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Parametric curves 

•  Curves and surfaces can have 
explicit, implicit, and parametric 
representations.  

–  Explicit equations are of the form 
y=f(x) 

–  Implicit equations of the form 
f(x,y)=0 

–  Parametric equations are of the form  
 

•  Parametric representations are the 
most common in computer graphics 
and animation. 

•  They are independent from the axes 
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Parametric curves 

•  Parametrization is not 
unique: take a look at the 
straight line: 
L(P0,P1) = P0 + u(P1-P0)= 
                  (1-u)P0+uP1,  
                  u∈[0,1]  
L(P0,P1) = v(P1-P0)/2 +      
         (P1+P0)/2, v ∈ [-1,1]  

•  They represent the same 
line 

•  Parameterizations can be 
changed to lie between 
desired bounds.  
To reparameterize from  
u∈[a,b] to w∈[0,1],  
we can use  
w=(u-a)/(b-a), which gives u 
= w(b-a) + a.  

•  Thus, we have:  
 
P(u), u∈[a,b] =  
P(w(b-a)+a), w∈[0,1]  



Linear interpolation 

•  Consider the straight line 
passing through P0 and P1: 
    P(u)=(1-u)P0+uP1 

•  Since (1-u) and u are 
functions of u, one can 
rewrite the eq. above as 
 P(u)=F0(u)P0+F1(u)P1 

•  Note that F0(u)+F1(u)=1 
•  F0(u) and F1(u) are called 

blending functions. 

•  Alternatively, one can rewrite 
the function as 
    P(u)=(P1- P0)u+P0 
    P(u)=a1u+a0 

•  This called the algebraic 
form of the equation 



Linear interpolation 

•  One can also rewrite theese 
equations in matrix notation:  

•  Note that the last one of these 
equations decomposes the 
equation in the product of 
variables (U), coefficients (M) 
and geometric information (B) 
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Arc length 

•  Note that there is not necessarily a linear relation between the 
parameter u and the arc length described by the curve 

•  For example, also the equation  
 
            P(u)=P0+((1-u)u+u)(P1-P0) 
 
represents the same straight line, but the relationship between u and 
the arc length is non linear.  

•  This means that there is not necessarily an obvious relationship 
between changes in parameter and distance travelled and changes in 
the parameter 



Derivatives of a curve 

•  Any parametric curve of 
polynomial order can be 
expressed in the form  
         P(u)=UTMB 

•  Since only the matrix U contains 
the variable, then it is easy to 
compute the derivative of a 
parametric curve 

•  For a curve of third degree we 
have 

 
 
 
P(u)=UTMB= 

      [u3 u2 u 1] MB 
P´(u)=U´TMB= 

      [3u2 2u 1 0] MB 
P´´(u)=U´´TMB= 

      [6u 2 0 0] MB 
 



Hermite interpolation 

•  Hermite interpolation generates a 
cubic polynomial between two 
points. 

•  Here, to specify completely the 
curve the user needs to provide two 
points P0 and P1 and the tangent to 
the curve in these two points P´0 P´1 

•  Remember, we write in the form 
P(u)=UTMB 

•  For Hermite interpolation we have 
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Hermite interpolation 

•  Suppose that an interpolation curve 
is wanted passing through n  points 
P0,P1, …,Pn. 

•  The interpolation curve through 
them can be defined as a piecewise 
defined curve 

•  In fact, if one ensures that the 
resulting curve is not only 
continuous at the joints, but also 
that  

–  Its tangent (=velocity) 
–  Its second order derivative  

(= acceleration) 
   are continuous, then the curve can 

be used also in animations. 

P0 

P1 

P´1 

P´0 

P´2 

P2 



Continuity: parametric and geometric 

•  For a piecewise defined curve, there are two main ways of defining the 
continuity at the borders of the single intervals of definition 

–  1st order parametric continuity (C1): the end tangent vector at the two ends 
must be exactly the same  

–  1st order geometric continuity (G1): the direction of the tangent must be the 
same, but the magnitudes may differ 

–  Similar definitions for higher oder  continuity (C2-G2) 
•  Parametric continuity is sensitive to the „velocity“ of the parameter on 

the curve, geometric continuity is not 



Catmull-Rom spline 

•  A Catmull-Rom spline is a 
special Hermite curve where the 
tangent of the middle points is 
computed as one half the vector 
joining the previous control point 
to the next one 

•      P´i=1/2(Pi+1-Pi-1) 
•  From this we deduce: 

Pi-1 

Pi 

P´i 

Pi+1-Pi-1 

Pi+1 
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Catmull-Rom spline 

•  If one wants to write the 
complete Catmull-Rom spline, 
one needs a method to find the 
tangents at the initial and final 
points  

•  One method used involves 
subtracting P2 from P1 and then 
using the point obtained as the 
direction of the tangent 

•  P´0=½(P1-(P2-P1)-P0)= 
½(2P1-P2-P0) 

P0 

P1 

P´1 
P´0 

P2 
-(P2-P1) 



Catmull-Rom spline 

•  Advantage of Catmull-Rom splines: 
fast and simple computations 

•  Disadvantage: tangent vector is not 
this flexible: for example, all curves 
below have same tangent in Pi  

Pi-1 

Pi 

P´i 

Pi+1-Pi-1 

Pi+1 

Qi 
Ri 



Catmull-Rom spline 

•  A simple alternative is to 
compute the tangent at the point 
as the ⊥ of  the bisector of the 
angle formed by Pi-1-Pi and  
Pi+1-Pi 

•  Another modification is to not 
impose same tangent lenth at 
the points, but different lenghts 
on the two sides of the joint.  

•  The tangent vectors can be 
scaled for example by the ratio 
of the distance between current 
point and former point and the 
distance between former and 
next point.  

•  This obtains more „adaptable“ 
tangents, but trades also off C1 
continuity 

Pi-1 

Pi 
P´i 

Pi+1-Pi Pi+1 

Pi-1-Pi 



Four point form 

•  Suppose you have 4 points P0P1P2P3 and to want a cubic segment 
fitting through them.  

•  Une can set up a linear system of equations through the points and 
solve 
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Four point form 

•  In the case that you want the parameter values at the points to 
be (0,1/3,2/3,1), the matrix is 
 
 
 
 
 
 
With this form it is difficult to join segments with C1 continuity 
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Blended parabolas 

•  One other method is through blending two overlapping 
parabolas 

•  The blending is done by taking the first 3 points to define a 
parabola, then the 2nd, 3rd and 4th point to define a second 
parabola, and then linearly interpolate the parabolas 

•  This is the resulting matrix for equally spaced points in 
parametric space 
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Bezier curves 

•  Another way of defining a 
curve is to define it through 
two endpoints, which are 
interpolated, and two interior 
points, which control the 
shape. 

•  Bezier curves use the two 
additional control points to 
define the tangent 

•  P´(0)=3(P1-P0) 
P´(1)=3(P3-P2) 

 

•  The corresponding matrix 
will be 
 
 
 
 
 
which corresponds to the 
basic functions UM 
    B0(t)=(1-t)3 
    B1(t)=3t(1-t)2 

    B2(t)=3t2(1-t)  
      B3(t)=t3 
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Bezier curves 



Bezier curves 

•  In fact, Bezier curves can be of any order. The basis functions 
are  
 
                       Bin(t)=ti(1-t)n-in!/i!/(n-i)! 
 
Where n is the degree and i=0,…,n. 

•  And the Bezier curve passing through the points P0,P1,…,Pn is 
 
                         Q(T)=Σi=0,…,nBin(t)Pi 



Bezier curves: De Casteljeau construction 

•  De Casteljeau came up with a geometric method for 
constructing a Bezier Curve 

•  The figure illustrates the construction of a point at t=1/3 for a 
curve of 3rd degree 

P0 

P1 P2 

P3 

1/3(P1 -P0) 

1/3(P2 -P1) 

1/3(P3 -P2) 



Bezier splines 



Uniform B-splines 

•  Uniform B-splines are most 
flexible type of curves, and also 
more difficult to understand 

•  They detach the order of the 
resulting polynomial from the 
number of control points. 
Suppose we have a number N 
of control points. 

•  Bezier curves are a special 
case of B-splines 

•  One starts by defining a uniform 
knot vector [0,1,2,...,N+k-1], where k 
is the degree of the B-spline curve 
and n the number of control points.  

•  Knots are uniformly spaced.  
•  If k is the degree of the B-spline, 

then each single component of the 
B-spline will be defined between the 
consecutive control points  
Pi,Pi+1,..,Pi+k. 

•  The next bit will be defined between 
Pi+1,Pi+2,..,Pi+k+1 



Uniform B-splines 

•  The equation for k-order B-spline 
with N+1 control points  
(P0 , P1 , ... , PN ) is  
 
     P(t) = Σi=0,..,N Ni,k(t) Pi ,      
                      tk-1 ≤ t ≤ tN+1  

•  In a B-spline each control point is 
associated with a basis function Ni,k 
which is given by the recurrence 
relations  
     Ni,k(t) =  
     Ni,k-1(t) (t - ti)/(ti+k-1 - ti) +  
     Ni+1,k-1(t) (ti+k - t)/(ti+k - ti+1),  
     Ni,1 = {1 if  ti ≤ t ≤ ti+1,     
                 0   otherwise }  
 

•  Ni,k is a polynomial of order k 
(degree k-1) on each interval  
ti < t < ti+1.  

•  k must be at least 2 (linear) and 
can be not more, than n+1 (the 
number of control points). 

•  A knot vector(t0,t1,..., tN+k) must 
be specified. Across the knots 
basis functions are C k-2 
continuous.  



Uniform B-splines 

•  B-spline basis functions like 
Bezier ones are nonnegative 
Ni,k ≥ 0 and have "partition of 
unity" property  
 
    Σi=0,N Ni,k(t) = 1,     
                tk-1 < t < tn+1  
 
therefore  
 
    0 ≤ Ni,k ≤ 1.  

•  Since Ni,k = 0 for  
      t ≤ ti or t ≥ ti+k,  
a control point Pi influences the 
curve only for ti < t < ti+k.  



B-splines 

•  Depending on the relative 
spaces between knots in 
parameter spaces, we can have 
uniform or non-uniform B-
splines 

•  The shapes of the Ni,k basis 
functions are determined 
entirely by the relative spacing 
between the knots  
(t0 , t1 , ... , tN+k). 

•  Scaling or translating the knot 
vector has no effect on shapes 
of basis functions and B-spline. 

•  Knot vectors are generally of 3 
types: 

–  Uniform knot vectors are the 
vectors for which  
   
   ti+1 - ti = const,    
 
e.g. [0,1,2,3,4,5].  

–  Open Uniform knot vectors are 
uniform knot vectors which 
have k-equal knot values at 
each end: 
  
    ti = t0 ,   i < k  
    ti+1-ti = const, k-1 ≤ i <n+1  
    ti = tk+n ,   I ≥ n+1  
 
eg[0,0,0,1,2,3,4,4,4](k=3,N=5) 

–  Non-uniform knot vectors. This 
is the general case, the only 
constraint is the standard ti≤ti+1 .  



B-splines 

•  The main properties of B-splines 
–  composed of (n-k+2) Bezier curves of k-order joined Ck-2 

continuously at knot values (t0 , t1 , ... , tn+k)  
–  each point affected by k control points  
–  each control point affected k segments  
–  inside convex hull  
–  affine invariance  
–  uniform B-splines don't interpolate deBoor control points  

(P0 , P1 , ... , PN )  



Uniform 3rd order B-splines 

•  For a B-spline of order 3, and 
the four control points  
Pi, Pi+1, Pi+2, Pi+3 we have that 
the  
B-spline can be written as  

•  The curves defined by 
increasing i=0,...,N-3 will define 
a C2-continuous curve  
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Uniform B-splines 



Bezier and B-spline curves 



B-splines: multiple knots 

•  Knots can be made to 
coincide to obtain cusps 
and let the curve pass 
through a desired point 



•    For a given order k, uniform B-splines are shifted copies of one another 
since all the knots are equispaced  

Uniform B-splines: examples 

Linear (N=3,k=2) Quadratic (N=3,k=3) 

Cubic (N=3,k=4) Closed (N=5,k=4) 



NURBS 

•  Stands for non-uniform rational B-splines 
–  Non-uniform: knots are not at same distance 
–  Rational: it‘s a fraction, with B-splines at the numerator and 

denominator 
•  Advantages: one can express circular arcs with NURBS 
•  Disadvantages: lots of computational effort 



NURBS 

•  Recall that the B-spline is weighted 
sum of its control points 
  
    P(t) = Σi=0,..,N Ni,k(t) Pi ,     
              tk-1 ≤ t ≤ tN+1    
 
and the weights Ni,k have the 
"partition of unity" property  
 
    Σi=0,..,N Ni,k(t) = 1 . 
  

•  As weights Ni,k depend on the knot 
vector only, it is useful to add to 
every control point one more weight 
wi which can be set independently 
  
P(t)=  
Σi=0,..,NwiNi,k(t)Pi/Σi=0,..,NwiNi,k(t) . 
 

•  Increasing a weight wi 
makes the point more 
influence and attracts the 
curve to it.  

•  The denominator in the 2nd 
equation normalizes weights, 
so we will get the 1st 
equation if we set  
wi = const for all i.  

•  Full weights wiNi,k satisfy the 
"partition of unity" condition 
again.  



Global vs local control 

•  Depending on the curve formulation, moving a control point can have 
different effects  

–  Local control: in this case the effect of the movement is limited in its 
influence along the curve 

–  Global control: moving a point redefines the whole curve 
•  Local control is the most desirable for manipulating a curve 
•  Almost all of the piecewise defined curves have local control 
•  Only exception: Hermite curves enforcing C2 continuity 



Modeling with splines 

•  3D Splines can be used to represent 
object boundaries by piecewise 
defined „patches“ joined at their 
definition edges so that they are 
continuous at the joins, like a 
„patchwork“ 

•  Splines are very flexible in shape 
modeling 

•  But what is behind spline patches? 
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Spline patches 

•  Here the idea is to find families of 
piecewise parametric functions that 
allow a good control on shape  

•  Patches are joined at the edges so 
as to achieve the desired continuity 

•  Each patch is represented in 
parametric space 
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Spline patches 

•  C0 continuity 
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•  C1 continuity 



Spline patches 

•  A point Q on a patch is the tensor product of parametric 
functions defined by control points 
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Spline patches 

•  A point Q on any patch is defined by multiplying control points by 
polynomial blending functions 
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•  What about M then? M describes the blending 
functions for a parametric curve of third degree 



Spline patches 
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Spline patches 

•  Third order patches allow the 
generation of free form 
surfaces, and easy 
controllability of the shape 

•  Why third order functions? 
–  Because they are the minimal 

order curves allowing inflection 
points 

–  Because they are the minimal 
order curves allowing to control 
the curvature (= second order 
derivative) 
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Charles A. Wüthrich 

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++  
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