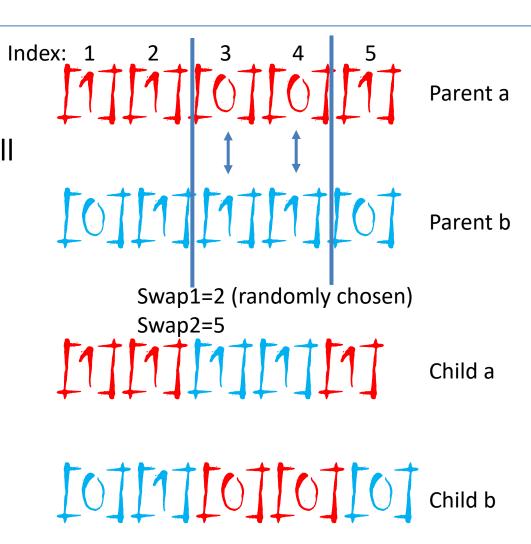
Swap everything below a randomly chosen index



A More Flexible Crossover

Two-Point Crossover

Select two random indexes and switch all genes in between



Crossover Arbitrary Genes

Uniform Crossover

 Go through the genes of the first individual and swap the genes between the two individuals with a certain probability

 Usually the probability is just 0.5

Index: 1 [1][1][0][0][1] Parent a Parent b Swap1=1 (randomly chosen) Swap2=5 (randomly chosen) Swap3=3 (randomly chosen) [0][1][1][0] Child a

Algorithms Overview

```
\vec{x} \leftarrow \text{first parent: } \langle x_1, \dots, x_l \rangle
\vec{v} \leftarrow \text{second parent: } \langle v_1, \dots, v_l \rangle
c \leftarrow random int chosen uniformly from 1 to l
if c \neq 1 then
   for i from 1 to c-1 do
      swap the values of x_i and v_i
return \vec{x} and \vec{v}
Two-Point Crossover
\vec{x} \leftarrow \text{first parent: } \langle x_1, \dots, x_l \rangle
\vec{v} \leftarrow \text{second parent: } \langle v_1, \dots, v_l \rangle
c \leftarrow random int chosen uniformly from 1 to l
d \leftarrow random int chosen uniformly from 1 to l
if c > d then
   swap c with d
if c \neq d then
   for i from c to d-1 do
       swap the values of x_i and v_i
```

One-Point Crossover

return \vec{x} and \vec{v}

Uniform Crossover $p \leftarrow \text{probability of swapping a gene}$ $\vec{x} \leftarrow \text{first parent: } \langle x_1, ..., x_l \rangle$ $\vec{v} \leftarrow \text{second parent: } \langle v_1, ..., v_l \rangle$ for i from 1 to l do if $p \geq \text{uniform random nb } (0 \text{ to } 1)$ then swap the values of x_i and v_i return \vec{x} and \vec{v}

Why is Crossover Alone not Sufficient?

- Children will be constrained to the hyper space that the parents span
- Hyper space might be significantly smaller than the overall search space
- Best solutions might lie outside the hyper space
 - We won't find the global optimum
- So, we need an operation to break out of the hyper space
- Still, crossover has its benefits to share high-performing building blocks of individuals
 - Building blocks are combinations of genes that are linked (i.e., interact positively wrt. the objective function)
 - One- and two-point crossover assumes that the linked genes are encoded as neighbors in the vector representing the individual (often unlikely, though)

Going Beyond Binary for Crossover

- Swapping the exact floating-point number makes not so much sense
- What can we do?
 - Use the average between two floating-point values
 - Use a random number between two floating-point values
- Can we generate also new values to break out of the hyper cube?
 - Idea: Line Recombination

Line Recombination Algorithm

```
\vec{x} \leftarrow \text{first parent: } \langle x_1, \dots, x_l \rangle
\vec{v} \leftarrow \text{second parent: } \langle v_1, \dots, v_l \rangle
p \leftarrow positive value defining how far we outrach the hyper cube (e.g., 0.25)
\alpha \leftarrow \text{random value from } -p \text{ to } 1+p \text{ inclusive}
\beta \leftarrow random value from -p to 1+p inclusive
for i from 1 to l do
   t \leftarrow \alpha x_i + (1 - \alpha)v_i
   s \leftarrow \beta v_i + (1 - \beta) x_i
      if t and s are within bounds then
         x_i \leftarrow t
                                                                   Example for p = 0.25: range: [-0.25;1.25]
         v_i \leftarrow s
                                                                   E.g. with random: \alpha = 0.37 and \beta = 0.11
return \vec{x} and \vec{v}
                                                                   x_i = 3.5; v_i = 1.0
```

t = 0.37 * 3.5 + (1 - 0.37) * 1.0 = 1.925

s = 0.11 * 1.0 + (1 - 0.11) * 3.5 = 3.21

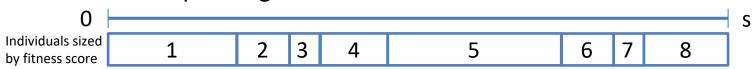
Extension: Intermediate Recombination

 Just shifting two lines allows us to generate children not only on the line vector between two parents, but in the whole hyper cube

```
\vec{x} \leftarrow \text{first parent: } \langle x_1, \dots, x_l \rangle
\vec{v} \leftarrow \text{second parent: } \langle v_1, \dots, v_l \rangle
p \leftarrow positive value defining how far we outrach the hyper cube (e.g., 0.25)
for i from 1 to 1 do
   repeat
                                                                                     Moved lines mean that we use
      \alpha \leftarrow \text{random value from } -p \text{ to } 1+p \text{ inclusive}
      \beta \leftarrow random value from -p to 1+p inclusive
                                                                                     different \alpha and \beta values for each
                                                                                     element
      t \leftarrow \alpha x_i + (1 - \alpha)v_i
      s \leftarrow \beta v_i + (1 - \beta) x_i
   until t and s are within bounds
   x_i \leftarrow t
   v_i \leftarrow s
return \vec{x} and \vec{v}
```

A Better Selection Operation

- So far: SelectWithReplacement
 - Can lead to selecting the same individual multiple times
 - Can select some low-fitness individuals
- Better: Select with a higher probability an individual with a high fitness score: Fitness Proportionate Selection (or Roulette Selection)
 - Idea:
 - Span a value range that is proportional to an individual's score
 - Concatenate all value ranges
 - Compute a random number in the all-value range and look up the corresponding individual



Fitness-Proportionate Selection (FPS)

```
\vec{p} \leftarrow \text{population consisting of a vector of individuals: } \langle \overrightarrow{p_1}, \dots, \overrightarrow{p_l} \rangle
\vec{f} \leftarrow \text{fitness score of each individual (same order as } in \ \vec{p}): \langle f_1, \dots, f_l \rangle
```

```
forall f in \vec{f} do

if f == 0 then

f \leftarrow 1.0

for i from 2 to l do

f_i \leftarrow f_i + f_{i-1}
```

Deal with 0 fitness score to have at least a tiny chance to be accepted
Build the value range of all fitness scores as a cumulative density function (CDF)

```
n \leftarrow \text{random number from 0 to } f_l \text{ inclusive} for i from 2 to l do if f_{i-1} < n \leq f_i then return p_i return p_1
```

Repeat this for each parent to be selected for crossover
Select the parent individual based on a random number falling into its corresponding interval

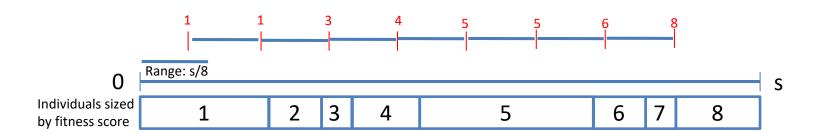
Note: That this is always an 1-based index value (not zero-based)

Problems of FPS

- Weak solutions can still be selected very often
- We might never the select the best solutions
- => Stochastic Universal Sampling (SUS)
 - Fit individuals get selected at least once
 - Also used in other areas (Particle Filters) under the term low variance resampling

Stochastic Universal Sampling (SUS) Algorithm

- Build fitness array as in FPS
- Draw a random number between 0 and s/n (here, s/8)
- Select individual at this position (here, 1)
- Increment current position by, s/n and repeat till n individuals have been selected
- Benefit: O(n) effort vs. O(n log n) for FPS
- Benefit: SUS guarantees that if an individual has a high score (>s/n), it will get chosen by the algorithm



In Code (for you to do at home)

```
\vec{p} \leftarrow population consisting of a vector of individuals: \langle \overrightarrow{p_1}, ..., \overrightarrow{p_l} \rangle \vec{f} \leftarrow fitness score of each individual (same order as in \ \vec{p}): \langle f_1, ..., f_l \rangle index \leftarrow 0 for all f in \vec{f} do if f == 0 then f \leftarrow 1.0 for i from 2 to i do i for i from 2 to i do
```

```
 of fset \leftarrow \text{random number from 0 to } \frac{f_l}{n} \text{ inclusive (where usually } n=l)   for f_{index} < of fset do \\ index \leftarrow index + 1  Repeat this for each parent to be selected for crossover  fset \leftarrow of fset + \frac{f_l}{n}  return p_{index}
```

Nature of Fitness Value

- Assumption so far: Fitness value is on a metric scale
 - Distances between two fitness value has a meaning
 - Also called parametric function
- Often not the case: Consider the property reliability in software engineering
 - Systems that run reliably are up to 98.99, 99.97, 99.98, or 99.99 percent of a year (the peak is 99.99)
 - But using SUS all individuals have nearly the same probability to be selected
- What can we do?

Non-Parametric Selection Algorithm

- Non-parametric tests in statistics are based only on ranking
- There is no notion of distances
- Tournament Selection: Bigger is better

```
P \leftarrow \text{population of any representation}
t \leftarrow \text{tournament size with } t \geq 1
Best \leftarrow \text{individual picked at random from } P \text{ with replacement}
for i \text{ from 1 to } t \text{ } do
Next \leftarrow \text{individual picked at random from } P \text{ with replacement}
if Fitness(Next) > Fitness(Best) \text{ then}
Best \leftarrow Next
return Best
```

- Primary selection technique for a genetic algorithm!
 - Great tuning capability with tournament size (usually t=2)

Take Home Message:

- Evolutionary strategies use only mutation as tweak and select individuals using a truncate operation
- Genetic algorithms go a step further be recombining parents using a crossover operations
- Many variants to implement crossover, selection of individuals for the next generation, and mutation
 - Depends on the encoding of a solution (e.g., if nearby genes are correlated)
 - On the fitness function (e.g., if metric scale or ranking scale)
 - On exploration vs. exploitation

Next Lecture

- Exploitative algorithms of population based optimization techniques
 - Elitism
 - The Steady-State Genetic Algorithm
 - Tree-Style Genetic Programming Pipeline
 - Hybrid Optimization
 - Scatter Search
- Differential Evolution
- Particle Swarm Optimization