Fundamentals of Imaging Lenses

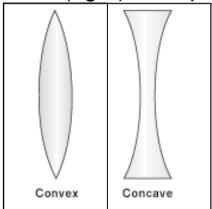
Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik Bauhaus-Universität Weimar caw AT medien.uni-weimar.de

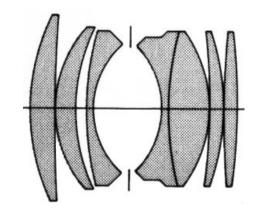
This slide pack

• In this part, we will introduce lenses

Lenses

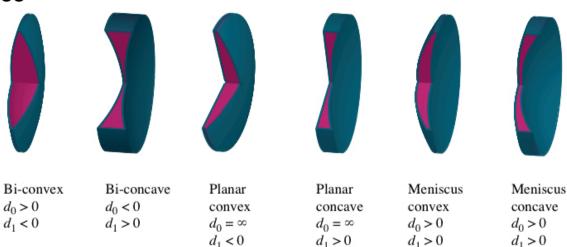
- The components of an optical system consist of
 - aperture ring
 - Refractive elements
- Lenses:
 - Simple (left): single element
 Characteristics:
 - Refraction index
 - Shape of front+back
 - Often coated to improve optical properties
 - Compound (right): multiple lenses





Lenses

- Surface shapes:
 - Planar
 - Spherical
 - Aspherical: some surface which is not a sphere
- Call
 - d₀: radius surface facing object plane
 - d₁: radius surface facing image plane
- Depending on positive or negative radius, one can have different single lens types

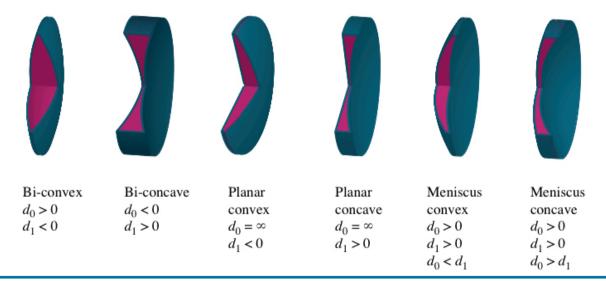


 $d_0 < d_1$

 $d_0 > d_1$

Lenses

- Convex lenses direct light towards the optical axis: convergent or positive
- Concave lenses do the opposite and are called divergent or negative



Spherical surface

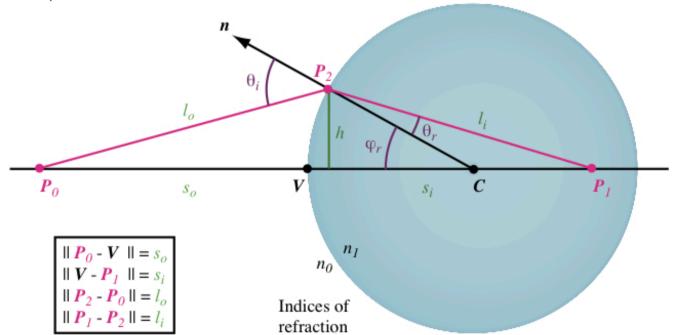
- Fermat's principle ⇒ optical path length of ray is n₀l₀+n₁l_i
- Path length of l_o and l_i is

$$l_o = \sqrt{d^2 + (s_o + d)^2 - 2d(s_o + d)\cos(\phi)},$$

$$l_i = \sqrt{d^2 + (s_i - d)^2 + 2d(s_i - d)\cos(\phi)}.$$

Substituting in the 1st

$$n_0 \sqrt{d^2 + (s_o + d)^2 - 2d(s_o + d)\cos(\phi)} + n_1 \sqrt{d^2 + (s_i - d)^2 + 2d(s_i - d)\cos(\phi)}.$$



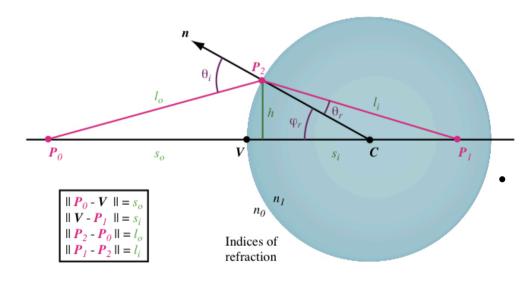
Spherical surface

 Applying Fermat's principle by using
 Ф as the position variable:

$$\frac{n_0 d \left(s_o + d\right) \sin \left(\phi\right)}{2l_o} - \frac{n_1 d \left(s_i - d\right) \sin \left(\phi\right)}{2l_i} = 0.$$

thus:
$$\frac{n_0}{l_o} + \frac{n_1}{l_i} = \frac{1}{d} \left(\frac{n_1 s_i}{l_i} - \frac{n_0 s_o}{l_o} \right)$$

 Rays from P₀ to P₁ with one refraction obey this law



- Remember, if the angle is too flat, refraction turns into reflection
- Under the hypotheses of Gaussian optics cos(Φ)≈1.
- If we consider only paraxial rays

$$l_o \approx s_o$$

$$l_i \approx s_i$$
.

thus the eq. on the left becomes

$$\frac{n_0}{s_o} + \frac{n_1}{s_i} = \frac{n_1 - n_0}{d}$$

and if the image point is at ∞ , l.e. if $s_i=\infty$, then:

- Object focal length: $f = s_o = \frac{n_0}{d(n_1 n_0)}$
- Similarly, image focal length is obtained for $s_0 = \infty$.
 - Image focal length: $f' = s_i = \frac{d n_1}{n_1 n_0}$

Thin lenses

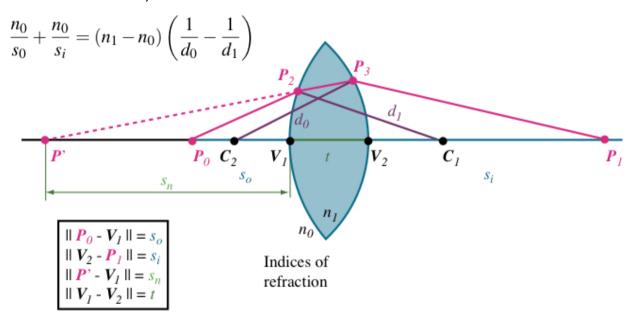
- However, lenses have a front and back surface
 - Spherical surfaces of radius d₀
 and d₁.
 - Analyzing front+back we have

$$\frac{n_0}{s_0} + \frac{n_0}{s_i} = (n_1 - n_0) \left(\frac{1}{d_0} - \frac{1}{d_1} \right) + \frac{n_1 t}{(s_n - t) s_n}$$

- If the lens is thin, then t≈0 \Rightarrow

If lens is surrounded by air, then
 n₀≈1 ⇒ lens maker's formula

$$\frac{1}{s_o} + \frac{1}{s_i} = (n_1 - 1) \left(\frac{1}{d_0} - \frac{1}{d_1} \right)$$



Thin lenses

- If object distance s_o=∞, the image distance becomes the image focal length s_i=f_i.
- Conversely, for points projected on an infinitely far away image plane, object focal length becomes s_o=f_o.

 But lens is thin, so we can set f_i=f_o and call it f

- So, we have $\frac{1}{f} = (n_1 1) \left(\frac{1}{d_0} \frac{1}{d_1} \right)$
- Note: all rays at distance f in front of the lens, and passing through focal point, will be parallel after the lens (collimated light)
- Combining we find the Gaussian lens formula:

Related to this: transverse (lateral) magnification:

which measures ratio of size of the image to the size of the object

Sign indicates whether it is upside down

 P_0 C_2

Thick lenses

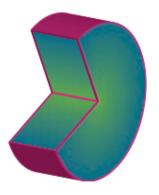
- Most lenses are not thin, they are thick
- We can think they are two spherical surfaces at a distance t
- Such lenses behave like the optical systems seen before, with 6 cardinal points
- If focal length is measured WRT principal planes, then

$$\frac{1}{f} = (n_1 - 1) \left(\frac{1}{d_0} - \frac{1}{d_1} + \frac{(n_1 - 1)t}{n_1 d_0 d_1} \right)$$

Gradient lenses

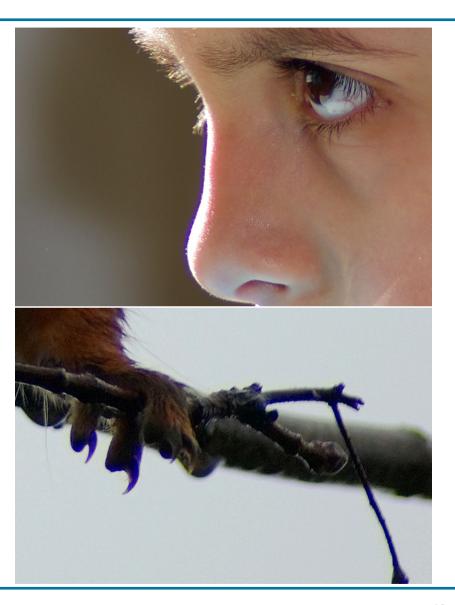
- Lens design characteristics considered up to now:
 - Dielectric material
 - Curvature of lens
- Placing more elements behind each other give additional flexibility
- However, one could build lenses having different refraction indexes at different places
- These are called gradient index lenses
- Obtained through immersing into salt solutions, which ionize and change refraction index

- In this case, one can use cylinders as lenses: these are called GRIN lenses
- Much more difficult to evaluate optically
- Raytracing may be used for this evaluation

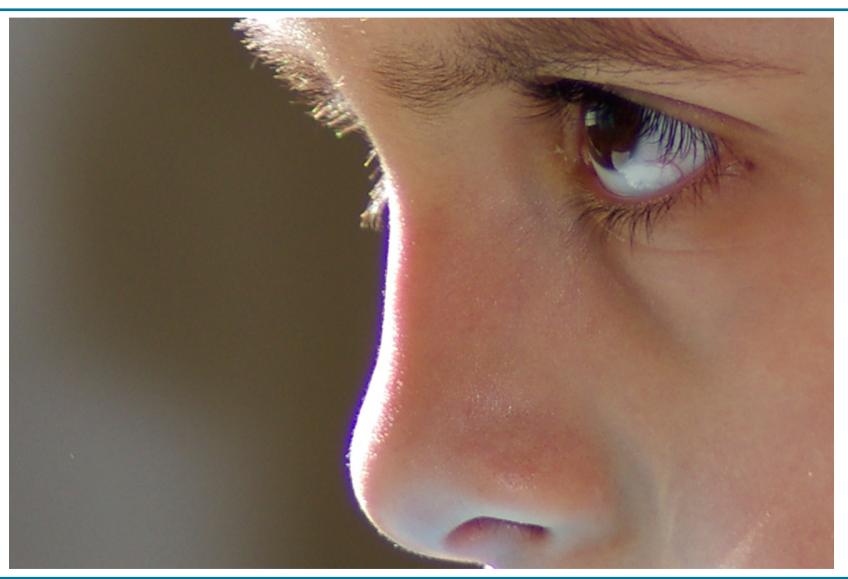


Lens aberration

- We did simple lens approximations, 1st order
- Lens computations must be higher order
- Often, ray tracing is used to evaluate lens design, which works well in theory
- However, deviations from ideal conditions occur: they are called aberrations
- These are of two types
 - Chromatic aberrations: the index of refraction is wavelength dependent: purple fringing
 - Rainbow-colour inaccuracies on edges



Lens aberration



Lens aberration

- Or one can have monochromatic aberrations
- Out of focus:
 - Spherical aberration
 - Astigmatism
 - Coma
- Warped image
 - Distortion
 - Petzval field distortion
- Reason for these aberrations:
 - We approximated sinus and cosinus linearly
 - sin=linear
 - cos=constant
 - Assumed paraxial rays

 This is a pretty rough approximation: we cut Taylor series to first term:

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$$

- One could use higher order terms:
 - if one uses 2nd term, one obtains so-called *Third* order theory
 - Nicer, but higher complexity
- Aberrations here: due to Gaussian approximation

Spherical aberrations

- For spherical lenses, we assumed that the ray has same length as path from object to image plane (on optical axis)
- If we keep term of 2nd degree, then equation

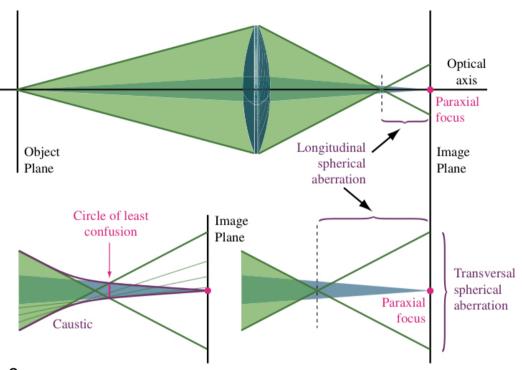
$$\frac{n_0}{s_o} + \frac{n_1}{s_i} = \frac{n_1 - n_0}{d}$$

becomes

$$\frac{n_0}{s_o} + \frac{n_1}{s_i} = \frac{n_1 - n_0}{d} + h^2 \left(\frac{n_0}{2s_o} \left(\frac{1}{s_0} + \frac{1}{d} \right)^2 + \frac{n_1}{2s_i} \left(\frac{1}{d} - \frac{1}{s_i} \right)^2 \right)$$

the extra term depends on h² with

 h=distance from point of lens where ray meets optical axis



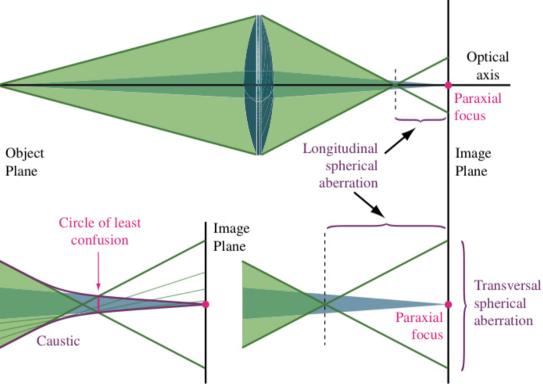
- Light at lens border is focused nearer
- Defined as Spherical aberration

Spherical aberrations

 Rays intersect optical axis over a length, not a point: longitudinal aberration.

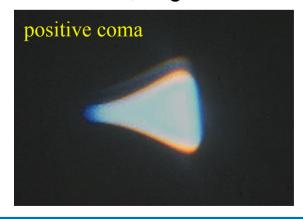
 The rays will intersect image plane on a region: transversal aberration With spherical aberration, rays form curved convex hull: caustic

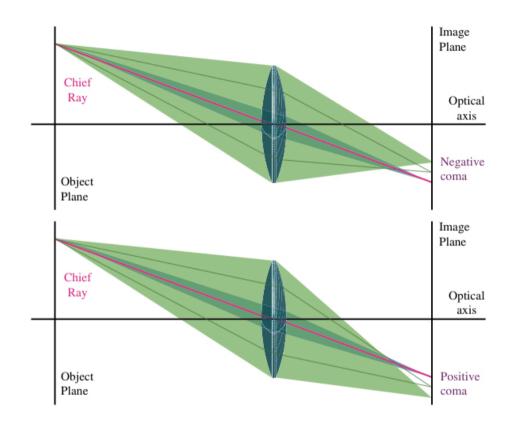
 Diameter of projected spot smallest at circle of least confusion



Coma

- Principal planes are well approximated only near the optical axis
- Further away, they are curved
- The effect is called coma:
 - Marginal ray focus farther than principal ray: positive coma
 - If closer, negative coma

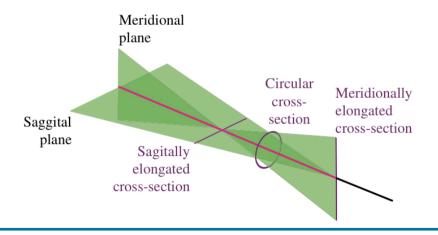


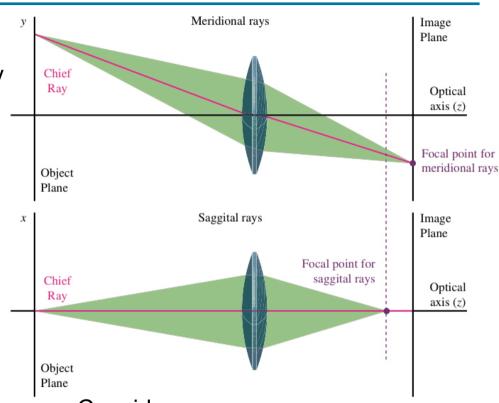


Astigmatic aberration

- Occurs for off-axis object points
- Meridional plane was defined by object point and optical axis
- Chief ray lies in this plane but refracts at lens borders
- Sagittal plane:

 - Made by set of planar segments, which intersect the chief ray

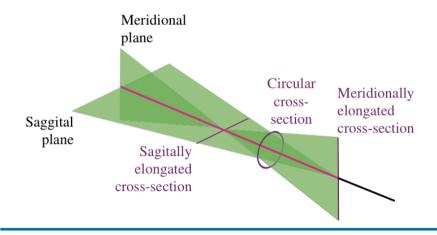


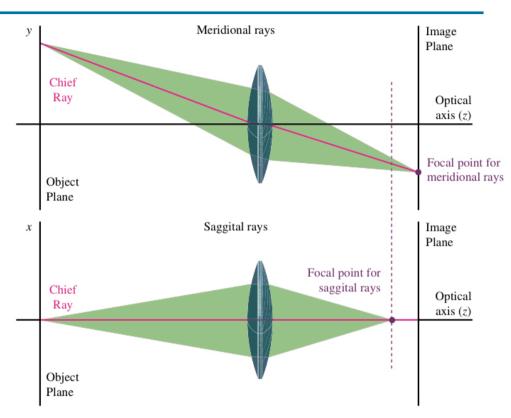


- Consider:
 - ray bundle in merid. Plane
 - ray bundle in sagittal plane
 - Path length could be different

Astigmatic aberration

- At sagittal focal point meridional rays will not have converged :
 - elongated focal point,
 - Elongated meridional focal point.
- For rays neither sagittal nor meridional, focal point will be in between the sagittal and meridional focal points.
- Somewhere between two focal points the cross-section of rays is circular





 When we have astigmatism, this circle is the place of sharpest focal point: circle of least confusion

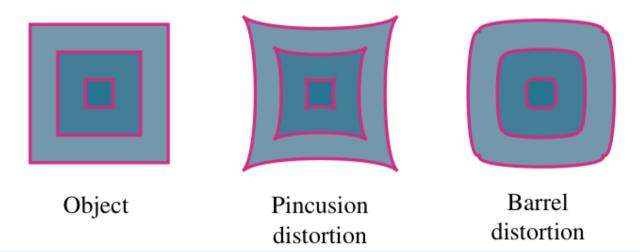
Petzval field curvature

- For spherical lenses, object and image planes are not planar, but:
 - Positive lens: curve inwards
 - Negative lens: curve outwards
 - Petzval field curvature
- If a flat image plane is used,
 I.e. on a sensor, the image will only be sharp on optical axis
- One can correct this by combining positive and negative lenses

 Example: correct inward curvature of positive lens with negative length near focal point of positive lens: field flattener.

Distortion

- Distortion is due to lateral magnification of lens:
 - Lateral magnification is not constant as assumed before
- Pincushion distortion:
 lateral magnification increases with distance to optical axis
 - Usually positive lenses generate it
- Barrel distortion: lat. mag. decreases with distance to optical axis
 - Usually negative lenses generate it



Cromatic aberrations

- Materials have wavelength-dependent refraction index, which influences focal length
 - Thus focal length a white light beam lies closer for blue rays than to red light
 - Distance between these two points on optical axis is the axial chromatic aberration
 - These rays will hit image at different position (*lateral chromatic aberration*)
 - Can be corrected by using thin lenses with different refractive indexes (thin achromatic doublets):
 - If d is the distance between the lenses, wavelength dep. focal length is $f_1(\lambda)$ and $f_2(\lambda)$, refraction indexes $n_1(\lambda)$ and $n_2(\lambda)$ wavelength dependent focal length $f(\lambda)$ is then given by

$$\frac{1}{f(\lambda)} = \frac{1}{f_1(\lambda)} + \frac{1}{f_2(\lambda)} - \frac{d}{f_1(\lambda) f_2(\lambda)}$$

Cromatic aberrations

 If the index of refraction of surrounding medium is 1, then

$$\frac{1}{f_1(\lambda)} = k_1 (n_1(\lambda) - 1)$$
$$\frac{1}{f_2(\lambda)} = k_2 (n_2(\lambda) - 1)$$

is wavelength dependent focal length. Here, we replaced factor depending on front and back radius with constants k_1, k_2 .

Substituting,

$$\frac{1}{f(\lambda)} = k_1 (n_1(\lambda) - 1) + k_2 (n_2(\lambda) - 1) - \frac{d}{\frac{1}{k_1 (n_1(\lambda) - 1)}} \frac{1}{k_2 (n_2(\lambda) - 1)}$$

• For the two focal lengths $f(\lambda_R)$ and $f(\lambda_B)$ to be equal, one must place lenses at a distance given by solving for d:

$$d = \frac{1}{k_1 k_2} \frac{k_1 (n_1(\lambda_B) - n_1(\lambda_R)) + k_2 (n_2(\lambda_B) - n_2(\lambda_R))}{(n_1(\lambda_B) - 1) (n_2(\lambda_B) - 1) - (n_1(\lambda_R) - 1) (n_2(\lambda_R) - 1)}$$

If lenses touch, d=0:

$$\frac{k_1}{k_2} = -\frac{n_2(\lambda_B) - n_2(\lambda_R)}{n_1(\lambda_B) - n_1(\lambda_R)}$$

 Now we can have focal length of yellow light (λ_Y≈λ_R+λ_B)/2)

$$\frac{1}{f_1(\lambda_Y)} = k_1 (n_1(\lambda_Y) - 1)$$
$$\frac{1}{f_2(\lambda_Y)} = k_2 (n_2(\lambda_Y) - 1)$$

which is

$$\frac{k_1}{k_2} = \frac{n_2(\lambda_Y) - 1}{n_1(\lambda_Y) - 1} \frac{f_2(\lambda_Y)}{f_1(\lambda_Y)}$$

Chromatic aberrations

• So, we have:

$$\frac{f_2(\lambda_Y)}{f_1(\lambda_Y)} = \frac{(n_2(\lambda_B) - n_2(\lambda_R)) / (n_2(\lambda_Y) - 1)}{(n_1(\lambda_B) - n_1(\lambda_R)) / (n_1(\lambda_Y) - 1)} = \frac{w_2}{w_1}$$
where w_1, w_2 are the dispersive powers associated with the refraction indexes n_1, n_2 .

Take the standardized
 Fraunhofer spectral lines F,D,C
 and the wavelengths

$$\lambda_F = 486.1 \text{ nm}$$
 $\lambda_D = 589.2 \text{ nm}$
 $\lambda_C = 656.3 \text{ nm}$

 We can now define dispersive power of an optical material w:

$$V = \frac{n_D - 1}{n_F - n_C}$$

where V=1/w and is called *Abbe number*, or *dispersive index*.

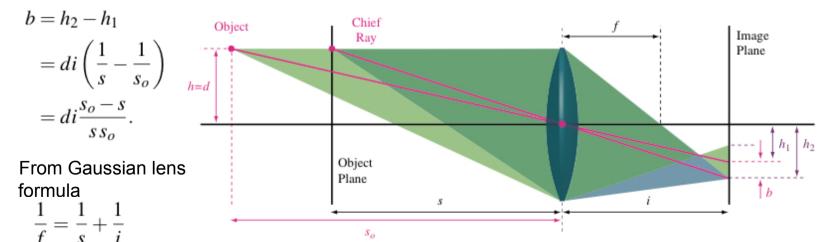
- Here, $n_D = n(ID)$, .
- For lenses, is desirable to have materials with low dispersion, or high Abbe numbers.

Blur circle

- An ideal optical system would image a point source onto a single point on the image plane.
- Due to aberrations: blurred shape on the image plane
 - Can be approximated as a circle: its radius can be approximated as follows:
 - Place object at same height h of lens aperture height
 - Radius b of blur circle is:

- Rewriting: $i = \frac{sf}{s-f}$
- Thus: $b = \frac{sfd}{s-f} \frac{s_o s}{ss_o} = \frac{pfd}{s-f}$

where p(s₀-s)/ss₀ can be seen as percentage focus error.



Depth of field

- Points on image plane have maximum sharpness.
- Objects are not all on image plane: some before, some after.
- There is a region in which points are focused reasonably sharp: *depth of field*.
- Sharpness depends on:
 - Size of image plane
 - Sensor resolution
 - Image reproduction size
 - Angular resolution of human visual system

Depth of field

- If we can make sure that a circle of radius b leads to an image that in the reproduction appears as a single point, then, assuming
 - Camera focused at distance s₀
 - Blur circle smaller aperture (b ≪ d)
- Then distance of lens to nearest point s_{near} of acceptable focus is

$$s_{\text{near}} = \frac{s_o f}{f + \frac{b}{d} (s_0 - f)}$$

and for farthest point it is

$$s_{\text{far}} = \frac{s_o f}{f - \frac{b}{d} (s_o - f)}$$

• The global depth of field is then s_{far} - s_{near}

 Far plane becomes infinite when denominator goes to 0, i.e. when

$$f = \frac{b}{d} (s_o - f)$$

solve for s₀: *nypertocal distance*

$$s_o = f\left(\frac{d}{b} + 1\right)$$

which corresponds to the near plane: f / d

$$s_{\text{near}} = \frac{f}{2} \left(\frac{d}{b} + 1 \right)$$

so, if the camera fucused on the hyperfocal plane, all objects between the near plane and infinity will be in focus

 Notice that the aperture d affects the depth of field!

Depth of field

f/3.2 f/16