
Computer Animation  
4-Motion Control 

SS 15 

Prof. Dr. Charles A. Wüthrich,  
Fakultät Medien, Medieninformatik 
Bauhaus-Universität Weimar 
caw AT medien.uni-weimar.de 



Controlling motion along curves 

•  We all know now how to control 
the shape of the curve 

•  To an animator, it is equally 
important to know the speed at 
which a curve is traced by 
increasing parametric steps 

•  Obviously, since motion curves 
are of higher order, this relation 
is not straightforward  

•  Equal parameter intervals do 
not lead to arcs of equal length 
on the curve 

•  That is, speed is different at 
different points of the curve 

•  This can be overcome through a 
reparametri-zation of the curve 



Curve length 

•  There are different methods to 
compute such a 
reparametrization 

•  One can create a table of 
values so as to establish a 
relationship between arc length 
and parameter values 

•  In the first two method, one 
creates a table of values to 
establish the relationship 
between parametric value 
and approximate arc length  

•  Once the table is built, one 
can use the table to 
approximate values of the 
parameter at steps of equal 
length along the curve 



Curve length 

•  The first method supersamples 
the curve, and then uses 
summed linear ´distance to 
compute the approximate arc 
length 

•  The second method uses 
Gauss quadrature to 
numerically estimate the arc 
length 

•  Both methods can use adaptive 
subdivision to control the error 

•  The third method analytically 
computes arc length. 
Unfortunately, it is not always 
possible to do so for all curves. 



Computing arc length 

•  To specify how fast the object 
moves in the environment, 
animators might want to specify 
the time at which positions 
along the curve are reached. 

•  This in general would be 
position and frame pairs. 

•  Or, maybe, the animator might 
want to specify velocities 

•  For example:  
–  start at position A 
–  accellerate till frame 20 
–  move at constant speed till frame 35 
–  Decelerate slowly till frame 60 and 

end at position B 
•  It is clear what we want: be able to 

control not only the curve (space 
function), but also the relationship 
between position and time 
(distance-time function).  

•  The distance we are traveling along 
the curve is called the arc length 
and will be denoted by s. 



Computing arc length 

•  Suppose that we are moving 
along the curve  
 
         P(u)=UTMB 
 

•  The relation between parameter 
and arc length is not linear. 

•  When a unit change in 
parameter results in a unit 
change in curve length the 
curve is said to be parametrized 
by arc length 

•  How do I establish the 
relationship between parameter 
and arc length? 

•  What we want is to kow the 
function s=G(u) which computes 
the length of the curve from it 
starting point for all values of 
the paramenter u 

•  If we have G, then knowing G-1 
allows us to compute the 
parameter values corresponding 
to a certain length 



Arc length: analytic approach 

•  Obviously, the length of a curve 
between parameter values u1 
and u2 is 
 
     s=∫[u1,u2]|dP/du|du, 
  
where 
 
dP/du= 
   ((dx(u)/du), (dy(u)/du), (dz(u),du)) 
 
and 
 
 |dP/du|=SQRT(dx(u)/du)2+ 
     (dy(u)/du)2+ dx(z)/du)2) 

•  For a cubic curve 
  P(u)=au3+bu2+cu+d 
this will mean that the derivative 
of one of the 3 eq with respect 
to u is 
   dx(u)/du=3axu2+2bxu+cx 
and under the SQRT one would 
have a curve of 4th degree 
   Au4+Bu3+Cu2+Du+E 

•  With a bit of computations one 
can compute then A,B,C,D 



Arc length: Estimating through forward 
differences 

•  Suppose we have P(u). 
•  One can compute a table of the 

distance of  P(u) from the point P(0) 
at regular intervals:  
 
P(0), P(Δu), P(2Δu),..,P(1) 
 
that is, containing  
 
   P((i+1)Δu)-P(i Δu)  

•  One can interpolate these values 
first order (or higher order) to 
estimate the length of a segment in 
image space 

•  Conversely, one can use similar 
methods to deduce from the right 
hand column the corresponding 
value of u 

•  Main problem with this approach is 
controlling the error 

0 |P(Δu)-P(0)|=G(Δu) 

Δu G(ΔU) +|P(2Δu)-P(Δu)|=G(2 Δu) 

2 Δu G(2ΔU) +|P(3Δu)-P(2Δu)|=G(3 Δu) 

... ... 



Adaptive forward differences 

•  Since the relations between the 
variation of the parameter and 
the length of the curve is non-
linear, the method of the last 
slide has problems when there 
is a big error 

–  i.e. When the polyline implicitly 
used to estimate the parameter 
values inbetwen table points is 
far from the actual curve  

•  This can be improved by 
computing the value of the  
midpoint of each interval 
between the table points.  

–  if the sum of the sides A+B of 
the triangle is too different in 
length from the line joining the 
interval extre-mes C (over a 
threshold value), the midpoint is 
added to the list 

A A B B 
C C 
Bad Better 



Numerical meth.: Gaussian quadrature 

•  Another approach to computing 
length is bases on numerics 

•  Computing the length of the curve 
implies computing the integral of the 
curve length 

•  Gaussian quadrature uses unevenly 
spaced intervals to achieve the 
greatest accuracy 

•  Gaussian quadrature computes 
 
 s=∫[0,1]f(u)du~Σiwif(ui) 
 

•  Since Gaussian quadr. is usually 
defined in the interval [0,1], one has 
to reparametrize at first the original 
interval [a,b] we are considering 

•  This is achieved by using the new 
parameter t such that 
 
    t=(2u-a-b)/(b-a) 
 

•  Do not forget to apply the usual 
integral rules for changing 
parameters, that is adding the factor 
of parameter substitution to the 
integral 



Adaptive Gaussian quadrature 

•  If the curve derivative varies 
very fast in some areas, and 
less fast in other areas, the 
gaussian quadrature will either 
undersample part of the curve, 
or oversample 

•  In this case, a similar adaptive 
method to the one presented 
before can be used: 

–  One subdivides intervals in half,  
–  each half is evaluated using 

gaussian quadrature 
–  The sum of the two halves is 

compared to the result of the 
whole interval.  

–  If the difference is greater than 
a certain threshold, then the 
two halves are added to the 
sample points 



Finding u given s 

•  Suppose one wants to find the 
value of the parameter u at a 
given arc length s from the point 
R(u1) 

•  This equals to solving the 
equation 
    s-LEN(u1,u)=0 

•  Arc length is monotonic, so 
such a solution is unique as 
long as dR(u)/du is not 0 

•  Newton-Raphson integration can be 
used: generate the sequence {pn} 
 
       pn=pn-1-f(pn-1)/f´(pn-1) 
 
where 

–  f is s-LEN(u1,Pn-1)=0 and can be 
evaluated at pn-1 using techniques of 
last slide 

–  f´ is dP/du evaluated at pn-1 

•  This eliminates the need for 
quadrature, and is faster 

•  But can have two problems: 
–  Some pk might not be on the curve, 

thus also pk+1,pk+2,.. will not 
–  When the derivative approaches 0 

we divide by zero 
•  Use subdivision instead 



1 

Speed control 

•  On a arc-length parametrized curve, 
it is possible to control speed 

•  Simplest (and dullest) control: 
constant speed (equal space s in 
equal time t) 

•  Easiest speed control is ease-in/
ease-out:  

–  From standstill, accelerate until 
maximum speed 

–  Decelerates and stop 
•  Speed along a curve can be 

controlled by varying arc length at 
something else than a linear 
function of t.  

•  The speed variations are seeable in 
the distance-time curve, which plots 
the space traversed s against the 
time t. 

•  Here is an example of a distance-
time curve for ease-in 

s 

t 1 



Speed control: ease in/ease out 

•  There are different ways of 
mathematically achieve ease in/
ease out 

•  The first one is to use the sinus 
between –π/2 and π/2 and 
scaling the parameter to cover 
[0,1] 

•  S(t)=(1/2)(sin(πt-π/2)+1) 

•  This curve can be split and 
joined with a straight line  (take 
care of continuity at the splits) to 
add a period of constant speed   



Speed control: constant acceleration 

•  The computational cost of the sinus 
function is high. 

•  A better method is to use physics for 
the calculations: s=vt, and v=at 

•  This obtains a parabolic ease-in 
function thus s=at2 

•  Similarly for deceleration one can 
use a constant (limited) deceleration 
until the object stops 

•  To describe the distance-time 
function of such a movement the 
following equations are used 

•  In formulas: 
 
d=½t2/2t1               0<t<t1 
d=½v0t1+v0(t-t1)    t1<t<t2 
d=½v0t1+v0(t-t1) + 
    (v0-½(v0(t-t2)/1-t2)(t-t2) 
                              t2<t<1 

•  Whereby v0  is the velocity when 
acceleration ends 



Speed control: constant acceleration 

•  a=a0                       0<t<t1 
a=0                        t1<t<t2  
a=-a0                      t2<t<1 

•  v=v0t/t1                  0<t<t1 
v=v0                       t1<t<t2  
a=v0(1-(t-t2)/(1-t2) t2<t<1 

•  The formulas look really 
complicated, but there are 
different ways to plot this to 
make it understandable 

s 

t 1 

a 

t 
1 

0 
t1 

t2 

v 

t 1 t2 t1 

t1 t2 



General distance-time functions 

•  Many interesting aspects come up 
when allowing the user to control 
motion 

•  The more influence a user is given, 
the more problems come up 

•  Suppose the user defines some 
velocities at some points: 

–  The rest of the velocity curve has to 
be fitted to these „fixed“ values 

–  Sometimes leading to unwanted 
effects (reverse velocity to fit the 
time contraints) 

•  More intuitive is to control on the 
space-time curve 

–  This because it allows to control 
velocities as a tangent, and to adapt 
the rest of the curve accordingly 

•  Motion control often requires 
specifying positions at specific times 

–  The motion is specified as a series 
of constraints at a specific time, 
formally, a t-uple <ti,si,vi,ai,...> 

–  higher order approximation is 
needed for smooth movement 



Curve fitting 

•  If the animator specifies certain 
constraints then the time 
parametrized curve can be 
computed using these 
constraints as control points  

•  Suppose contraints are of the 
form (Pi,ti) (i=1,...,j) 

•  It only requires to compute 
the curve passing through 
these points, i.e. 
 
     P(t)=Σ1,nBiNi,k(t) 
 
with 2 ≤ k ≤ n+1≤ j 

•  In matrix form P=NB 
•  Inverting this equation leads 

to find the control point 
values for the curve 



Curve Fitting to position-time pairs 

•  Suppose the user gives the following 
positions and the corresponding 
times 

•  One can fit a B-spline curve to the 
values (Pi,ti) (i=1,...j):  

–  That is, take the general eq. of B-
splines and make it pass through 
points 

–  Find corresp. control points. 

•  Computing the curve passing 
through these points means 
computing P(t)=Σ1,..,nBiNi,k(t) 
with 2 ≤ k ≤ n+1≤j 

•  In matrix form P=NB,  
•  Inverting this equation leads to find 

the control point values for the 
curve: B=N-1P 

•  This is done through the 
pseudoinverse:  
P=NB 
NTP=NTNB 
[NTN]-1NTP=B 

•  Remember the tradeoff: the higher 
the order, the higher the wiggling 

P1 
P2 

P3 

P4 

P5 

P6 

t=0 
t=10 

t=35 

t=50 

t=55 

t=60 



Interpolation of quaternion rotations 

•  A major reason for choosing 
quaternions is that they can be 
easily interpolated 

•  Quaternion form can be interpolated 
to produce good intermediate 
orientations 

•  This does not work easily with direct 
interpolation 

•  Unit quaternions are used to 
represent orientation, and can be 
seen as point of on the unit sphere 
in 4-dimensional space 

•  To interpolate between two unit 
quaternions, one can linearly 
interpolate 

•  But this will not produce constant 
speed rotation, because a path on a 
sphere is not the same as a path on 
a plane (which is what linear 
interpol. follows) 

•  Equal speed interpolations can be 
computed by interpolating directly 
on the path on the sphere 

Non equal intervals 

Equal intervals 



Interpolation of quaternion rotations 

•  The problem (of course) is how 
to do that 

•  Remember: q=[s,v] and  
–q=[-s,-v] represent the same 
orientation 

•  So interpolation from q1 to q2 
can be also carried between q1 
and -q2. 

•  The difference is that one path 
will be longer 

•  The shorter one is the one 
distinguished by the smallest 
angle  

•  One can compute the cosine of 
the angle between q1 and q2: 
 
  cosθ= q1⋅q2=s1⋅s2+v1· v2 
 

•  If it is positive, then shortest 
path is from q1 to q2  

•  Else shortest path is from q1 to -
q2 



Interpolation of quaternion rotations 

•  So, the spherical linear interpolation (SLERP) between q1 and q2 with 
parameter uÎ[0,1] is 
 
    SLERP(q1,q2,u)=((sin((1-u)θ))/sinθ))q1+ 
                                (sin(uθ))/sinθq2 
 

•  Note that this does not generate a unit quaternion, so one has to 
normalize the result 

•  Notice that in the case u=1/2, SLERP is easy to compute except for a 
scaling factor 

•  Finally notice that if a chain of SLERPs is performed, it will perform 
similarly to linear interpolation (i.e. with rough changes) 

•  Higher order interpolations, based on Bezier curves, have been 
developed, but are beyond the purpose of this lesson 



Following a path 

•  Animating an object to move 
along a path is quite natural and 
common 

•  Not only following the path is 
needed: also moving the 
orientation 

•  Typically, one would have a 
local coordinate system 
associated with the object 

•  Let the coordinates be (u,v,w), 
and suppose they are right 
handed 

•  Suppose the origin of the coordinate 
system follows the curve P(s), and 
that the movement of P(s) is 
specified 

•  Call POS the current position 
•  One can view the u,v,w coordinates 

as a view vector, an up vector and a 
vector perpendicular to u and v 

•  This is similar to camera definition in 
Computer Graphics 



Following a path: Frenet Frame 

•  The orientation of the camera 
system can be made dependent 
from the properties of the curve 
P(s) 

•  A Frenet frame is given by the 
following axes definitions 

–  w follows the tangent of the 
curve (its first derivative P´(s)) 

–  v is orthogonal to w and in the 
direction of the second order 
derivative (P´´(s)) 

–  u is the cross product of w and 
v 

•  In symbols: 
     w=P´(s) 
     u=(P´(s) × P´´(s) 
     v=w × u 

u 

w 

v 



Following a path: Frenet Frame 

•  Frenet frames are quite nice, 
but bear some flaws 

•  When the curve has no 
curvature, its second order 
derivative is zero. Here the 
Frenet frame is undefined 

–  This problem can be solved by 
interpolating the Frenet frames 
at the start and end of the 
rectilineal trait 

–  Since the tangent vector must 
be the same at the extremities, 
it is only a rotation that has to 
be interpolated 

u 

w 

v u 
w 

v 



Following a path: Frenet Frame 

•  A more complicated problem occurs 
at discontinuities in the curvature 
vector 

•  For example, when the path follows 
first a circle, and then a second 
circle 

•  At the problem point, the curvature 
will switch to pointing from one circle 
center to the other one 

•  Here, the Frenet frame is defined 
everywhere but is discontinuous 

•  Here, the object will rotate wildly 
along the path with „instant 
switches“ 

u 

Problem spot 

Curvature  
(left) 

Curvature  
(right) 



Following a path: Frenet Frame 

•  The worst problem is that the 
path following is not so 
natural:  
–  when we view at something, 

we we do not look along the 
tangent 

–  When we move, we 
anticipate curves 

•  Similar effect to your car light 
not following the road  

•  Also, one might want to 
make the object bend 
towards the interior to 
„anticipate the force“ 

•  .... or, opposite, to let it bend 
out to give the effect of a 
force acting on the object 

u 



Camera Path Following:  
Center of Interest 

•  A more natural way of specifying the 
orientation of a camera is to use the 
center of interest (COI) 

–  One can view towards a fixed point 
–  Or alternatively the center of an 

object 
•  Good method for a camera circling 

some arena of action 
•  The center of interest is specified, 

and so the view vector w=COI-POS  

•  This leaves one degree of freedom 
in camera specification 

•  One simple way is to set the view 
vector v as viewing „up“, i.e. 
perpendicular to w and lying in the 
wy plane  
    w=COI-POS 
    u= w × y 
    v= u × w 

•  This works quite well for a camera 
moving along a path and focussing 
to a single object. 

•  When it gets very close to the 
object, this results in drastic 
changes (fly-near effect) 

•  This is not always bad!!! 



Camera Path Following:  
Center of Interest 

•  There are variations to 
specifying a fixed point 

•  One can for example specify 
various points on the camera 
path itself 

•  The up vector  
–  is usually specified as lying in 

the wy plane 
•  But one can also allow the user 

to input  
–  Either a tilting value with 

respect to the default up vector 
–  Or the up vector on a whole 

•  Following a points on the path is 
relatively easy: 

–  If P(s) describes the position on 
the curve, then P(s+δs), with δs 
>0, specifies its position in the 
future 

–  It is advisable to choose points 
at equidistances on the curve, 
so as to make changes not that 
noticeable 

–  Alternatively, one can take the 
baricenter of some future points 
to avoid too much hopping 

•  The real flaw of this method is 
the fact that camera views look 
jerky 



Camera Path Following:  
Center of Interest 

•  A better method is to use 
instead of some function of the 
position path, a different 
function altogether for the POI 

•  Let P(s) be the curve of the 
camera path, and C(s) the curve 
of the COI (obviously the 
animator specifies this) 

•  Similarly, and up vector path 
must be specified U(s), so that 
the general up direction is U(s)-
P(s) 

•  The resulting coordinates for the 
camera will then become 
 
    w=C(s)-P(s) 
    u=w × (U(s)-P(s)) 
    v=u × w 
 

•  This gives maximum control, but 
is also difficult to control. 

•  An easy way of specifying C(s) 
is to use fixed positions, with 
ease-in/ease-out moves 
between the different fixed 
points 



Smoothing paths 

•  There are several ways to 
smooth a path if it has been 
generated by a sample process, 
such as a motion capturing 
system 

•  This path acquisition method is 
getting more and more frequent 
and inexpensive 

•  However, data here can be 
prone to noise or imprecision, 
depending on the input method 

C
ou

rte
sy

 A
ni

m
az

oo
 L

td
. 



Smoothing paths: linear interpolation  

•  The simplest way of smoothing 
the data is to average 
neighbouring data point.  

•  Suppose we have the chain of 
points {Pi}i=0,N 

•  In the simplest form, one 
averages Pi as the average 
itself and of Pi-1 and Pi+1. 

–  Obviously, here the „spikes“ 
are flattened, so applying 
this method many times 
makes little sense 

11

11

4
1

2
1

4
1

2
2´ +−

+−

++=

+
+

= iii

ii
i

i PPP

PPP
P



Smoothing paths: cubic interpolation  

•  A second method use the four 
adjacent points  
Pi-2,Pi-1,Pi+1,Pi+2   
on either side to fit a cubic curve 
that is then evaluated at the 
midpoint. 

•  This midpoint is averaged with 
the original point to obtain the 
smoothed point 

•  Remembering that a 3rd order 
curve was 
P(u)=au3+bu2+cu+d    

•  One obtains 
 Pi-2=P(0)=d 
 Pi-1=P(1/4)= 
  a(1/64)+b(1/16)+c/4+d 
 Pi+1=P(3/4)= 
  a(27/64)+b(9/16)+3c/4+d 
 Pi+2=P(1)=a+b+c+d 

Pi-2 

Pi-1 

Pi+1 

Pi+2 

Pi 

P(0) 

P(1/4) 

P(1/2) P(3/4) 

P(1) 

P´i 



Smoothing paths: cubic interpolation  

•  For the last points, a parabolic arc can be computed to fit the 
second and forelast points  

•  Notice that here the curve will be of the form au2+bu+c , and the 
equation turns into 
                 P´1=P2+1/3(P0-P3) 
and similarly for the last three points 



Smoothing paths: convolution kernels  

•  If the data can be viewed as a 
data function yi=f(xi) then 
convolution can be used to 
smooth the data 

•  Convolution with the convolution 
kernel g(u) defined in the 
interval  
[-s,s] is in fact computing 
 
  P(x)= ∫[-s,s]f(x+u) g(u) du 

•  The resulting integral can be 
computed directly or 
approximated by discrete 
means 



Smoothing paths: B-spline approximation 

•  If the path does not necessarily have to pass through the 
sample points, one can use approximation methods we saw 
before 

•  Particularly B-splines are well adapted for the defining a path 
tacked from real data 



Path along a surface 

•  If an object needs to follow a 
surface when it moves, then a 
path on the surface itself has to 
be found 

•  If we know start and endpoints, 
then this is simple:  

–  trace a plane „perpendicular“ to 
the surface 

–  Compute the intersection plane-
surface 

•  Alternatively, other methods can 
be used, for example if one 
wants to follow the „valleys“ on 
the surface 

•  Here „greedy“ methods can be 
used, or methods that compute 
the normal to the surface and 
follow it 



Keyframe systems 

•  Early computer animation 
systems were keyframe 
systems 

•  Most were 2D too, and 
implemented keyframe 
animations made by hand  

•  In computer animation a key 
frame is a variable set by the 
user at specific timepoints 

•  The system interpolates 
intermediate frames from the 
key frames 

•  The interpolation is quite 
straightforward if the shapes to 
be interpolated have the same 
number of controlling points 



Keyframe systems 

•  In this case, linear interpolation can be 
used to produce the inbetween frames 

•  However, this is not the general case 
•  The general problem is: given two curves 

in 2D, how do I transform them into each 
other? 

•  If both curves are of the same type (eg 
Bezier of 3rd degree) then one can 
interpolate between control points 

•  Another method is to use interpolating 
functions to generate the same numbers 
of points on both lines, and then 
interpolate these points 

•  However, this does not allow 
sufficient control 

P(u) 

Q(v) 



Keyframe systems 

•  Reeves proposed a method based on surface patch technology to 
solve the problem of interpolating a curve in time 

•  Basically, one defines a patch in 3D to join the curves and allow the 
time parameter to be interpolated 

•  Sample points are taken on the patch to define the intermediate curves 
(=curves at inbetweens) 



Animation languages 

•  In recent times, scripting languages have been developed to support 
animation systems 

•  Most animation languages are not easy to understand, and are close to 
hardcore programming 

•  A typical animation language is Renderman, or Alias/wavefront‘s MEL 
•  Their big advantage is control 



Animation languages 

•  Some effort has been put to accomodate unskilled artistic animators 
without scripting capabilities 

•  Simpler scripting languages such as ANIMA II have been developed 
•  Recently, actor based languages have appeared 
•  This is a novel approach but still at its infancy 
•  The idea is to have objects (=actors) and the instantiation of their 

variables representing the moving parameters 
•  Finally, the development of avatars has generated the need for some 

form of interaction with the animated models. 



Charles A. Wüthrich 

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++  

End 

C
op

yr
ig

ht
 (c

) 1
98

8 
IL

M
  


