Computer Animation 4-Motion Control SS 15

Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik Bauhaus-Universität Weimar caw AT medien.uni-weimar.de

Bauhaus-Universität Weimar

Faculty of Media

Controlling motion along curves

- We all know now how to control the shape of the curve
- To an animator, it is equally important to know the speed at which a curve is traced by increasing parametric steps
- Obviously, since motion curves are of higher order, this relation is not straightforward

- Equal parameter intervals do not lead to arcs of equal length on the curve
- That is, speed is different at different points of the curve
- This can be overcome through a reparametri-zation of the curve

Curve length

- There are different methods to compute such a reparametrization
- One can create a table of values so as to establish a relationship between arc length and parameter values
- In the first two method, one creates a table of values to establish the relationship between parametric value and approximate arc length
- Once the table is built, one can use the table to approximate values of the parameter at steps of equal length along the curve

Curve length

- The first method supersamples the curve, and then uses summed linear 'distance to compute the approximate arc length
- The second method uses Gauss quadrature to numerically estimate the arc length

- Both methods can use adaptive subdivision to control the error
- The third method analytically computes arc length. Unfortunately, it is not always possible to do so for all curves.

Computing arc length

- To specify how fast the object moves in the environment, animators might want to specify the time at which positions along the curve are reached.
- This in general would be position and frame pairs.
- Or, maybe, the animator might want to specify velocities

- For example:
 - start at position A
 - accellerate till frame 20
 - move at constant speed till frame 35
 - Decelerate slowly till frame 60 and end at position B
- It is clear what we want: be able to control not only the curve (*space function*), but also the relationship between position and time (*distance-time function*).
- The distance we are traveling along the curve is called the *arc length* and will be denoted by *s*.

Computing arc length

 Suppose that we are moving along the curve

P(u)=U[⊤]MB

- The relation between parameter and arc length is not linear.
- When a unit change in parameter results in a unit change in curve length the curve is said to be *parametrized* by arc length

- How do I establish the relationship between parameter and arc length?
- What we want is to kow the function s=G(u) which computes the length of the curve from it starting point for all values of the paramenter u
- If we have G, then knowing G⁻¹ allows us to compute the parameter values corresponding to a certain length

Arc length: analytic approach

 Obviously, the length of a curve between parameter values u₁ and u₂ is

 $s=\int_{[u1,u2]} |dP/du|du,$

where

dP/du= ((dx(u)/du), (dy(u)/du), (dz(u),du))

and

 $|dP/du| = SQRT(dx(u)/du)^{2} +$ $(dy(u)/du)^{2} + dx(z)/du)^{2})$ For a cubic curve $P(u)=\underline{a}u^3+\underline{b}u^2+\underline{c}u+\underline{d}$ this will mean that the derivative of one of the 3 eq with respect to u is

 $dx(u)/du=3a_xu^2+2b_xu+c_x$ and under the SQRT one would have a curve of 4th degree $Au^4+Bu^3+Cu^2+Du+E$

• With a bit of computations one can compute then A,B,C,D

Bauhaus-Universität Weimar

Arc length: Estimating through forward differences

- Suppose we have P(u).
- One can compute a table of the distance of P(u) from the point P(0) at regular intervals:

```
P(0), P(\Delta u), P(2\Delta u),..,P(1)
```

```
that is, containing
```

```
P((i+1)∆u)-P(i ∆u)
```

- One can interpolate these values first order (or higher order) to estimate the length of a segment in image space
- Conversely, one can use similar methods to deduce from the right hand column the corresponding value of u
- Main problem with this approach is controlling the error

0	$ P(\Delta u)-P(0) =G(\Delta u)$
Δu	$G(\Delta U) + P(2\Delta u)-P(\Delta u) = G(2 \Delta u)$
2 ∆u	$G(2\Delta U) + P(3\Delta u) - P(2\Delta u) = G(3 \Delta u)$

Adaptive forward differences

- Since the relations between the variation of the parameter and the length of the curve is nonlinear, the method of the last slide has problems when there is a big error
 - i.e. When the polyline implicitly used to estimate the parameter values inbetwen table points is far from the actual curve
- This can be improved by computing the value of the midpoint of each interval between the table points.
 - if the sum of the sides A+B of the triangle is too different in length from the line joining the interval extre-mes C (over a threshold value), the midpoint is added to the list

Numerical meth.: Gaussian quadrature

- Another approach to computing length is bases on numerics
- Computing the length of the curve implies computing the integral of the curve length
- Gaussian quadrature uses unevenly spaced intervals to achieve the greatest accuracy
- Gaussian quadrature computes

$s=\int_{[0,1]}f(u)du\sim \Sigma_i w_i f(u_i)$

• Since Gaussian quadr. is usually defined in the interval [0,1], one has to reparametrize at first the original interval [a,b] we are considering

 This is achieved by using the new parameter t such that

t=(2u-a-b)/(b-a)

 Do not forget to apply the usual integral rules for changing parameters, that is adding the factor of parameter substitution to the integral

Adaptive Gaussian quadrature

- If the curve derivative varies very fast in some areas, and less fast in other areas, the gaussian quadrature will either undersample part of the curve, or oversample
- In this case, a similar adaptive method to the one presented before can be used:
 - One subdivides intervals in half,
 - each half is evaluated using gaussian quadrature
 - The sum of the two halves is compared to the result of the whole interval.
 - If the difference is greater than a certain threshold, then the two halves are added to the sample points

Finding u given s

- Suppose one wants to find the value of the parameter u at a given arc length s from the point R(u₁)
- This equals to solving the equation
 - s-LEN(u₁,u)=0
- Arc length is monotonic, so such a solution is unique as long as dR(u)/du is not 0

Newton-Raphson integration can be used: generate the sequence {p_n}

 $p_n = p_{n-1} - f(p_{n-1})/f'(p_{n-1})$

where

- f is s-LEN(u₁,P_{n-1})=0 and can be evaluated at p_{n-1} using techniques of last slide
- f' is dP/du evaluated at p_{n-1}
- This eliminates the need for quadrature, and is faster
- But can have two problems:
 - Some p_k might not be on the curve, thus also $p_{k+1}, p_{k+2}, ...$ will not
 - When the derivative approaches 0 we divide by zero
- Use subdivision instead

Speed control

- On a arc-length parametrized curve, it is possible to control speed
- Simplest (and dullest) control: constant speed (equal space s in equal time t)
- Easiest speed control is *ease-in/ ease-out*:
 - From standstill, accelerate until maximum speed
 - Decelerates and stop
- Speed along a curve can be controlled by varying arc length at something else than a linear function of *t*.

- The speed variations are seeable in the distance-time curve, which plots the space traversed *s* against the time *t*.
- Here is an example of a distancetime curve for ease-in

Speed control: ease in/ease out

- There are different ways of mathematically achieve ease in/ ease out
- The first one is to use the sinus between -π/2 and π/2 and scaling the parameter to cover [0,1]
- S(t)=(1/2)(sin(πt-π/2)+1)

• This curve can be split and joined with a straight line (take care of continuity at the splits) to add a period of constant speed

Speed control: constant acceleration

- The computational cost of the sinus function is high.
- A better method is to use physics for the calculations: s=vt, and v=at
- This obtains a parabolic ease-in function thus s=at²
- Similarly for deceleration one can use a constant (limited) deceleration until the object stops
- To describe the distance-time function of such a movement the following equations are used

• In formulas:

$$d = \frac{1}{2}t^{2}/2t_{1} \qquad 0 < t < t_{1}$$

$$d = \frac{1}{2}v_{0}t_{1} + v_{0}(t-t_{1}) \qquad t_{1} < t < t_{2}$$

$$d = \frac{1}{2}v_{0}t_{1} + v_{0}(t-t_{1}) + (v_{0} - \frac{1}{2}(v_{0}(t-t_{2})/1 - t_{2})(t-t_{2}))$$

$$t_{2} < t < 1$$

• Whereby v₀ is the velocity when acceleration ends

Speed control: constant acceleration

- $a=a_0$ $0 < t < t_1$ a=0 $t_1 < t < t_2$ $a=-a_0$ $t_2 < t < 1$
- $v = v_0 t/t_1$ $0 < t < t_1$ $v = v_0$ $t_1 < t < t_2$ $a = v_0 (1 - (t - t_2)/(1 - t_2) t_2 < t < 1$
- The formulas look really complicated, but there are different ways to plot this to make it understandable

General distance-time functions

- Many interesting aspects come up when allowing the user to control motion
- The more influence a user is given, the more problems come up
- Suppose the user defines some velocities at some points:
 - The rest of the velocity curve has to be fitted to these "fixed" values
 - Sometimes leading to unwanted effects (reverse velocity to fit the time contraints)

- More intuitive is to control on the space-time curve
 - This because it allows to control velocities as a tangent, and to adapt the rest of the curve accordingly
- Motion control often requires specifying positions at specific times
 - The motion is specified as a series of constraints at a specific time, formally, a t-uple <*t_i*,*s_i*,*v_i*,*a_i*,...>
 - higher order approximation is needed for smooth movement

Curve fitting

- If the animator specifies certain constraints then the time parametrized curve can be computed using these constraints as control points
- Suppose contraints are of the form (P_i,t_i) (i=1,...,j)

• It only requires to compute the curve passing through these points, i.e.

 $P(t)=\Sigma_{1,n}B_iN_{i,k}(t)$

with $2 \le k \le n+1 \le j$

- In matrix form P=NB
- Inverting this equation leads to find the control point values for the curve

Curve Fitting to position-time pairs

- Suppose the user gives the following positions and the corresponding times
- One can fit a B-spline curve to the values (P_i,t_i) (i=1,...j):
 - That is, take the general eq. of Bsplines and make it pass through points
 - Find corresp. control points.

- Computing the curve passing through these points means computing $P(t)=\Sigma_{1,..,n}B_iN_{i,k}(t)$ with $2 \le k \le n+1 \le j$
- In matrix form P=NB,
- Inverting this equation leads to find the control point values for the curve: B=N⁻¹P
- This is done through the pseudoinverse: P=NB N^TP=N^TNB [N^TN]⁻¹N^TP=B
- Remember the tradeoff: the higher the order, the higher the wiggling

Bauhaus-Universität Weimar

Faculty of Media

Interpolation of quaternion rotations

- A major reason for choosing quaternions is that they can be easily interpolated
- Quaternion form can be interpolated to produce good intermediate orientations
- This does not work easily with direct interpolation
- Unit quaternions are used to represent orientation, and can be seen as point of on the unit sphere in 4-dimensional space

- To interpolate between two unit quaternions, one can linearly interpolate
- But this will not produce constant speed rotation, because a path on a sphere is not the same as a path on a plane (which is what linear interpol. follows)
- Equal speed interpolations can be computed by interpolating directly on the path on the sphere

Interpolation of quaternion rotations

- The problem (of course) is how to do that
- Remember: q=[s,v] and –q=[-s,-v] represent the same orientation
- So interpolation from q_1 to q_2 can be also carried between q_1 and $-q_2$.
- The difference is that one path will be longer
- The shorter one is the one distinguished by the smallest angle

 One can compute the cosine of the angle between q₁ and q₂:

 $\cos\theta = q_1 \cdot q_2 = s_1 \cdot s_2 + v_1 \cdot v_2$

- If it is positive, then shortest path is from q₁ to q₂
- Else shortest path is from q₁ to q₂

Interpolation of quaternion rotations

 So, the spherical linear interpolation (SLERP) between q₁ and q₂ with parameter ul[0,1] is

```
SLERP(q<sub>1</sub>,q<sub>2</sub>,u)=((sin((1-u)\theta))/sin\theta))q<sub>1</sub>+
(sin(u\theta))/sin\thetaq<sub>2</sub>
```

- Note that this does not generate a unit quaternion, so one has to normalize the result
- Notice that in the case u=1/2, SLERP is easy to compute except for a scaling factor
- Finally notice that if a chain of SLERPs is performed, it will perform similarly to linear interpolation (i.e. with rough changes)
- Higher order interpolations, based on Bezier curves, have been developed, but are beyond the purpose of this lesson

Following a path

- Animating an object to move along a path is quite natural and common
- Not only following the path is needed: also moving the orientation
- Typically, one would have a local coordinate system associated with the object
- Let the coordinates be (u,v,w), and suppose they are right handed

- Suppose the origin of the coordinate system follows the curve P(s), and that the movement of P(s) is specified
- Call POS the current position
- One can view the u,v,w coordinates as a view vector, an up vector and a vector perpendicular to u and v
- This is similar to camera definition in Computer Graphics

•

- The orientation of the camera system can be made dependent from the properties of the curve P(s)
- A Frenet frame is given by the following axes definitions

- w follows the tangent of the curve (its first derivative P'(s))
- v is orthogonal to w and in the direction of the second order derivative (P´´(s))
- u is the cross product of w and v
- In symbols: w=P´(s) u=(P´(s) × P´´(s) v=w × u

- Frenet frames are quite nice, but bear some flaws
- When the curve has no curvature, its second order derivative is zero. Here the Frenet frame is undefined
 - This problem can be solved by interpolating the Frenet frames at the start and end of the rectilineal trait
 - Since the tangent vector must be the same at the extremities, it is only a rotation that has to be interpolated

- A more complicated problem occurs at discontinuities in the curvature vector
- For example, when the path follows first a circle, and then a second circle
- At the problem point, the curvature will switch to pointing from one circle center to the other one
- Here, the Frenet frame is defined everywhere but is discontinuous
- Here, the object will rotate wildly along the path with "instant switches"

- The worst problem is that the path following is not so natural:
 - when we view at something, we we do not look along the tangent
 - When we move, we anticipate curves
- Similar effect to your car light not following the road

- Also, one might want to make the object bend towards the interior to "anticipate the force"
- or, opposite, to let it bend out to give the effect of a force acting on the object

Camera Path Following: Center of Interest

- A more natural way of specifying the orientation of a camera is to use the center of interest (COI)
 - One can view towards a fixed point
 - Or alternatively the center of an object
- Good method for a camera circling some arena of action
- The center of interest is specified, and so the view vector w=COI-POS

- This leaves one degree of freedom
 in camera specification
- One simple way is to set the view vector v as viewing "up", i.e. perpendicular to w and lying in the wy plane w=COI-POS

- This works quite well for a camera moving along a path and focussing to a single object.
- When it gets very close to the object, this results in drastic changes (fly-near effect)
- This is not always bad!!!

Camera Path Following: Center of Interest

- There are variations to specifying a fixed point
- One can for example specify various points on the camera path itself
- The up vector
 - is usually specified as lying in the *wy* plane
- But one can also allow the user to input
 - Either a tilting value with respect to the default up vector
 - Or the up vector on a whole

- Following a points on the path is relatively easy:
 - If P(s) describes the position on the curve, then P(s+δs), with δs
 >0, specifies its position in the future
 - It is advisable to choose points at equidistances on the curve, so as to make changes not that noticeable
 - Alternatively, one can take the baricenter of some future points to avoid too much hopping
- The real flaw of this method is the fact that camera views look jerky

Camera Path Following: Center of Interest

- A better method is to use instead of some function of the position path, a different function altogether for the POI
- Let P(s) be the curve of the camera path, and C(s) the curve of the COI (obviously the animator specifies this)
- Similarly, and up vector path must be specified U(s), so that the general up direction is U(s)-P(s)

• The resulting coordinates for the camera will then become

w=C(s)-P(s) $u=w \times (U(s)-P(s))$ $v=u \times w$

- This gives maximum control, but is also difficult to control.
- An easy way of specifying C(s) is to use fixed positions, with ease-in/ease-out moves between the different fixed points

Smoothing paths

- There are several ways to smooth a path if it has been generated by a sample process, such as a motion capturing system
- This path acquisition method is getting more and more frequent and inexpensive
- However, data here can be prone to noise or imprecision, depending on the input method

Courtesy Animazoo Ltd.

Smoothing paths: linear interpolation

- The simplest way of smoothing the data is to average neighbouring data point.
- Suppose we have the chain of points {P_i}_{i=0,N}
- In the simplest form, one averages P_i as the average itself and of P_{i-1} and P_{i+1}.

$$P'_{i} = \frac{P_{i} + \frac{P_{i-1} + P_{i+1}}{2}}{2} = \frac{1}{4}P_{i-1} + \frac{1}{2}P_{i} + \frac{1}{4}P_{i+1}$$

 Obviously, here the "spikes" are flattened, so applying this method many times makes little sense

Smoothing paths: cubic interpolation

- A second method use the four adjacent points P_{i-2},P_{i-1},P_{i+1},P_{i+2} on either side to fit a cubic curve that is then evaluated at the midpoint.
- This midpoint is averaged with the original point to obtain the smoothed point
- Remembering that a 3rd order curve was P(u)=au³+bu²+cu+d

One obtains $P_{i-2}=P(0)=d$ $P_{i-1}=P(1/4)=$ a(1/64)+b(1/16)+c/4+d $P_{i+1}=P(3/4)=$ a(27/64)+b(9/16)+3c/4+d $P_{i+2}=P(1)=a+b+c+d$

Smoothing paths: cubic interpolation

- For the last points, a parabolic arc can be computed to fit the second and forelast points
- Notice that here the curve will be of the form au²+bu+c , and the equation turns into

 $P'_1=P_2+1/3(P_0-P_3)$ and similarly for the last three points

Smoothing paths: convolution kernels

- If the data can be viewed as a data function y_i=f(x_i) then convolution can be used to smooth the data
- Convolution with the convolution kernel g(u) defined in the interval

[-s,s] is in fact computing

 $P(x)=\int_{[-s,s]}f(x+u) g(u) du$

 The resulting integral can be computed directly or approximated by discrete means

Smoothing paths: B-spline approximation

- If the path does not necessarily have to pass through the sample points, one can use approximation methods we saw before
- Particularly B-splines are well adapted for the defining a path tacked from real data

Path along a surface

- If an object needs to follow a surface when it moves, then a path on the surface itself has to be found
- If we know start and endpoints, then this is simple:
 - trace a plane "perpendicular" to the surface
 - Compute the intersection planesurface

- Alternatively, other methods can be used, for example if one wants to follow the "valleys" on the surface
- Here "greedy" methods can be used, or methods that compute the normal to the surface and follow it

Keyframe systems

- Early computer animation systems were keyframe systems
- Most were 2D too, and implemented keyframe animations made by hand
- In computer animation a key frame is a variable set by the user at specific timepoints
- The system interpolates intermediate frames from the key frames

• The interpolation is quite straightforward if the shapes to be interpolated have the same number of controlling points

Keyframe systems

- In this case, linear interpolation can be used to produce the inbetween frames
- However, this is not the general case
- The general problem is: given two curves in 2D, how do I transform them into each other?
- If both curves are of the same type (eg Bezier of 3rd degree) then one can interpolate between control points
- Another method is to use interpolating functions to generate the same numbers of points on both lines, and then interpolate these points

However, this does not allow sufficient control

Keyframe systems

- Reeves proposed a method based on surface patch technology to solve the problem of interpolating a curve in time
- Basically, one defines a patch in 3D to join the curves and allow the time parameter to be interpolated
- Sample points are taken on the patch to define the intermediate curves (=curves at inbetweens)

Animation languages

- In recent times, scripting languages have been developed to support animation systems
- Most animation languages are not easy to understand, and are close to hardcore programming
- A typical animation language is Renderman, or Alias/wavefront 's MEL
- Their big advantage is control

Animation languages

- Some effort has been put to accomodate unskilled artistic animators without scripting capabilities
- Simpler scripting languages such as ANIMA II have been developed
- Recently, actor based languages have appeared
- This is a novel approach but still at its infancy
- The idea is to have objects (=actors) and the instantiation of their variables representing the moving parameters
- Finally, the development of avatars has generated the need for some form of interaction with the animated models.

End

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

Bauhaus-Universität Weimar

Charles A. Wüthrich

Faculty of Media