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Introduction 

•  While animating through kynematics may be interesting for 
plenty of applications, integrating physics is more difficult and a 
challenging problem 

•  The easiest way of integrating physics is rigid body simulation 
•  While physics is concerned with the exactness of the 

representation, animation is more interested in „credible“ 
effects, and in rendering frame by frame 

•  Having to deal with the system at discrete time samples creates 
numerical problems in the solution methods which are not 
simple to deal with 



Recap on physics (physics 101) 

•  In the equations of motion, 
the following quantities play 
a role 
–  Distance=speed ⋅ time 

time= frame# ⋅timeperframe 
averageVelocity= 
   distancetraveled/time 

•  Linear motion 
–  s=position 

v=velocity 
a=acceleration 

–  s(t)=v(t) ⋅ t 
v(t)=a(t) ⋅ t 
s(t)= ⋅½ a(t) ⋅ t2 

•  Circular motion 
–   θ angular position 

ω angular velocity 
θ(t)= ω(t) ⋅ t 

–  For a body in circular 
motion, we have  
a(t)=(-ω)2 ⋅ r 

•  Newton‘s law: 
–  F = m ⋅ a 
–  A body continues its own 

motion therefore if the sum 
of the forces acting on it =0 
     ΣFi=0 
  



Recap on physics (physics 101) 

•  Remember the definition of 
center of mass 

–  The point at which the object is 
balanced in all directions 

–  If an external force is applied to 
a body in line with its center of 
mass, then the body would 
move as if it was a point at the 
center of mass C 

•  Torque is the tendency of a 
force to produce circular motion 

–  It is produced by a force off 
center to the center of mass 

–   τ = r × F 
–  Clearly, τ ⊥ F and τ ⊥ r 

•  An object does not move if 
ΣFi=0 and Στi=0 
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Recap on physics (physics 101) 

•  Linear springs: 
–  Hooke‘s law: 

         F= -k ⋅ x,  
where x is the change from the 
equilibrium length of the spring 

•  Friction: 
–  Static: 

        Fs = s ⋅ fN 
where Fs = frictional force 
s=static friction coefficient 
fN = normal force 

–  Kinetic: 
        Fk = k ⋅ fN 
with similar coefficient 
definitions as in static friction 

•  Momentum: m ⋅ v 
–  In a closed system, total 

momentum does not vary 
•  Angular momentum: 

          L=r×p 
where  
r=vector from center of  
    rotation 
p=momentum (m ⋅ v) 

–  Note that 
    τ= dL/dt 

–  In a closed system, total 
angular momentm does not 
vary 

•  Inertia tensor: the resistence of 
an object to change its angular 
momentum 



Rigid body simulation 

•  If one wants to simulate rigid bodies, 
many forces act on them 

•  Such forces vary in time conti-
nuously and in a non linear way 

•  Therefore it is not enough to 
evaluate velocities and acce-
lerations at fixed timesteps Δt  

•  Evaluating the velocities at t0, t0+Δt, 
t0+2Δt does not generate a correct 
movement, and slowly drifts away 
from the correct solution 

•  This solution method is an example 
of the Euler integration method 

•  The accuracy of the method is 
determined by the size of the time 
step 

•  Obviously the shorter the time step, 
the more computations are needed 

•  A better way of integrating the 
equations bases on the Runge Kutta 
method 

–  In particular, often 2nd order Runge 
Kutta (midpoint method) is used  

–  Remember, the order of the RK 
method is the magnitude of the error 
term 

–  Even higher order ones, 4th or 5th 
ones are used  



Motion equations for a rigid body 

•  To develop the equation of 
motion for a rigid body, we have 
to apply some of the physics 
presented before 

•  When a force is applied to a 
rigid body, the force and the 
relative torque are applied to the 
body 

•  To uniquely solve for the 
resulting motions of interacting 
bodies, linear and angular 
momentum have to be 
conserved 

•  Finally, to calculate the angular 
momentum the distribution of an 
object mass in space has to be 
characterized with its inertia 
tensor.  



Orientation and rotational movement 

•  Similar to position, velocity and 
acceleration, 3D objects have  

–  orientation,  
–  angular velocity and  
–  angular acceleration  

•  which vary in time 
•  Let R(t) represent the object 

rotation 
•  Angular velocity ω(t) is the rate 

at which the object is rotated 
(independent from linear 
velocity) 

•  The direction of ω(t) indicates 
the orientation of the axis about 
which the object is rotating 

•  The magnitude of ω(t) gives the 
speed of rotation in revs per unit 
time 



Orientation and rotational movement 

•  Consider a point a whose 
position is defined in space 
relative to a point b=x(t).  

•  Let a‘s position be defined by 
r(t) 

•  Suppose that a is rotating and 
the axis passes through b 

•  The change in r(t) is the cross 
product of r(t) and ω(t) 
    r °(t)=ω(t) × r(t) 
    |r °(t)|=|ω(t)| |r(t)| sin θ 

•  Now consider  an object that 
has a distribution of mass in 
space 

•  Its orientation can be seen as a 
transformed version of the 
object local coord. system 

•  Its columns can be seen as 
vectors defining the relative 
positions of the object points 

•  Thus, the change of the rotation 
matrix can be computed by 
taking the cross product of ω(t) 
with each of the columns of R(t) 
   R(t)=[R1(t) R2(t) R3(t)] 
   R° (t)= 
    [ω(t)×R1(t) ω(t)×R2(t) ω(t) × R3(t)] 

r(t) 

a=b+r(t) ω(t) 

θ 

b=x(t) 



Orientation and rotational movement 

•  By defining a special matrix to 
represent cross products: 

 
 
 

•  It follows  
 R°(t)= ω(t)*  R(t) 

•  Consider now a point Q on a rigid 
object 

•  Its position in local coord system 
does not change 

•  Its pos in world coords is 
   q(t)=R(t)q+x(t) 

•  Differentiating this one obtains the 
velocity 

•  The change in orientation is given 
by the eq on the left 

•  Combining these, one obtains 
   q°(t)=ω(t)* r(t)q+v(t) 

•  Substituting one obtains 
   q°(t)=ω(t)(q(t)-x(t))+v(t) 
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Center of mass 

•  The center of mass of a body is defined as the integral of the 
differential mass times its position in the object 

•  In a body with discrete masses, then the center of mass is at 
qi(t), the center of mass is at x(t)=Σmiqi(t)/Σmi 



Forces and torque 

•  A linear force applied to a mass gives rise to a linear 
acceleration 
                    F=ma        (Newton‘s law) 

•  The various forces applied to a point sum up 
                   F(t)=Σfi(t) 

•  The torque arising from the application of forces acting on a 
point of an object is given by 
                   τi(t)=(q(t)-x(t)) × fi(t) 
                   τ(t)=Στi(t) 



Momentum 

•  The momentum of an object  
(= mass times velocity) is 
decomposed into  

–  linear component: acts on 
center of mass 

–  angular components: acts WRT 
center 

•  Both are preserved in a closed 
system 

•  Linear momentum p=m v 
•  Total linear momentum of a rigid 

body: P(t)=Σmiq °i(t) 
•  Deriving p=mv we obtain 

    P°(t)=M v°(t)=F(t) 

•  Angular momentum is a 
measure of the rotating mass 
weighted by the mass‘s 
distance from the axis of 
rotation 

•  L(t)= 
Σ((q(t)-x(t)×mi(q°(t)-v(t))) 
=Σ(R(t)q×mi(ω(t)×(q(t)-x(t)))) 
=Σ(mi(r(t)q×(ω(τ)×R(t)q))) 

•  Similar to linear momentum, torque 
equals the change in angular 
momentum 
    L°(t)=τ(t) 

•  Note that since angular momentum 
depends on distance to center of 
mass, to mantain constant angular 
momentum, the angular velocity 
increases if the distance of the mass 
decreases 



Inertia tensor 

•  Angular momentum is related to 
angular velocity the same way 
linear momentum is related to 
linear velocity P(t)=M⋅ v(t) 

•  We have 
   L(t)=I(t)⋅ω(t) 

•  The distrib. of mass of the obj. 
in space is defined through a 
matrix, the inertia tensor I(t) 
 
 
 
 
 
where the matrix terms are 
computed by integrating over 
the object, and I is symmetric	


•  In general, 
Ixx=∫∫∫ρ(q)(qy

2+qz
2)dxdydz 

where ρ is the density of at an 
obj. point q=(qx,qy,qz) 

•  In the case of discrete masses 
Ixx=Σmi(yi

2+zi
2), Ixy=Σmixiyi 

Iyy=Σmi(xi
2+zi

2), Ixz=Σmixizi  
Izz=Σmi(xi

2+yi
2), Iyz=Σmiyizi 

•  In a center of mass centered obj 
space, the intertia tensor of a 
transformed object depends on 
the obj orientation but not on its 
position, and therefore it 
depends on time 

•  It can be transformed with 
    I(t)=R(t)IobjR(t)T 
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Motion equations 

•  The state of an object can be 
determined by the vector 
containing 

–  Position 
–  Orientation 
–  Linear momentum 
–  Angular momentum 

 
 
 
 
 
 
 

•  Object mass and its object 
space inertia tensor Iobj do not 
change in time  

•  At any time, the following 
quantities can be computed: 
Inertia tensor I(t)=R(t)IobjR(t)T  
Angular vel. ω(t)=I(t)-1L(t) 
Linear vel. v(t)=P(t)/M 

•  Now the time derivative can be 
formed: 
 
 
 
 
 
This is enough to run a 
simulation 

•  A differential equation solver 
can now be used 
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•  As the simplest solver, one can use Euler‘s method 
–  The values of the state array are updated by multiplying their time 

derivatives by the length of the time step 
 
 
 
 
 
 
 

•  In practice, Runge-Kutta methods are used, especially 4th order ones 
•  Particular care has to be taken in updating the orientation of an object, 

because if the derivative info is used to update the orientation matrix, 
then the columns of the matrix can become nonorthogonal and not of 
unit length 

•  Here it is wise to renormalize after each step 
•  Alternatively, one can update  

–  by applying the axis-angle rotation generated by angular velocity 
–  By using quaternions 

Motion equations 

t0+Δt 

t0 

t0+2Δt 



Ordinary differential equations 

•  Problem involving ordinary 
differential equations (ODE) can be 
reduced to the study of first order 
differential equations 

•  For example, the problem  
  d2y/dx2+q(x)dy/dx=r(x) 
can be rewritten as the two first 
order equations 
  dy/dx=z(x) 
  dz/dx=r(x)-q(x)z(x) 

•  The generic problem in ordinary 
differential equations can be thus 
reduced to the study of a set of N 
first order differential equation for 
the functions yi (i=1,2,...,N) 
   dyi(x)/dx=f´i(x,y1,...yN) 
where the fi are known 

•  A problem involving ODEs is not 
determined completely by its 
equations.  

•  The boundary conditions also 
determine how to solve the problem. 

•  Boundary conditions are algebraic 
conditions on the values of the 
functions yi 

•  In general, they can be satisfied at 
the discrete specified points, but do 
not hold inbetween these points 

•  They can be as simple as requiring 
to pass through a certain point, or 
as complicated as a complex 
algebraic expression 



Ordinary differential equations 

•  Boundary conditions divide into 
two categories:  

–  Initial value problems: here all yi 
are given at some starting value 
xs, and one wants to find the yi 
at some end point xf, or at some 
discrete list of points 

–  Two-point boundary value 
problems: here some conditions 
are set at xs, and some at xf 

•  We will deal only with the first 
class 

•  The main idea of a method for initial 
value is the following: 

–  Rewrite dx and dy as finite Δy and 
Δx and multiply the equations by Δx 

•  This gives formulas for the change 
in the functions when the variable x 
is stepped at stepsize  
Δx 

•  For Δx small, one obtains a decent 
approximation of the diff. Equation 

•  Literal implementation of this 
method is called Euler‘s method 

–  Euler method is not accurate 
compared to other methods using 
the same step size 

–  It is not very stable either 



ODE: Runge Kutta 

•  One way or another, all 
methods do the following:  

–  Add small increments to the 
functions corresponding to the 
derivatives multiplied by 
stepsizes 

•  Runge Kutta methods 
propagate a solution over an 
interval by combining the 
information from several Euler-
style steps (each involving one 
evaluation of the f´) and then 
using the info obtained to match 
a taylor series up to some 
higher order 

•  The formula for the Euler 
method is  
   yn+1=yn+hf´(xn,yn) 
where h is the step chosen  
(i.e. xn+1=xn+h) 

•  The problem with this is that info 
on the derivative change goes 
lost, since only info at the start 
of the interval (at xn) is used  

•  This means that the step‘s error 
is only one power of h smaller 
than the correction, thus  
 yn+1=yn+hf´(xn,yn)+O(h2) 

•  By definition, we call a method 
such that its error term is O(hn
+1) as method of order n 



x3 x1 x2 

ODE: Runge Kutta 

•  Suppose to use a step like before 
(yn+1=yn+hf´(xn,yn)) to take a „trial“ 
step to the midpoint of the interval 

•  Then use the value of both x and y 
at the midpoint to compute the 
„real“ step across the whole interval 
   k1=hf´(xn,yn) 
   k2=hf´(xn+½h,yn+½k1) 
then one can write 
   yn+1=yn+k2+O(h3) 

•  Note how all of the sudden the error 
becomes of 3rd degree and 
therefore the method becomes of 
second order 

•  This by the way is second order 
Runge-Kutta (midpoint methd) 

•  In R-K the derivative at the midpoint 
is evaluated and used for the whole 
interval 
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ODE: Runge Kutta 

•  Why does this work better?  
–  Because by evaluating at the 

midpoint one takes an 
„average“ of the derivative on 
the interval 

–  This cancels the second order 
error 

•  Of course, one can decide now 
to push this elimination further 

•  Fourth order R-K evaluates the 
derivative four times: 

–  Initial point, twice at trial 
midpoints, and once at the trial 
endpoint 

–  From these derivatives the final 
function value is computed 

•     k1=hf´(xn,yn) 
   k2=hf´(xn+h/2,yn+k1/2) 
   k3=hf´(xn+h/2,yn+k2/2) 
   k4=hf´(xn+h,yn+k3) 
and the error term becomes 
   yn+1=yn+k1/6+k2/3+k3/3 
           +k4/6+O(h5) 
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+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++  
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