Computer Animation 3-Interpolation SS 15

Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik Bauhaus-Universität Weimar caw AT medien.uni-weimar.de

Bauhaus-Universität Weimar

Parametric curves

- Curves and surfaces can have explicit, implicit, and parametric representations.
 - Explicit equations are of the form y=f(x)
 - Implicit equations of the form f(x,y)=0
 - Parametric equations are of the form

$$\begin{cases} x = f(t) \\ y = g(t) \end{cases}$$

- Parametric representations are the most common in computer graphics and animation.
- They are independent from the axes

Parametric curves

- Parametrization is not unique: take a look at the straight line: $L(P_0,P_1) = P_0 + u(P_1-P_0) = (1-u)P_0 + uP_1,$ $u \in [0,1]$ $L(P_0,P_1) = v(P_1-P_0)/2 + (P_1+P_0)/2, v \in [-1,1]$
- They represent the same line
- Parameterizations can be changed to lie between desired bounds. To reparameterize from u∈[a,b] to w∈[0,1], we can use w=(u-a)/(b-a), which gives u = w(b-a) + a.
- Thus, we have:

P(u), u∈[a,b] = P(w(b-a)+a), w∈[0,1]

Linear interpolation

- Consider the straight line passing through P₀ and P₁: P(u)=(1-u)P₀+uP₁
- Since (1-u) and u are functions of u, one can rewrite the eq. above as P(u)=F₀(u)P₀+F₁(u)P₁
- Note that $F_0(u)+F_1(u)=1$
- $F_0(u)$ and $F_1(u)$ are called *blending functions*.

- Alternatively, one can rewrite the function as P(u)=(P₁- P₀)u+P₀ P(u)=<u>a₁u+a₀</u>
- This called the algebraic form of the equation

Linear interpolation

• One can also rewrite theese equations in matrix notation:

$$P(u) = \begin{bmatrix} F_0(u) \\ F_1(u) \end{bmatrix} \begin{bmatrix} P_0 & P_1 \end{bmatrix} = FB^T \qquad X$$

$$P(u) = \begin{bmatrix} u & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_0 \end{bmatrix}$$

$$P(u) = \begin{bmatrix} u & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \end{bmatrix} = U^T MB = FB = U^T A$$

 Note that the last one of these equations decomposes the equation in the product of variables (U), coefficients (M) and geometric information (B)

Arc length

- Note that there is not necessarily a linear relation between the parameter u and the arc length described by the curve
- For example, also the equation

 $P(u)=P_0+((1-u)u+u)(P_1-P_0)$

represents the same straight line, but the relationship between u and the arc length is non linear.

 This means that there is not necessarily an obvious relationship between changes in parameter and distance travelled and changes in the parameter

Derivatives of a curve

- Any parametric curve of polynomial order can be expressed in the form P(u)=U^TMB
- Since only the matrix U contains the variable, then it is easy to compute the derivative of a parametric curve
- For a curve of third degree we have

P(u)=U^TMB= [u³ u² u 1] MB P'(u)=U^TMB= [3u² 2u 1 0] MB P''(u)=U^TMB= [6u 2 0 0] MB

Bauhaus-Universität Weimar

Hermite interpolation

- Hermite interpolation generates a cubic polynomial between two points.
- Here, to specify completely the curve the user needs to provide two points P₀ and P₁ and the tangent to the curve in these two points P'₀ P'₁
- Remember, we write in the form P(u)=U^TMB

• For Hermite interpolation we have

$$U^{T} \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix}$$
$$M = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} P_{0} \\ P_{1} \\ P_{0}' \\ P_{1}' \end{bmatrix}$$

Hermite interpolation

- Suppose that an interpolation curve is wanted passing through n points P_0,P_1, \ldots,P_n .
- The interpolation curve through them can be defined as a piecewise defined curve

- In fact, if one ensures that the resulting curve is not only continuous at the joints, but also that
 - Its tangent (=velocity)
 - Its second order derivative (= acceleration)

are continuous, then the curve can be used also in animations.

Continuity: parametric and geometric

- For a piecewise defined curve, there are two main ways of defining the continuity at the borders of the single intervals of definition
 - 1st order parametric continuity (C¹): the end tangent vector at the two ends must be exactly the same
 - 1st order geometric continuity (G¹): the direction of the tangent must be the same, but the magnitudes may differ
 - Similar definitions for higher oder continuity (C^2 - G^2)
- Parametric continuity is sensitive to the "velocity" of the parameter on the curve, geometric continuity is not

A Catmull-Rom spline is a • special Hermite curve where the • From this we deduce: tangent of the middle points is computed as one half the vector joining the previous control point to the next one

- $P'_{i}=1/2(P_{i+1}-P_{i-1})$ •

$$U^{T} = \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix}$$
$$M = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 2 & -5 & 4 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} P_{i-1} \\ P_{i} \\ P_{i+1} \\ P_{i+2} \end{bmatrix}$$

- If one wants to write the complete Catmull-Rom spline, one needs a method to find the tangents at the initial and final points
- One method used involves subtracting P₂ from P₁ and then using the point obtained as the direction of the tangent
- $P'_0 = \frac{1}{2}(P_1 (P_2 P_1) P_0) = \frac{1}{2}(2P_1 P_2 P_0)$

- Advantage of Catmull-Rom splines: fast and simple computations
- Disadvantage: tangent vector is not this flexible: for example, all curves below have same tangent in P_i

 A simple alternative is to compute the tangent at the point as the ⊥ of the bisector of the angle formed by P_{i-1}-P_i and P_{i+1}-P_i

- Another modification is to not impose same tangent lenth at the points, but different lenghts on the two sides of the joint.
- The tangent vectors can be scaled for example by the ratio of the distance between current point and former point and the distance between former and next point.
- This obtains more "adaptable" tangents, but trades also off C¹ continuity

Four point form

- Suppose you have 4 points P₀P₁P₂P₃ and to want a cubic segment fitting through them.
- Une can set up a linear system of equations through the points and solve

$$P(u) = \begin{bmatrix} u^{3} & u^{2} & u \\ u^{3} & u^{2} & u \end{bmatrix} \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ m_{30} & m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} P_{0} \\ P_{1} \\ P_{2} \\ P_{3} \end{bmatrix}$$
$$\begin{bmatrix} P_{0} \\ P_{1} \\ P_{2} \\ P_{3} \end{bmatrix} = \begin{bmatrix} u_{0}^{3} & u_{0}^{2} & u_{0} & 1 \\ u_{1}^{3} & u_{1}^{2} & u_{1} & 1 \\ u_{2}^{3} & u_{2}^{2} & u_{2} & 1 \\ u_{3}^{3} & u_{3}^{2} & u_{3} & 1 \end{bmatrix} \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ m_{30} & m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} P_{0} \\ P_{1} \\ P_{2} \\ P_{3} \end{bmatrix}$$

Bauhaus-Universität Weimar

Four point form

 In the case that you want the parameter values at the points to be (0,1/3,2/3,1), the matrix is

$$M = \frac{1}{2} \begin{bmatrix} -9 & 27 & -27 & 9\\ 18 & -45 & 36 & -9\\ -11 & 18 & -9 & 2\\ 2 & 0 & 0 & 0 \end{bmatrix}$$

With this form it is difficult to join segments with C¹ continuity

Blended parabolas

- One other method is through blending two overlapping parabolas
- The blending is done by taking the first 3 points to define a parabola, then the 2nd, 3rd and 4th point to define a second parabola, and then linearly interpolate the parabolas
- This is the resulting matrix for equally spaced points in parametric space

$$M = \frac{1}{2} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 2 & -5 & 4 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

Bezier curves

- Another way of defining a curve is to define it through two endpoints, which are interpolated, and two interior points, which control the shape.
- Bezier curves use the two additional control points to define the tangent
- P'(0)=3(P₁-P₀)
 P'(1)=3(P₃-P₂)

• The corresponding matrix will be $\begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ which corresponds to the

which corresponds to the basic functions UM $B_0(t)=(1-t)^3$ $B_1(t)=3t(1-t)^2$ $B_2(t)=3t^2(1-t)$ $B_3(t)=t^3$

Bezier curves

The cubic Bezier basis functions

Bauhaus-Universität Weimar

Bezier curves

In fact, Bezier curves can be of any order. The basis functions
 are

 $B_{in}(t) = t^{i}(1-t)^{n-i}n!/i!/(n-i)!$

Where n is the degree and i=0,...,n.

• And the Bezier curve passing through the points P_0, P_1, \dots, P_n is

 $Q(T)=\Sigma_{i=0,\dots,n}B_{in}(t)P_{i}$

Bezier curves: De Casteljeau construction

- De Casteljeau came up with a geometric method for constructing a Bezier Curve
- The figure illustrates the construction of a point at t=1/3 for a curve of 3rd degree

Bezier splines

- Uniform B-splines are most flexible type of curves, and also more difficult to understand
- They detach the order of the resulting polynomial from the number of control points.
 Suppose we have a number N of control points.
- Bezier curves are a special case of B-splines

- One starts by defining a uniform knot vector [0,1,2,...,N+k-1], where k is the degree of the B-spline curve and n the number of control points.
- Knots are uniformly spaced.
- If k is the degree of the B-spline, then each single component of the B-spline will be defined between the consecutive control points P_i,P_{i+1},..,P_{i+k}.
- The next bit will be defined between $P_{i+1}, P_{i+2}, ..., P_{i+k+1}$

• The equation for *k*-order B-spline with N+1 control points $(\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_N)$ is

$$\mathbf{P}(t) = \sum_{i=0,\dots,N} N_{i,k}(t) \mathbf{P}_i, \\ t_{k-1} \leq t \leq t_{N+1}$$

• In a B-spline each control point is associated with a basis function $N_{i,k}$ which is given by the recurrence relations

$$\begin{split} N_{i,k}(t) &= \\ N_{i,k-1}(t) \ (t - t_i) / (t_{i+k-1} - t_i) + \\ N_{i+1,k-1}(t) \ (t_{i+k} - t) / (t_{i+k} - t_{i+1}), \\ N_{i,1} &= \{1 \ if \ t_i \leq t \leq t_{i+1}, \\ 0 \ otherwise \} \end{split}$$

- $N_{i,k}$ is a polynomial of order k(degree k-1) on each interval $t_i < t < t_{i+1}$.
- k must be at least 2 (linear) and can be not more, than n+1 (the number of control points).
- A knot vector(t₀, t₁,..., t_{N+k}) must be specified. Across the knots basis functions are C^{k-2} continuous.

 B-spline basis functions like Bezier ones are nonnegative N_{i,k} ≥ 0 and have "partition of unity" property

$$\begin{split} \Sigma_{i=0,N} \; N_{i,k}(t) &= 1, \\ t_{k-1} < t < t_{n+1} \end{split}$$

therefore

U

 $0 \le N_{i,k} \le 1.$

• Since $N_{i,k} = 0$ for $t \le t_i$ or $t \ge t_{i+k}$, a control point P_i influences the curve only for $t_i < t < t_{i+k}$.

B-splines

- Depending on the relative spaces between knots in parameter spaces, we can have uniform or non-uniform Bsplines
- The shapes of the $N_{i,k}$ basis functions are determined entirely by the *relative* spacing between the knots $(t_0, t_1, ..., t_{N+k})$.
- Scaling or translating the knot vector has no effect on shapes of basis functions and B-spline.

- Knot vectors are generally of 3 types:
 - Uniform knot vectors are the vectors for which

 $t_{i+1} - t_i = const,$

e.g. *[0, 1, 2, 3, 4, 5]*.

 Open Uniform knot vectors are uniform knot vectors which have k-equal knot values at each end:

$$\begin{array}{l} t_i = t_0 \;, \quad i < k \\ t_{i+1} - t_i = const, \; k - 1 \leq i < n + 1 \\ t_i = t_{k+n} \;, \quad I \geq n + 1 \end{array}$$

eg[0,0,0,1,2,3,4,4,4](k=3,N=5)

- Non-uniform knot vectors. This is the general case, the only constraint is the standard $t_i \le t_{i+1}$.

B-splines

- The main properties of B-splines
 - composed of (*n*-*k*+2) Bezier curves of *k*-order joined C^{k-2} continuously at knot values (t_0 , t_1 , ..., t_{n+k})
 - each point affected by k control points
 - each control point affected k segments
 - inside convex hull
 - affine invariance
 - uniform B-splines don't interpolate deBoor control points $(\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_N)$

Uniform 3rd order B-splines

 For a B-spline of order 3, and the four control points
 P_i, P_{i+1}, P_{i+2}, P_{i+3} we have that the

B-spline can be written as

 The curves defined by increasing i=0,...,N-3 will define a C²-continuous curve

$$P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_i \\ P_{i+1} \\ P_{i+2} \\ P_{i+3} \end{bmatrix}$$

The cubic uniform Bspline basis functions

Bauhaus-Universität Weimar

Bezier and B-spline curves

The cubic Bezier/Bspline basis functions in use

Bauhaus-Universität Weimar

B-splines: multiple knots

Bauhaus-Universität Weimar

Uniform B-splines: examples

• For a given order *k*, uniform B-splines are shifted copies of one another since all the knots are equispaced

Bauhaus-Universität Weimar

NURBS

- Stands for non-uniform rational B-splines
 - Non-uniform: knots are not at same distance
 - Rational: it 's a fraction, with B-splines at the numerator and denominator
- Advantages: one can express circular arcs with NURBS
- Disadvantages: lots of computational effort

NURBS

• Recall that the B-spline is weighted sum of its control points

$$\begin{aligned} \boldsymbol{P}(t) &= \sum_{i=0,\dots,N} N_{i,k}(t) \boldsymbol{P}_i, \\ t_{k-1} &\leq t \leq t_{N+1} \end{aligned}$$

and the weights $N_{i,k}$ have the "partition of unity" property

$$\Sigma_{i=0,\ldots,N} N_{i,k}(t) = 1$$

• As weights $N_{i,k}$ depend on the knot vector only, it is useful to add to every control point one more weight w_i which can be set independently

 $\begin{aligned} \boldsymbol{P}(t) &= \\ \boldsymbol{\Sigma}_{i=0,\dots,N} \boldsymbol{W}_i \boldsymbol{N}_{i,k}(t) \boldsymbol{P}_i \boldsymbol{\Sigma}_{i=0,\dots,N} \boldsymbol{W}_i \boldsymbol{N}_{i,k}(t) \ . \end{aligned}$

- Increasing a weight w_i makes the point more influence and attracts the curve to it.
- The denominator in the 2nd equation normalizes weights, so we will get the 1st equation if we set w_i = const for all *i*.
- Full weights *w_iN_{i,k}* satisfy the "partition of unity" condition again.

Global vs local control

- Depending on the curve formulation, moving a control point can have different effects
 - Local control: in this case the effect of the movement is limited in its influence along the curve
 - Global control: moving a point redefines the whole curve
- Local control is the most desirable for manipulating a curve
- Almost all of the piecewise defined curves have local control
- Only exception: Hermite curves enforcing C² continuity

Modeling with splines

- 3D Splines can be used to represent • object boundaries by piecewise defined "patches" joined at their definition edges so that they are continuous at the joins, like a "patchwork"
- Splines are very flexible in shape • modeling
- But what is behind spline patches?

Princeton University

- Here the idea is to find families of piecewise parametric functions that allow a good control on shape
- Patches are joined at the edges so as to achieve the desired continuity
- Each patch is represented in parametric space

• C⁰ continuity

• C¹ continuity

Bauhaus-Universität Weimar

• A point Q on a patch is the tensor product of parametric functions defined by control points

• A point Q on any patch is defined by multiplying control points by polynomial blending functions

$$Q(u,v) = UM \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix} M^{T}V^{T} \qquad U = \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix}$$

• What about M then? M describes the blending functions for a parametric curve of third degree

Bauhaus-Universität Weimar

- Third order patches allow the generation of free form surfaces, and easy controllability of the shape
- Why third order functions?
 - Because they are the minimal order curves allowing inflection points
 - Because they are the minimal order curves allowing to control the curvature (= second order derivative)

Courtesy Softimage Co.

End

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

Bauhaus-Universität Weimar

Charles A. Wüthrich