Computer Animation 4-Motion Control SS 15

Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de

Controlling motion along curves

- We all know now how to control the shape of the curve
- To an animator, it is equally important to know the speed at which a curve is traced by increasing parametric steps
- Obviously, since motion curves are of higher order, this relation is not straightforward
- Equal parameter intervals do not lead to arcs of equal length on the curve
- That is, speed is different at different points of the curve
- This can be overcome through a reparametri-zation of the curve

Curve length

- There are different methods to compute such a reparametrization
- One can create a table of values so as to establish a relationship between arc length and parameter values
- In the first two method, one creates a table of values to establish the relationship between parametric value and approximate arc length
- Once the table is built, one can use the table to approximate values of the parameter at steps of equal length along the curve

Curve length

- The first method supersamples the curve, and then uses summed linear 'distance to compute the approximate arc length
- The second method uses

Gauss quadrature to numerically estimate the arc length

- Both methods can use adaptive subdivision to control the error
- The third method analytically computes arc length. Unfortunately, it is not always possible to do so for all curves.

Computing arc length

- To specify how fast the object moves in the environment, animators might want to specify the time at which positions along the curve are reached.
- This in general would be position and frame pairs.
- Or, maybe, the animator might want to specify velocities
- For example:
- start at position A
- accellerate till frame 20
- move at constant speed till frame 35
- Decelerate slowly till frame 60 and end at position B
- It is clear what we want: be able to control not only the curve (space function), but also the relationship between position and time (distance-time function).
- The distance we are traveling along the curve is called the arc length and will be denoted by s.

Computing arc length

- Suppose that we are moving along the curve

$$
P(u)=U^{\top} M B
$$

- The relation between parameter and arc length is not linear.
- When a unit change in parameter results in a unit change in curve length the curve is said to be parametrized by arc length
- How do l establish the relationship between parameter and arc length?
- What we want is to kow the function $\mathrm{s}=\mathrm{G}(\mathrm{u})$ which computes the length of the curve from it starting point for all values of the paramenter u
- If we have G , then knowing G^{-1} allows us to compute the parameter values corresponding to a certain length

Arc length: analytic approach

- Obviously, the length of a curve between parameter values u_{1} and u_{2} is

$$
s=\int_{[u 1, u 2]}|d P / d u| d u,
$$

where

$$
\begin{aligned}
& d P / d u= \\
& \quad((d x(u) / d u),(d y(u) / d u),(d z(u), d u))
\end{aligned}
$$

and

$$
|d P / d u|=S Q R T(d x(u) / d u)^{2}+
$$

$$
\left.\left.(d y(u) / d u)^{2}+d x(z) / d u\right)^{2}\right)
$$

- For a cubic curve

$$
P(u)=\underline{a} u^{3}+\underline{b} u^{2}+\underline{c} u+\underline{d}
$$

this will mean that the derivative of one of the 3 eq with respect to u is

$$
d x(u) / d u=3 a_{x} u^{2}+2 b_{x} u+c_{x}
$$ and under the SQRT one would have a curve of 4th degree

$$
\underline{A} u^{4}+\underline{B} u^{3}+\underline{C} u^{2}+\underline{D} u+\underline{E}
$$

- With a bit of computations one can compute then A, B, C, D

Arc length: Estimating through forward differences

- Suppose we have $\mathrm{P}(\mathrm{u})$.
- One can compute a table of the distance of $P(u)$ from the point $P(0)$ at regular intervals:
$P(0), P(\Delta u), P(2 \Delta u), . ., P(1)$
that is, containing

$$
P((i+1) \Delta u)-P(i \Delta u)
$$

- One can interpolate these values first order (or higher order) to estimate the length of a segment in image space
- Conversely, one can use similar methods to deduce from the right hand column the corresponding value of u
- Main problem with this approach is controlling the error

0	$\|\mathrm{P}(\Delta \mathrm{u})-\mathrm{P}(0)\|=\mathrm{G}(\Delta \mathrm{u})$
$\Delta \mathrm{u}$	$\mathrm{G}(\Delta \mathrm{U})+\|\mathrm{P}(2 \Delta \mathrm{u})-\mathrm{P}(\Delta \mathrm{u})\|=\mathrm{G}(2 \Delta \mathrm{u})$
$2 \Delta \mathrm{u}$	$\mathrm{G}(2 \Delta \mathrm{U})+\|\mathrm{P}(3 \Delta \mathrm{u})-\mathrm{P}(2 \Delta \mathrm{u})\|=\mathrm{G}(3 \Delta \mathrm{u})$
\ldots	\ldots

Adaptive forward differences

- Since the relations between the variation of the parameter and the length of the curve is nonlinear, the method of the last slide has problems when there is a big error
- i.e. When the polyline implicitly used to estimate the parameter values inbetwen table points is far from the actual curve

Bad

- This can be improved by computing the value of the midpoint of each interval between the table points.
- if the sum of the sides $A+B$ of the triangle is too different in length from the line joining the interval extre-mes C (over a threshold value), the midpoint is added to the list

Numerical meth.: Gaussian quadrature

- Another approach to computing length is bases on numerics
- Computing the length of the curve implies computing the integral of the curve length
- Gaussian quadrature uses unevenly spaced intervals to achieve the greatest accuracy
- Gaussian quadrature computes

$$
s=\int_{[0,1]} f(u) d u \sim \Sigma_{i} w_{i} f\left(u_{i}\right)
$$

- Since Gaussian quadr. is usually defined in the interval [0,1], one has to reparametrize at first the original interval $[a, b]$ we are considering
- This is achieved by using the new parameter t such that

$$
t=(2 u-a-b) /(b-a)
$$

- Do not forget to apply the usual integral rules for changing parameters, that is adding the factor of parameter substitution to the integral

Adaptive Gaussian quadrature

- If the curve derivative varies very fast in some areas, and less fast in other areas, the gaussian quadrature will either undersample part of the curve, or oversample
- In this case, a similar adaptive method to the one presented before can be used:
- One subdivides intervals in half,
- each half is evaluated using gaussian quadrature
- The sum of the two halves is compared to the result of the whole interval.
- If the difference is greater than a certain threshold, then the two halves are added to the sample points

Finding u given s

- Suppose one wants to find the value of the parameter u at a given arc length s from the point $R\left(u_{1}\right)$
- This equals to solving the equation

$$
\operatorname{s-LEN}\left(u_{1}, u\right)=0
$$

- Arc length is monotonic, so such a solution is unique as long as $d R(u) / d u$ is not 0
- Newton-Raphson integration can be used: generate the sequence $\left\{p_{n}\right\}$

$$
p_{n}=p_{n-1}-f\left(p_{n-1}\right) / f^{\prime}\left(p_{n-1}\right)
$$

where

- f is $s-\operatorname{LEN}\left(u_{1}, P_{n-1}\right)=0$ and can be evaluated at $\mathrm{p}_{\mathrm{n}-1}$ using techniques of last slide
- f^{\prime} is $d P / d u$ evaluated at p_{n-1}
- This eliminates the need for quadrature, and is faster
- But can have two problems:
- Some p_{k} might not be on the curve, thus also $p_{k+1}, p_{k+2}, .$. will not
- When the derivative approaches 0 we divide by zero
- Use subdivision instead

Speed control

- On a arc-length parametrized curve, it is possible to control speed
- Simplest (and dullest) control: constant speed (equal space s in equal time t)
- Easiest speed control is ease-in/ ease-out:
- From standstill, accelerate until maximum speed
- Decelerates and stop
- Speed along a curve can be controlled by varying arc length at something else than a linear function of t.
- The speed variations are seeable in the distance-time curve, which plots the space traversed s against the time t.
- Here is an example of a distancetime curve for ease-in

Speed control: ease in/ease out

- There are different ways of mathematically achieve ease in/ ease out
- The first one is to use the sinus between $-\pi / 2$ and $\pi / 2$ and scaling the parameter to cover $[0,1]$
- $S(t)=(1 / 2)(\sin (\pi t-\pi / 2)+1)$
- This curve can be split and joined with a straight line (take care of continuity at the splits) to add a period of constant speed

Speed control: constant acceleration

- The computational cost of the sinus function is high.
- A better method is to use physics for the calculations: $s=v t$, and $v=a t$
- This obtains a parabolic ease-in function thus $s=a t^{2}$
- Similarly for deceleration one can use a constant (limited) deceleration until the object stops
- To describe the distance-time function of such a movement the following equations are used
- In formulas:

\[

\]

- Whereby v_{0} is the velocity when acceleration ends

Speed control: constant acceleration

- $a=a_{0}$
$a=0$
$a=-a_{0}$
- $\mathrm{v}=\mathrm{v}_{0} \mathrm{t} / \mathrm{t}_{1}$
$\mathrm{v}=\mathrm{v}_{0}$
$a=v_{0}\left(1-\left(t-t_{2}\right) /\left(1-t_{2}\right) t_{2}<t<1\right.$
- The formulas look really complicated, but there are different ways to plot this to make it understandable

General distance-time functions

- Many interesting aspects come up when allowing the user to control motion
- The more influence a user is given, the more problems come up
- Suppose the user defines some velocities at some points:
- The rest of the velocity curve has to be fitted to these "fixed" values
- Sometimes leading to unwanted effects (reverse velocity to fit the time contraints)
- More intuitive is to control on the space-time curve
- This because it allows to control velocities as a tangent, and to adapt the rest of the curve accordingly
- Motion control often requires specifying positions at specific times
- The motion is specified as a series of constraints at a specific time, formally, a t-uple $\left\langle t_{j}, s_{j}, v_{j}, a_{j} \ldots\right\rangle$
- higher order approximation is needed for smooth movement

Curve fitting

- If the animator specifies certain constraints then the time parametrized curve can be computed using these constraints as control points
- Suppose contraints are of the form ($\mathrm{P}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}$) $(\mathrm{i}=1, \ldots, \mathrm{j})$
- It only requires to compute the curve passing through these points, i.e.

$$
\mathrm{P}(\mathrm{t})=\Sigma_{1, \mathrm{n}} \mathrm{~B}_{\mathrm{i}} \mathrm{~N}_{\mathrm{i}, \mathrm{k}}(\mathrm{t})
$$

with $2 \leq k \leq n+1 \leq j$

- In matrix form $\mathrm{P}=\mathrm{NB}$
- Inverting this equation leads to find the control point values for the curve

Curve Fitting to position-time pairs

- Suppose the user gives the following positions and the corresponding times
- One can fit a B-spline curve to the values ($\mathrm{P}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}$) $(\mathrm{i}=1, \ldots \mathrm{j})$:
- That is, take the general eq. of Bsplines and make it pass through points
- Find corresp. control points.

- Computing the curve passing through these points means computing $\mathrm{P}(\mathrm{t})=\Sigma_{1, \ldots, \mathrm{n}} \mathrm{B}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}, \mathrm{k}}(\mathrm{t})$ with $2 \leq k \leq n+1 \leq j$
- In matrix form $\mathrm{P}=\mathrm{NB}$,
- Inverting this equation leads to find the control point values for the curve: $\mathrm{B}=\mathrm{N}^{-1} \mathrm{P}$
- This is done through the pseudoinverse:
$\mathrm{P}=\mathrm{NB}$
$N^{\top} P=N^{\top} N B$
$\left[N^{\top} N\right]^{-1} N^{\top} P=B$
- Remember the tradeoff: the higher the order, the higher the wiggling

Interpolation of quaternion rotations

- A major reason for choosing quaternions is that they can be easily interpolated
- Quaternion form can be interpolated to produce good intermediate orientations
- This does not work easily with direct interpolation
- Unit quaternions are used to represent orientation, and can be seen as point of on the unit sphere in 4-dimensional space

- To interpolate between two unit quaternions, one can linearly interpolate
- But this will not produce constant speed rotation, because a path on a sphere is not the same as a path on a plane (which is what linear interpol. follows)
- Equal speed interpolations can be computed by interpolating directly on the path on the sphere

Interpolation of quaternion rotations

- The problem (of course) is how to do that
- Remember: $\mathrm{q}=[\mathrm{s}, \mathrm{v}]$ and $-q=[-s,-v]$ represent the same orientation
- So interpolation from q_{1} to q_{2} can be also carried between q_{1} and $-\mathrm{q}_{2}$.
- The difference is that one path will be longer
- The shorter one is the one distinguished by the smallest angle
- One can compute the cosine of the angle between q_{1} and q_{2} :

$$
\cos \theta=\mathrm{q}_{1} \cdot \mathrm{q}_{2}=\mathrm{s}_{1} \cdot \mathrm{~s}_{2}+\mathrm{v}_{1} \cdot \mathrm{v}_{2}
$$

- If it is positive, then shortest path is from q_{1} to q_{2}
- Else shortest path is from q_{1} to q_{2}

Interpolation of quaternion rotations

- So, the spherical linear interpolation (SLERP) between q_{1} and q_{2} with parameter uî $[0,1]$ is

$$
\underset{\left(\operatorname{sLERP}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{u}\right)=\right.}{\left.\left(\left(\sin ((\mathrm{u}(1-\mathrm{u}))) / \sin \theta \mathrm{q}_{2}\right) / \sin \theta\right)\right) \mathrm{q}_{1}+}
$$

- Note that this does not generate a unit quaternion, so one has to normalize the result
- Notice that in the case $u=1 / 2$, SLERP is easy to compute except for a scaling factor
- Finally notice that if a chain of SLERPs is performed, it will perform similarly to linear interpolation (i.e. with rough changes)
- Higher order interpolations, based on Bezier curves, have been developed, but are beyond the purpose of this lesson

Following a path

- Animating an object to move along a path is quite natural and common
- Not only following the path is needed: also moving the orientation
- Typically, one would have a local coordinate system associated with the object
- Let the coordinates be (u, v, w), and suppose they are right handed
- Suppose the origin of the coordinate system follows the curve $\mathrm{P}(\mathrm{s})$, and that the movement of $P(s)$ is specified
- Call POS the current position
- One can view the u, v, w coordinates as a view vector, an up vector and a vector perpendicular to u and v
- This is similar to camera definition in Computer Graphics

Following a path: Frenet Frame

- The orientation of the camera system can be made dependent from the properties of the curve P(s)
- A Frenet frame is given by the following axes definitions
- w follows the tangent of the curve (its first derivative $\mathrm{P}^{\prime}(\mathrm{s})$)
- v is orthogonal to w and in the direction of the second order derivative ($\mathrm{P}^{\prime \prime}(\mathrm{s})$)
- u is the cross product of w and v
- In symbols:

$$
\begin{aligned}
& w=P^{\prime}(s) \\
& u=\left(P^{\prime}(s) \times P^{\prime \prime}(s)\right. \\
& v=w \times u
\end{aligned}
$$

Following a path: Frenet Frame

- Frenet frames are quite nice, but bear some flaws
- When the curve has no curvature, its second order derivative is zero. Here the Frenet frame is undefined
- This problem can be solved by interpolating the Frenet frames at the start and end of the rectilineal trait
- Since the tangent vector must
 be the same at the extremities, it is only a rotation that has to be interpolated

Following a path: Frenet Frame

- A more complicated problem occurs at discontinuities in the curvature vector
- For example, when the path follows first a circle, and then a second circle
- At the problem point, the curvature will switch to pointing from one circle center to the other one
- Here, the Frenet frame is defined everywhere but is discontinuous
- Here, the object will rotate wildly along the path with „instant switches"

Following a path: Frenet Frame

- The worst problem is that the path following is not so natural:
- when we view at something, we we do not look along the tangent
- When we move, we anticipate curves
- Similar effect to your car light not following the road
- Also, one might want to make the object bend towards the interior to "anticipate the force"
.... or, opposite, to let it bend out to give the effect of a force acting on the object

Camera Path Following: Center of Interest

- A more natural way of specifying the orientation of a camera is to use the center of interest (COI)
- One can view towards a fixed point
- Or alternatively the center of an object
- Good method for a camera circling some arena of action
- The center of interest is specified, and so the view vector w=COI-POS
- This leaves one degree of freedom in camera specification
- One simple way is to set the view vector v as viewing „up", i.e. perpendicular to w and lying in the wy plane

$$
\begin{aligned}
& w=\text { COI-POS } \\
& u=w \times y \\
& v=u \times w
\end{aligned}
$$

- This works quite well for a camera moving along a path and focussing to a single object.
- When it gets very close to the object, this results in drastic changes (fly-near effect)
- This is not always bad!!!

Camera Path Following: Center of Interest

- There are variations to specifying a fixed point
- One can for example specify various points on the camera path itself
- The up vector
- is usually specified as lying in the wy plane
- But one can also allow the user to input
- Either a tilting value with respect to the default up vector
- Or the up vector on a whole
- Following a points on the path is relatively easy:
- If $P(s)$ describes the position on the curve, then $\mathrm{P}(\mathrm{s}+\delta \mathrm{s})$, with $\delta \mathrm{s}$ >0, specifies its position in the future
- It is advisable to choose points at equidistances on the curve, so as to make changes not that noticeable
- Alternatively, one can take the baricenter of some future points to avoid too much hopping
- The real flaw of this method is the fact that camera views look jerky

Camera Path Following: Center of Interest

- A better method is to use instead of some function of the position path, a different function altogether for the POI
- Let $P(s)$ be the curve of the camera path, and C(s) the curve of the COI (obviously the animator specifies this)
- Similarly, and up vector path must be specified U(s), so that the general up direction is $U(s)$ P(s)
- The resulting coordinates for the camera will then become

$$
\begin{aligned}
& \mathrm{w}=\mathrm{C}(\mathrm{~s})-\mathrm{P}(\mathrm{~s}) \\
& \mathrm{u}=\mathrm{w} \times(\mathrm{U}(\mathrm{~s})-\mathrm{P}(\mathrm{~s})) \\
& \mathrm{v}=\mathrm{u} \times \mathrm{w}
\end{aligned}
$$

- This gives maximum control, but is also difficult to control.
- An easy way of specifying C(s) is to use fixed positions, with ease-in/ease-out moves between the different fixed points

Smoothing paths

- There are several ways to smooth a path if it has been generated by a sample process, such as a motion capturing system
- This path acquisition method is getting more and more frequent and inexpensive
- However, data here can be prone to noise or imprecision, depending on the input method

Smoothing paths: linear interpolation

- The simplest way of smoothing the data is to average neighbouring data point.
- Suppose we have the chain of points $\left\{P_{i}\right\}_{i=0, \mathrm{~N}}$
- In the simplest form, one averages P_{i} as the average itself and of $\mathrm{P}_{\mathrm{i}-1}$ and $\mathrm{P}_{\mathrm{i}+1}$.

$$
P_{i}^{\prime}=\frac{P_{i}+\frac{P_{i-1}+P_{i+1}}{2}}{2}=\frac{1}{4} P_{i-1}+\frac{1}{2} P_{i}+\frac{1}{4} P_{i+1}
$$

- Obviously, here the „spikes" are flattened, so applying this method many times makes little sense

Smoothing paths: cubic interpolation

- A second method use the four adjacent points
$P_{i-2}, P_{i-1}, P_{i+1}, P_{i+2}$
on either side to fit a cubic curve that is then evaluated at the midpoint.
- This midpoint is averaged with the original point to obtain the smoothed point
- Remembering that a 3rd order curve was
$P(u)=a u^{3}+b u^{2}+c u+d$
- One obtains

$$
\begin{aligned}
& P_{i-2}=P(0)=d \\
& P_{i-1}=P(1 / 4)= \\
& a(1 / 64)+b(1 / 16)+c / 4+d \\
& P_{i+1}=P(3 / 4)= \\
& a(27 / 64)+b(9 / 16)+3 c / 4+d \\
& P_{i+2}=P(1)=a+b+c+d
\end{aligned}
$$

Smoothing paths: cubic interpolation

- For the last points, a parabolic arc can be computed to fit the second and forelast points
- Notice that here the curve will be of the form $a^{2}+b u+c$, and the equation turns into

$$
\mathrm{P}_{1}^{\prime}=\mathrm{P}_{2}+1 / 3\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)
$$

and similarly for the last three points

Smoothing paths: convolution kernels

- If the data can be viewed as a data function $\mathrm{y}_{\mathrm{i}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$ then convolution can be used to smooth the data
- Convolution with the convolution kernel $g(u)$ defined in the interval
$[-\mathrm{s}, \mathrm{s}]$ is in fact computing

$$
P(x)=\int_{[--s, s]} f(x+u) g(u) d u
$$

- The resulting integral can be computed directly or approximated by discrete means

Smoothing paths: B-spline approximation

- If the path does not necessarily have to pass through the sample points, one can use approximation methods we saw before
- Particularly B-splines are well adapted for the defining a path tacked from real data

Path along a surface

- If an object needs to follow a surface when it moves, then a path on the surface itself has to be found
- If we know start and endpoints, then this is simple:
- trace a plane „perpendicular" to the surface
- Compute the intersection planesurface
- Alternatively, other methods can be used, for example if one wants to follow the "valleys" on the surface
- Here „greedy" methods can be used, or methods that compute the normal to the surface and follow it

Keyframe systems

- Early computer animation systems were keyframe systems
- Most were 2D too, and implemented keyframe animations made by hand
- In computer animation a key frame is a variable set by the user at specific timepoints
- The system interpolates intermediate frames from the key frames
- The interpolation is quite straightforward if the shapes to be interpolated have the same number of controlling points

Keyframe systems

- In this case, linear interpolation can be used to produce the inbetween frames
- However, this is not the general case
- The general problem is: given two curves in 2D, how do I transform them into each other?
- If both curves are of the same type (eg Bezier of 3rd degree) then one can interpolate between control points
- Another method is to use interpolating functions to generate the same numbers of points on both lines, and then interpolate these points
- However, this does not allow sufficient control

Keyframe systems

- Reeves proposed a method based on surface patch technology to solve the problem of interpolating a curve in time
- Basically, one defines a patch in 3D to join the curves and allow the time parameter to be interpolated
- Sample points are taken on the patch to define the intermediate curves (=curves at inbetweens)

Animation languages

- In recent times, scripting languages have been developed to support animation systems
- Most animation languages are not easy to understand, and are close to hardcore programming
- A typical animation language is Renderman, or Alias/wavefront ‘s MEL
- Their big advantage is control

Animation languages

- Some effort has been put to accomodate unskilled artistic animators without scripting capabilities
- Simpler scripting languages such as ANIMA II have been developed
- Recently, actor based languages have appeared
- This is a novel approach but still at its infancy
- The idea is to have objects (=actors) and the instantiation of their variables representing the moving parameters
- Finally, the development of avatars has generated the need for some form of interaction with the animated models.

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

