Computer Animation 3-Interpolation SS 15

Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de

Parametric curves

- Curves and surfaces can have explicit, implicit, and parametric representations.
- Explicit equations are of the form $y=f(x)$
- Implicit equations of the form $f(x, y)=0$
- Parametric equations are of the form

$$
\left\{\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array}\right.
$$

- Parametric representations are the most common in computer graphics and animation.
- They are independent from the axes

Parametric curves

- Parametrization is not unique: take a look at the straight line:

$$
\begin{aligned}
& L\left(P_{0}, P_{1}\right)=P_{0}+u\left(P_{1}-P_{0}\right)= \\
& \text { (1-u) } \mathrm{P}_{0}+\mathrm{uP} \mathrm{P}_{1} \text {, } \\
& u \in[0,1] \\
& \mathrm{L}\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right)=\mathrm{v}\left(\mathrm{P}_{1}-\mathrm{P}_{0}\right) / 2+ \\
& \left(P_{1}+P_{0}\right) / 2, v \in[-1,1]
\end{aligned}
$$

- They represent the same line
- Parameterizations can be changed to lie between desired bounds.
To reparameterize from
$u \in[a, b]$ to $w \in[0,1]$,
we can use
$w=(u-a) /(b-a)$, which gives u
$=w(b-a)+a$.
- Thus, we have:
$\mathrm{P}(\mathrm{u}), \mathrm{u} \in[\mathrm{a}, \mathrm{b}]=$
$P(w(b-a)+a), w \in[0,1]$

Linear interpolation

- Consider the straight line passing through P_{0} and P_{1} :

$$
P(u)=(1-u) P_{0}+u P_{1}
$$

- Since (1-u) and u are functions of u, one can rewrite the eq. above as $P(u)=F_{0}(u) P_{0}+F_{1}(u) P_{1}$
- Note that $F_{0}(u)+F_{1}(u)=1$
- $F_{0}(u)$ and $F_{1}(u)$ are called blending functions.
- Alternatively, one can rewrite the function as

$$
\begin{aligned}
& P(u)=\left(P_{1}-P_{0}\right) u+P_{0} \\
& P(u)=\underline{a}_{1} u+\underline{a}_{0}
\end{aligned}
$$

- This called the algebraic form of the equation

Linear interpolation

- One can also rewrite theese equations in matrix notation:

$$
\begin{gathered}
P(u)=\left[\begin{array}{l}
F_{0}(u) \\
F_{1}(u)
\end{array}\right]\left[\begin{array}{ll}
P_{0} & P_{1}
\end{array}\right]=F B^{T} \\
\left.P(u)=\left[\begin{array}{ll}
u & 1
\end{array}\right] \begin{array}{l}
a_{1} \\
a_{0}
\end{array}\right] \\
P(u)=\left[\begin{array}{ll}
u & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right]=U^{T} M B=F B=U^{T} A
\end{gathered}
$$

Arc length

- Note that there is not necessarily a linear relation between the parameter u and the arc length described by the curve
- For example, also the equation

$$
P(u)=P_{0}+((1-u) u+u)\left(P_{1}-P_{0}\right)
$$

represents the same straight line, but the relationship between u and the arc length is non linear.

- This means that there is not necessarily an obvious relationship between changes in parameter and distance travelled and changes in the parameter

Derivatives of a curve

- Any parametric curve of polynomial order can be expressed in the form

$$
P(u)=U^{\top} M B
$$

$$
P(u)=U^{\top} M B=
$$

$$
\left[u^{3} u^{2} u 1\right] M B
$$

$P^{\prime}(u)=U^{\prime} T M B=$
[3u² 2u 10$]$ MB
$P^{\prime \prime}(u)=U^{\prime \prime T} M B=$
[6u 20 0] MB

Hermite interpolation

- Hermite interpolation generates a cubic polynomial between two points.
- Here, to specify completely the curve the user needs to provide two points P_{0} and P_{1} and the tangent to the curve in these two points $\mathrm{P}_{0}^{\prime} \mathrm{P}_{1}^{\prime}$
- Remember, we write in the form $P(u)=U^{\top} M B$
- For Hermite interpolation we have

$$
\left.\begin{array}{c}
U^{T}\left[\begin{array}{ccc}
u^{3} & u^{2} & u
\end{array} 1\right.
\end{array}\right] \quad\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

Hermite interpolation

- Suppose that an interpolation curve is wanted passing through n points $P_{0}, P_{1}, \ldots, P_{n}$.
- The interpolation curve through them can be defined as a piecewise defined curve

- In fact, if one ensures that the resulting curve is not only continuous at the joints, but also that
- Its tangent (=velocity)
- Its second order derivative (= acceleration) are continuous, then the curve can be used also in animations.

Continuity: parametric and geometric

- For a piecewise defined curve, there are two main ways of defining the continuity at the borders of the single intervals of definition
- 1st order parametric continuity (C^{1}): the end tangent vector at the two ends must be exactly the same
- 1st order geometric continuity $\left(\mathrm{G}^{1}\right)$: the direction of the tangent must be the same, but the magnitudes may differ
- Similar definitions for higher oder continuity $\left(\mathrm{C}^{2}-\mathrm{G}^{2}\right)$
- Parametric continuity is sensitive to the „velocity" of the parameter on the curve, geometric continuity is not

Catmull-Rom spline

- A Catmull-Rom spline is a special Hermite curve where the tangent of the middle points is computed as one half the vector joining the previous control point to the next one

- $\quad P_{i}^{\prime}=1 / 2\left(P_{i+1}-P_{i-1}\right)$
- From this we deduce:

$$
\begin{gathered}
\left.U^{T}=\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right] \\
M=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
2 & -5 & 4 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0
\end{array}\right] \\
B=\left[\begin{array}{c}
P_{i-1} \\
P_{i} \\
P_{i+1} \\
P_{i+2}
\end{array}\right]
\end{gathered}
$$

Catmull-Rom spline

- If one wants to write the complete Catmull-Rom spline, one needs a method to find the tangents at the initial and final points
- One method used involves subtracting P_{2} from P_{1} and then using the point obtained as the direction of the tangent
- $P_{0}^{\prime}=1 / 2\left(P_{1}-\left(P_{2}-P_{1}\right)-P_{0}\right)=$ $1 / 2\left(2 \mathrm{P}_{1}-\mathrm{P}_{2}-\mathrm{P}_{0}\right)$

Catmull-Rom spline

- Advantage of Catmull-Rom splines: fast and simple computations
- Disadvantage: tangent vector is not this flexible: for example, all curves below have same tangent in P_{i}

Catmull-Rom spline

- A simple alternative is to compute the tangent at the point as the \perp of the bisector of the angle formed by $\mathrm{P}_{\mathrm{i}-1}-\mathrm{P}_{\mathrm{i}}$ and $\mathrm{P}_{\mathrm{i}+1}-\mathrm{P}_{\mathrm{i}}$

- Another modification is to not impose same tangent lenth at the points, but different lenghts on the two sides of the joint.
- The tangent vectors can be scaled for example by the ratio of the distance between current point and former point and the distance between former and next point.
- This obtains more „adaptable" tangents, but trades also off C^{1} continuity

Four point form

- Suppose you have 4 points $P_{0} P_{1} P_{2} P_{3}$ and to want a cubic segment fitting through them.
- Une can set up a linear system of equations through the points and solve

$$
\begin{gathered}
P(u)=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23} \\
m_{30} & m_{31} & m_{32} & m_{33}
\end{array}\right]\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right] \\
{\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{llll}
u_{0}^{3} & u_{0}^{2} & u_{0} & 1 \\
u_{1}^{3} & u_{1}^{2} & u_{1} & 1 \\
u_{2}^{3} & u_{2}^{2} & u_{2} & 1 \\
u_{3}^{3} & u_{3}^{2} & u_{3} & 1
\end{array}\right]\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23} \\
m_{30} & m_{31} & m_{32} & m_{33}
\end{array}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]}
\end{gathered}
$$

Four point form

- In the case that you want the parameter values at the points to be $(0,1 / 3,2 / 3,1)$, the matrix is

$$
M=\frac{1}{2}\left[\begin{array}{cccc}
-9 & 27 & -27 & 9 \\
18 & -45 & 36 & -9 \\
-11 & 18 & -9 & 2 \\
2 & 0 & 0 & 0
\end{array}\right]
$$

With this form it is difficult to join segments with C^{1} continuity

Blended parabolas

- One other method is through blending two overlapping parabolas
- The blending is done by taking the first 3 points to define a parabola, then the 2nd, 3rd and 4th point to define a second parabola, and then linearly interpolate the parabolas
- This is the resulting matrix for equally spaced points in parametric space

$$
M=\frac{1}{2}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
2 & -5 & 4 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0
\end{array}\right]
$$

Bezier curves

- Another way of defining a curve is to define it through two endpoints, which are interpolated, and two interior points, which control the shape.
- Bezier curves use the two additional control points to define the tangent
- $P^{\prime}(0)=3\left(P_{1}-P_{0}\right)$
$P^{\prime}(1)=3\left(P_{3}-P_{2}\right)$
- The corresponding matrix will be $\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$
which corresponds to the basic functions UM

$$
\begin{aligned}
& B_{0}(t)=(1-t)^{3} \\
& B_{1}(t)=3 t(1-t)^{2} \\
& B_{2}(t)=3 t^{2}(1-t) \\
& B_{3}(t)=t^{3}
\end{aligned}
$$

Bezier curves

The cubic Bezier basis functions

Bezier curves

- In fact, Bezier curves can be of any order. The basis functions are

$$
B_{i n}(t)=t^{i}(1-t)^{n-i} n!/ i!/(n-i)!
$$

Where n is the degree and $\mathrm{i}=0, \ldots, \mathrm{n}$.

- And the Bezier curve passing through the points $P_{0}, P_{1}, \ldots, P_{n}$ is

$$
\mathrm{Q}(\mathrm{~T})=\Sigma_{\mathrm{i}=0, \cdots, \mathrm{n}} \mathrm{~B}_{\mathrm{in}}(\mathrm{t}) \mathrm{P}_{\mathrm{i}}
$$

Bezier curves: De Casteljeau construction

- De Casteljeau came up with a geometric method for constructing a Bezier Curve
- The figure illustrates the construction of a point at $t=1 / 3$ for a curve of $3^{\text {rd }}$ degree

Bezier splines

Uniform B-splines

- Uniform B-splines are most flexible type of curves, and also more difficult to understand
- They detach the order of the resulting polynomial from the number of control points. Suppose we have a number N of control points.
- Bezier curves are a special case of B-splines
- One starts by defining a uniform knot vector $[0,1,2, \ldots, \mathrm{~N}+\mathrm{k}-1]$, where k is the degree of the B -spline curve and n the number of control points.
- Knots are uniformly spaced.
- If k is the degree of the B-spline, then each single component of the B-spline will be defined between the consecutive control points
$P_{i}, P_{i+1}, \ldots, P_{i+k}$.
- The next bit will be defined between $P_{i+1}, P_{i+2}, \ldots, P_{i+k+1}$

Uniform B-splines

- The equation for k-order B-spline with $N+1$ control points
$\left(\boldsymbol{P}_{0}, \boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{N}\right)$ is

$$
\boldsymbol{P}(t)=\Sigma_{i=0, \ldots N} N_{i, k}(t) \boldsymbol{P}_{i},
$$

- In a B-spline each control point is associated with a basis function $N_{i, k}$ which is given by the recurrence relations

$$
\begin{aligned}
& N_{i, k}(t)= \\
& N_{i, k-1}(t)\left(t-t_{i}\right) /\left(t_{i+k-1}-t_{i}\right)+ \\
& N_{i+1, k-1}(t)\left(t_{i+k}-t\right) /\left(t_{i+k}-t_{i+1}\right), \\
& N_{i, 1}=\left\{1 \text { if } t_{i} \leq t \leq t_{i+1},\right. \\
& 0 \text { otherwise }\}
\end{aligned}
$$

- $\quad N_{i, k}$ is a polynomial of order k (degree $k-1$) on each interval $t_{i}<t<t_{i+1}$.
- $\quad k$ must be at least 2 (linear) and can be not more, than $n+1$ (the number of control points).
- A knot vector $\left(t_{0}, t_{1}, \ldots, t_{N+k}\right)$ must be specified. Across the knots basis functions are C^{k-2} continuous.

Uniform B-splines

- B-spline basis functions like Bezier ones are nonnegative $N_{i, k} \geq 0$ and have "partition of unity" property

$$
\begin{aligned}
\Sigma_{i=0, N} N_{i, k}(t) & =1, \\
t_{k-1} & <t<t_{n+1}
\end{aligned}
$$

therefore

$$
0 \leq N_{i, k} \leq 1 .
$$

- Since $N_{i, k}=0$ for $t \leq t_{i}$ or $t \geq t_{i+k}$, a control point \boldsymbol{P}_{i} influences the curve only for $t_{i}<t<t_{i+k}$.

B-splines

- Depending on the relative spaces between knots in parameter spaces, we can have uniform or non-uniform Bsplines
- The shapes of the $N_{i, k}$ basis functions are determined entirely by the relative spacing between the knots $\left(t_{0}, t_{1}, \ldots, t_{N+k}\right)$.
- Scaling or translating the knot vector has no effect on shapes of basis functions and B -spline.
- Knot vectors are generally of 3 types:
- Uniform knot vectors are the vectors for which

$$
t_{i+1}-t_{i}=\text { const },
$$

e.g. [0, 1, 2, 3, 4,5].

- Open Uniform knot vectors are uniform knot vectors which have k-equal knot values at each end:

$$
\begin{aligned}
& t_{i}=t_{0}, \quad i<k \\
& t_{i+1}-t_{i}=\text { const, } k-1 \leq i<n+1 \\
& t_{i}=t_{k+n}, \quad l \geq n+1
\end{aligned}
$$

eg $[0,0,0,1,2,3,4,4,4](k=3, N=5)$

- Non-uniform knot vectors. This is the general case, the only constraint is the standard $t_{i} \leq t_{i+1}$.

B-splines

- The main properties of B-splines
- composed of ($n-k+2$) Bezier curves of k-order joined C^{k-2} continuously at knot values ($t_{0}, t_{1}, \ldots, t_{n+k}$)
- each point affected by k control points
- each control point affected k segments
- inside convex hull
- affine invariance
- uniform B-splines don't interpolate deBoor control points $\left(\boldsymbol{P}_{0}, \boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{N}\right)$

Uniform 3rd order B-splines

- For a B-spline of order 3, and the four control points
$P_{i}, P_{i+1}, P_{i+2}, P_{i+3}$ we have that the
B-spline can be written as

$$
P(u)=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right] \frac{1}{6}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
P_{i} \\
P_{i+1} \\
P_{i+2} \\
P_{i+3}
\end{array}\right]
$$

Uniform B-splines

The cubic uniform Bspline basis functions

Bezier and B-spline curves

The cubic Bezier/Bspline basis functions in use

B-splines: multiple knots

- Knots can be made to coincide to obtain cusps and let the curve pass through a desired point

Uniform B-splines: examples

- For a given order k, uniform B-splines are shifted copies of one another since all the knots are equispaced

Cubic ($\mathrm{N}=3, \mathrm{k}=4$)

NURBS

- Stands for non-uniform rational B-splines
- Non-uniform: knots are not at same distance
- Rational: it 's a fraction, with B-splines at the numerator and denominator
- Advantages: one can express circular arcs with NURBS
- Disadvantages: lots of computational effort

NURBS

- Recall that the B-spline is weighted sum of its control points

$$
\boldsymbol{P}(t)=\begin{aligned}
& \sum_{i=0, \ldots, N} N_{i, k}(t) \boldsymbol{P}_{i}, \\
& t_{k-1} \leq t \leq t_{N+1}
\end{aligned}
$$

and the weights $N_{i, k}$ have the "partition of unity" property

$$
\Sigma_{i=0, \ldots, N} N_{i, k}(t)=1 .
$$

- As weights $N_{i, k}$ depend on the knot vector only, it is useful to add to every control point one more weight w_{i} which can be set independently
$\boldsymbol{P}(t)=$
$\Sigma_{i=0, ., N} w_{i} N_{i, k}(t) \boldsymbol{P} / \Sigma_{i=0, ., N} w_{i} N_{i, k}(t)$.
- Increasing a weight w_{i} makes the point more influence and attracts the curve to it.
- The denominator in the $2^{\text {nd }}$ equation normalizes weights, so we will get the $1^{\text {st }}$ equation if we set $w_{i}=$ const for all i.
- Full weights $w_{i} N_{i, k}$ satisfy the "partition of unity" condition again.

Global vs local control

- Depending on the curve formulation, moving a control point can have different effects
- Local control: in this case the effect of the movement is limited in its influence along the curve
- Global control: moving a point redefines the whole curve
- Local control is the most desirable for manipulating a curve
- Almost all of the piecewise defined curves have local control
- Only exception: Hermite curves enforcing C^{2} continuity

Modeling with splines

- 3D Splines can be used to represent object boundaries by piecewise defined „patches" joined at their definition edges so that they are continuous at the joins, like a „patchwork"
- Splines are very flexible in shape modeling
- But what is behind spline patches?

Spline patches

- Here the idea is to find families of piecewise parametric functions that allow a good control on shape
- Patches are joined at the edges so as to achieve the desired continuity
- Each patch is represented in parametric space

Spline patches

- C^{0} continuity
- C^{1} continuity

Spline patches

- A point Q on a patch is the tensor product of parametric functions defined by control points

Spline patches

- A point Q on any patch is defined by multiplying control points by polynomial blending functions

$$
Q(u, v)=U M\left[\begin{array}{llll}
P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34} \\
P_{41} & P_{42} & P_{43} & P_{44}
\end{array}\right] M^{T} V^{T} \quad U=\left\lfloor\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]
$$

- What about M then? M describes the blending functions for a parametric curve of third degree

Spline patches

$$
M_{B-\text { spline }}=\left[\begin{array}{cccc}
-1 / 6 & 1 / 2 & -1 / 2 & 1 / 6 \\
1 / 2 & -1 & 1 / 2 & 0 \\
-1 / 2 & 0 & 1 / 2 & 0 \\
1 / 6 & 2 / 3 & 1 / 6 & 0
\end{array}\right]
$$

$$
M_{\text {Bezier }}=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Spline patches

- Third order patches allow the generation of free form surfaces, and easy controllability of the shape
- Why third order functions?
- Because they are the minimal order curves allowing inflection points
- Because they are the minimal order curves allowing to control the curvature (= second order derivative)

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

