
Computer Animation
2-Basics

SS 15

Prof. Dr. Charles A. Wüthrich,
Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de

The 3D space

•  Remember from CG?
–  We had a 3D space, and
–  Right handed axes, with their units

•  Of course one could choose also a
left-handed coordinate system

•  Further on, remember that one
could make coincide the x axis with
the x axis of the screen, and the y
axis with the UP or DOWN direction
of the screen side

•  Which one one uses is indifferent,
as long as it is consistent throughout

Transformations

•  Remember we had homogenous coordinates, with
 [x y z] ®[x y z 1]

[a b c d] ®[a/d b/d c/d]
•  And basic transformations:

–  Translations

–  Scaling

!
!
!
!

"

#

$
$
$
$

%

&

=

1000
100
010
001

z

y

x

d
d
d

T

!
!
!
!

"

#

$
$
$
$

%

&

=

1000
000
000
000

z

y

x

s
s

s

S

Transformations

–  Rotations:

–  In general, we would have:

where

!
!
!
!

"

#

$
$
$
$

%

& −

=

1000
0100
00cossin
00sincos

)(
ϑϑ

ϑϑ

ϑzR

!
!
!
!

"

#

$
$
$
$

%

&

−
=

1000
0cossin0
0sincos0
0001

)(
ϑϑ

ϑϑ
ϑxR

!
!
!
!

"

#

$
$
$
$

%

&

−
=

1000
0cos0sin
0010
0sin0cos

)(
ϑϑ

ϑϑ

ϑyR

!
!
!
!

"

#

$
$
$
$

%

&

=

1000
34333231

24232221

14121211

aaaa
aaaa
aaaa

T

!
!
!
!

"

#

$
$
$
$

%

&

1000
34333231

24232221

14121211

aaaa
aaaa
aaaa

rotation translation

Multiple transformations

•  Advantage of transformation matrices: one can combine them
by simply multiplying the corresponding matrices
 P´=M1P, P´´= M2P´ => P´´= M1M2P

•  This way one can precompute once and for all the
transformation matrix and apply it to all points to be transformed

•  Note: matrix multiplication is non commutative

Rotating axes to a desired orientation

•  Problem: Given a coordinate system
x y z rotate it to a desired orientation
so it coincides with x´y´z´

•  This is easy to solve: one has to
find a 3x3 matrix M so that
 `x´=Mx, y´=My, z´=Mz

thus , so

transforms an object in the xyz coords into the coords x´y´z´

•  Note: x´x=length of projection of x´on x

x

y

z x´

y´

z´

!
!
!

"

#

$
$
$

%

&

=

zzz

yyy

xxx

zyx
zyx
zyx

M
´´´
´´´
´´´

!
!
!
!

"

#

$
$
$
$

%

&

=

1000
0´´´
0´´´
0´´´

zzz

yyy

xxx

zyx
zyx
zyx

M

Camera description

Clipping planes

Distance to
view plane,
alternatively
field of view

Window in
image plane

VUP

PRP

VPN

FOV
CW

VRP

Perspective projection (to screen)

•  The transformation
P(x,y,z) -> Pp(xp,yp,0) is performed by multiplying with the matrix
Mper:

=> perspective transforms are 4x4 matrices too

!
!
!
!
!

"

#

$
$
$
$
$

%

&

−

=

!
!
!
!

"

#

$
$
$
$

%

&

⋅

!
!
!
!
!

"

#

$
$
$
$
$

%

&

−

==

d
z

y
x

z
y
x

d

PMP perp

1
0

11100
0000
0010
0001

Representing object orientation

•  How do I represent best the position and orientation of a object
in space so as to „move“ it in time?

•  A transformation matrix

will always be the result of the successive application of a 3x3
rotation matrix and of a translation (if the body is rigid)

!
!
!
!

"

#

$
$
$
$

%

&

=

1000
34333231

24232221

14121211

aaaa
aaaa
aaaa

T

rotation translation

Representing object orientation

•  Thus,

where

which means, one can consider the rotation separate
from the translation to compute and animation

!
!
!
!

"

#

$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

=

1000
100
010
001

1000
0
0
0

34

24

14

333231

232221

131211

b
b
b

aaa
aaa
aaa

T

343324321431

14
3

342324221421

24
2

341324121411

14
1

aaaaaa
ab

aaaaaa
ab

aaaaaa
ab

++
=

++
=

++
=

Representing object orientation

•  Suppose that I defined two key
positions of a rigid body, and that I
want to compute the equal steps
between the two positions to
compute the animation
(each key position been defined by
a Rotation-translation pair)

•  For the translation part, it seems to
be easy to interpolate between the
positions.... but the rotation?

•  Direct interpolation does not
work, because the resulting
interpolation matrices will not be
normalized....

•  But there ARE alternative
methods to do this:

–  Fixed angle
–  Euler angle
–  Axis angle
–  Quaternions

x

y

z

y´

x´

z´

x´´

y´´

z´´

Fixed angle representation

•  Angles used to rotate around
fixed axes

•  One can rotate first around one
main axis, then the second and
then the third

•  As long as one keeps always
the same order, one should be
fine

•  But, if you apply consequently
those, the second rotation will
influence back the first rotation

•  This effect is called gimbal
lock

•  The same problem makes
interpolation between key
positions a problem
sometimes

•  The resulting rotations will
make the object swing out of
the desired rotating plane

Euler angle representation

•  Here the axes of rotation are
on the local coordinate
system of the object

•  Also here, the order of the
rotations is indifferent

•  In fact, this method is very
similar to fixed axes, and has
same advantages and
disadvantages

•  Euler‘s rotation theorem: any
orientation can be derived from
another by ONE rotation around
a particular axis

x

y

z

Yaw

Pitch

Roll

y

x

z

Euler angle representation

•  Thus, given an object, any
orientation can be
represented with
–  An angle
–  An axis, i.e. a vector

•  This can be used by using
vector variations and angle
intervals for computing the
interpolation function

•  Reasoning on vector
interpolation and axis
interpolation is much easier

x

y

z

Yaw

Pitch

Roll

y

x

z

On numbers, and rings

•  Which are the characteristics
of a number set?

•  Numbers are a set X
–  They have one operation

defined in them, called sum
(+)

–  The sum is such that it
associates to two numbers
of a set a third number of
the set

–  The sum is commutative:
for each a,b in X, a+b =b+a

–  The sum is such that there
exists a unit, called 0, such
that for each number a in X,
a+0=a

–  The sum is such that for
each number a in X, there
exists an inverse number (-
a) such that
a + (-a)=0

–  This makes X a group

On numbers, and rings

•  Additionally, a second
operation called
multiplication (*) is defined
–  The multiplication is such

that it associates to two
numbers of a set a third
number of the set

–  The multiplication is not always
commutative: for each a,b in X,
a+b and b+a can be different

–  The multiplication is such that
there exists a unit, called 1,
such that for each number a in
X, a*1=1*a=a

–  The multiplication is such that
for each number a in X, there
exists an inverse number (a-1)
such that
a * a-1=a-1*a=1

–  This makes X a ring

Examples

•  The set of real numbers
•  The set of matrices M (N,N)

of size NxN

Quaternions

•  This is the better approach to do
interpolation of intermediate
orientations when the object has
3 DOF

•  A quaternion is a 4-tuple of real
numbers [a,b,c,d].

•  Equivalently, it is a pair [s,v] of a
scalar s and a 3D vector v.

•  More, it can be defined as
w + xi + yj + zk (where i2 = j2 =
k2 = -1 and ij = k = -ji with real
w, x, y, z)

•  On quaternions one defines
two operations:
–  Addition:

[s1,v1]+ [s2,v2]=
 [s1+s2,v1+v2]

–  Multiplication:
 [s1,v1]⋅[s2,v2]=
 [s1⋅s2-v1· v2,
 s1⋅v2+s2⋅v1 +v1× v2]

–  Note that multiplication is
associative, but NOT
commutative ⇒ q1q2¹q2q1

Quaternions: definitions

•  Units:
–  Additive: [0,0]
–  Multiplicative: [1,0]=[1,0,0,0]

•  Let v=[x,y,z].
Inverse:

–  q-1=[s,v]-1=(1/║q║)2⋅[s,-v],
where
 ║q║=(s2+║v║)1/2

•  Obviously, qq-1=[1,0,0,0]

•  A point in 3D space can be also
represented as the quaternion
[0.v].

–  or, alternatively, a vector from
the origin

•  Property:
[0,v1]⋅[0,v2]=
 [0,v1 × v2] iff v1 × v2=0

•  Def: Unit-length quaternion is a
quaternion q such that ║q║=1.

•  Obviously ∀q, q/║q║ is a unit
length quaternion

Rotating vectors through quaternions

•  Consider a vector [0,v], and consider a quaternion q:
–  The rotated vector v´ of v through the quaternion q is the vector

 v´=Rotq(v)= q⋅v⋅q-1

–  A sequence of rotations can be chained:
Rotp(Rotq(v))= q(p⋅v⋅p-1)⋅q-1
= (q⋅p)⋅v⋅(p-1⋅q)-1= Rotpq(v)

–  Note that:
Rot-1(Rot(v))= v

Why is it called rotation?

•  The quaternion form of a
rotation encodes axis-angle
information.

•  Let q=[θ,x,y,z] be a unit length
quaternion.

•  The following equation shows
the unit representation of a
rotation of an angle θ about the
axis of rotation v=(x,y,z)

q=Rot[θ,(x,y,z)]=
 [cos(θ/2),sin(θ/2)⋅ (x,y,z)]=
 [cos(θ/2),sin(θ/2)⋅ v]=

•  Converting from angle and axis
notation to quaternion notation
involves therefore two
trigonometric operations, as well
as several multiplies and
divisions.

•  Notice that a quaternion and its
negation [-s,-v] produce the
same rotation (to prove it,
simply write the formula here on
the left for –q and you will see
that the negative terms will
disappear)

From Euler angles to quaternions

•  Converting Euler angles into
quaternions is a similar process

•  just have to be careful that
operations are performed in correct
order.

•  For example, let's say that a plane
in a flight simulator first performs a
yaw, then a pitch, and finally a roll.

•  One can represent this combined
quaternion rotation as
q = qyaw qpitch qroll where:

qroll = [cos (y/2), (sin(y/2), 0, 0)]
qpitch=[cos (q/2), (0, sin(q/2), 0)]
qyaw = [cos(f /2), (0, 0, sin(f /2)]

•  The order in which the
multiplications are done is
important.

•  Quaternion multiplication is not
commutative (due to the vector
cross product that's involved).

•  In other words, changing the order
in which you rotate an object around
various axes can produce different
resulting orientations, and therefore,
the order is important.

From quaternions to a rotation matrix

•  Converting from a rotation
matrix to a quaternion
representation is a bit more
difficult

•  Conversion between a unit
quaternion and a rotation matrix
can be specified as

•  It's very difficult to specify a rotation
directly using quaternions. It's best
to store your character's or object's
orientation as a Euler angle and
convert it to quaternions before you
start interpolating.

•  It's much easier to increment
rotation around an angle, after
getting the user's input, using Euler
angles (that is, roll = roll + 1), than
to directly recalculate a quaternion.

•  If the quaternions are not unit
quaternions, additional
multiplications and a division are
required in the computation.

!
!
!

"

#

$
$
$

%

&

−−−+

−−−−

−+−−

=
22

22

22

2212222
222122

2222221

yxwxyzwyxz
wxyzzxwzxy
wyxzwzxyxy

Rm

From quaternions to a rotation matrix

•  One of the most useful aspects of
quaternions is the fact that it's easy
to interpolate between two
quaternion orientations and achieve
smooth animation.

•  To demonstrate why this is so, let's
look at an example using spherical
rotations.

•  Spherical quaternion interpolations
follow the shortest path (arc) on a
four-dimensional, unit quaternion
sphere.

•  Since 4D spheres are difficult to
imagine, we'll use a 3D sphere to
visualize quaternion rotations and
interpolations.

•  Let's assume that the initial
orientation of a vector emanating
from the center of the sphere can be
represented by q1 and the final
orientation of the vector is q3.

C
ou

rte
sy

ht

tp
://

w
w

w
.g

am
as

ut
ra

.c
om

From quaternions to a rotation matrix

•  The figure shows that if we have an
intermediate position q2, the
interpolation from q1➝q2➝q3 will
not necessarily follow the same path
as the q1➝q3 interpolation.

•  The initial and final orientations are
the same, but the arcs are not.

•  Quaternions simplify the
calculations required when
compositing rotations. For example,
if you have two or more orientations
represented as matrices, it is easy
to combine them by multiplying two
intermediate rotations.
 R = R2R1

•  Note: R2R1 means rotation R1
followed by a rotation R2

C
ou

rte
sy

ht

tp
://

w
w

w
.g

am
as

ut
ra

.c
om

Charles A. Wüthrich

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

C
op

yr
ig

ht
 (c

) 1
98

8
IL

M

