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The 3D space 

•  Remember from CG?  
–  We had a 3D space, and 
–  Right handed axes, with their units 

•  Of course one could choose also a 
left-handed coordinate system 

•  Further on, remember that one 
could make coincide the x axis with 
the x axis of the screen, and the y 
axis with the UP or DOWN direction 
of the screen side 

•  Which one one uses is indifferent, 
as long as it is consistent throughout 



Transformations 

•  Remember we had homogenous coordinates, with                   
 [x y z] ®[x y z 1] 

[a b c d] ®[a/d b/d c/d] 
•  And basic transformations: 

–  Translations 

–  Scaling 
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Transformations 

–  Rotations: 

–  In general, we would have: 
 
 
 
 
where  
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Multiple transformations 

•  Advantage of transformation matrices: one can combine them 
by simply multiplying the corresponding matrices 
     P´=M1P, P´´= M2P´   => P´´= M1M2P 

•  This way one can precompute once and for all the 
transformation matrix and apply it to all points to be transformed 

•  Note: matrix multiplication is non commutative 



Rotating axes to a desired orientation 

•  Problem: Given a coordinate system 
x y z rotate it to a desired orientation 
so it coincides with x´y´z´ 

•  This is easy to solve: one has to 
find a 3x3 matrix M so that 
  `x´=Mx, y´=My, z´=Mz 
 
thus                                , so 
 
 
transforms an object in the xyz coords into the coords x´y´z´  

•  Note: x´x=length of projection of x´on x 
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Camera description 

Clipping planes 

Distance to 
view plane, 
alternatively  
field of view 

Window in  
image plane 

VUP 

PRP 

VPN 

FOV 
CW 

VRP 



Perspective projection (to screen) 

•  The transformation  
P(x,y,z) -> Pp(xp,yp,0) is performed by multiplying with the matrix 
Mper: 
 
 
 
 
 
 
=> perspective transforms are 4x4 matrices too  
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Representing object orientation 

•  How do I represent best the position and orientation of a object 
in space so as to „move“ it in time? 

•  A transformation matrix 
 
 
 
 
 
 
will always be the result of the successive application of a 3x3 
rotation matrix and of a translation (if the body is rigid) 
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Representing object orientation 

•  Thus, 
 
 
 
 
where 
 
 
which means, one can consider the rotation separate 
from the translation to compute and animation 
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Representing object orientation 

•  Suppose that I defined two key 
positions of a rigid body, and that I 
want to compute the equal steps 
between the two positions to 
compute the animation  
(each key position been defined by 
a Rotation-translation pair) 

•  For the translation part, it seems to 
be easy to interpolate between the 
positions.... but the rotation? 

•  Direct interpolation does not 
work, because the resulting 
interpolation matrices will not be 
normalized.... 

•  But there ARE alternative 
methods to do this: 

–  Fixed angle 
–  Euler angle 
–  Axis angle 
–  Quaternions 
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Fixed angle representation 

•  Angles used to rotate around 
fixed axes 

•  One can rotate first around one 
main axis, then the second and 
then the third 

•  As long as one keeps always 
the same order, one should be 
fine 

•  But, if you apply consequently 
those, the second rotation will 
influence back the first rotation 

•  This effect is called gimbal 
lock 

•  The same problem makes 
interpolation between key 
positions a problem 
sometimes 

•  The resulting rotations will 
make the object swing out of 
the desired rotating plane  



Euler angle representation 

•  Here the axes of rotation are 
on the local coordinate 
system of the object 

•  Also here, the order of the 
rotations is indifferent 

•  In fact, this method is very 
similar to fixed axes, and has 
same advantages and 
disadvantages 

•  Euler‘s rotation theorem:  any 
orientation can be derived from 
another by ONE rotation around 
a particular axis 
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Euler angle representation 

•  Thus, given an object, any 
orientation can be 
represented with 
–  An angle 
–  An axis, i.e. a vector 

•  This can be used by using 
vector variations and angle 
intervals for computing the 
interpolation function 

•  Reasoning on vector 
interpolation and axis 
interpolation is much easier 
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On numbers, and rings 

•  Which are the characteristics 
of a number set? 

•  Numbers are a set X 
–  They have one operation 

defined in them, called sum 
(+)  

–  The sum is such that it 
associates to two numbers 
of a set a third number of 
the set 

–  The  sum is commutative: 
for each a,b in X, a+b =b+a 

–  The sum is such that there 
exists a unit, called 0, such 
that for each number a in X, 
a+0=a 

–  The sum is such that for 
each number a in X, there 
exists an inverse number (-
a) such that  
a + (-a)=0 

–  This makes X a group 



On numbers, and rings 

•  Additionally, a second 
operation called 
multiplication (*) is defined 
–  The multiplication is such 

that it associates to two 
numbers of a set a third 
number of the set 

–  The  multiplication is not always 
commutative: for each a,b in X, 
a+b  and b+a can be different 

–  The multiplication is such that 
there exists a unit, called 1, 
such that for each number a in 
X, a*1=1*a=a 

–  The multiplication is such that 
for each number a in X, there 
exists an inverse number (a-1) 
such that  
a * a-1=a-1*a=1 

–  This makes X a ring 



Examples 

•  The set of real numbers 
•  The set of matrices M (N,N) 

of size NxN 



Quaternions 

•  This is the better approach to do 
interpolation of intermediate 
orientations when the object has 
3 DOF 

•  A quaternion is a 4-tuple of real 
numbers [a,b,c,d]. 

•  Equivalently, it is a pair [s,v] of a 
scalar s and a 3D vector v. 

•  More, it can be defined as 
w + xi + yj + zk (where i2 = j2 = 
k2 = -1 and ij = k = -ji with real 
w, x, y, z)  

•  On quaternions one defines 
two operations: 
–  Addition: 

[s1,v1]+ [s2,v2]= 
    [s1+s2,v1+v2] 

–  Multiplication:  
 [s1,v1]⋅[s2,v2]= 
      [s1⋅s2-v1· v2,  
       s1⋅v2+s2⋅v1 +v1× v2] 

–  Note that  multiplication is 
associative, but NOT 
commutative ⇒ q1q2¹q2q1 



Quaternions: definitions 

•  Units:  
–  Additive: [0,0] 
–  Multiplicative: [1,0]=[1,0,0,0] 

•  Let v=[x,y,z].  
Inverse: 

–  q-1=[s,v]-1=(1/║q║)2⋅[s,-v], 
where 
 ║q║=(s2+║v║)1/2 

•  Obviously, qq-1=[1,0,0,0] 

•  A point in 3D space can be also 
represented as the quaternion 
[0.v].  

–  or, alternatively, a vector from 
the origin  

•  Property:  
[0,v1]⋅[0,v2]= 
 [0,v1 × v2] iff v1 × v2=0 

•  Def: Unit-length quaternion is a 
quaternion q such that ║q║=1. 

•  Obviously ∀q, q/║q║ is a unit 
length quaternion 



Rotating vectors through quaternions 

•  Consider a vector [0,v], and consider a quaternion q: 
–  The rotated vector v´ of v through the quaternion q is the vector 

        v´=Rotq(v)= q⋅v⋅q-1 

–  A sequence of rotations can be chained: 
Rotp(Rotq(v))= q(p⋅v⋅p-1)⋅q-1 
= (q⋅p)⋅v⋅(p-1⋅q)-1= Rotpq(v) 

–  Note that: 
Rot-1(Rot(v))= v 



Why is it called rotation? 

•  The quaternion form of a 
rotation encodes axis-angle 
information.  

•  Let q=[θ,x,y,z] be a unit length 
quaternion.  

•  The following equation shows 
the unit representation of a 
rotation of an angle θ about the 
axis of rotation v=(x,y,z) 
 
q=Rot[θ,(x,y,z)]= 
       [cos(θ/2),sin(θ/2)⋅ (x,y,z)]= 
       [cos(θ/2),sin(θ/2)⋅ v]= 
  

•  Converting from angle and axis 
notation to quaternion notation 
involves therefore two 
trigonometric operations, as well 
as several multiplies and 
divisions.  

•  Notice that a quaternion and its 
negation [-s,-v] produce the 
same rotation (to prove it, 
simply write the formula here on 
the left for –q and you will see 
that the negative terms will 
disappear) 



From Euler angles to quaternions 

•  Converting Euler angles into 
quaternions is a similar process 

•  just have to be careful that 
operations are performed in correct 
order.  

•  For example, let's say that a plane 
in a flight simulator first performs a 
yaw, then a pitch, and finally a roll.  

•  One can represent this combined 
quaternion rotation as  
q = qyaw qpitch qroll where:  
 
qroll = [cos (y/2), (sin(y/2), 0, 0)]  
qpitch=[cos (q/2), (0, sin(q/2), 0)]  
qyaw = [cos(f /2), (0, 0, sin(f /2)]  

•  The order in which the 
multiplications are done is 
important.  

•  Quaternion multiplication is not 
commutative (due to the vector 
cross product that's involved).  

•  In other words, changing the order 
in which you rotate an object around 
various axes can produce different 
resulting orientations, and therefore, 
the order is important.  



From quaternions to a rotation matrix 

•  Converting from a rotation 
matrix to a quaternion 
representation is a bit more 
difficult 

•  Conversion between a unit 
quaternion and a rotation matrix 
can be specified as  

•  It's very difficult to specify a rotation 
directly using quaternions. It's best 
to store your character's or object's 
orientation as a Euler angle and 
convert it to quaternions before you 
start interpolating.  

•  It's much easier to increment 
rotation around an angle, after 
getting the user's input, using Euler 
angles (that is, roll = roll + 1), than 
to directly recalculate a quaternion.  

•  If the quaternions are not unit 
quaternions, additional 
multiplications and a division are 
required in the computation.  
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From quaternions to a rotation matrix 

•  One of the most useful aspects of 
quaternions is the fact that it's easy 
to interpolate between two 
quaternion orientations and achieve 
smooth animation.  

•  To demonstrate why this is so, let's 
look at an example using spherical 
rotations.  

•  Spherical quaternion interpolations 
follow the shortest path (arc) on a 
four-dimensional, unit quaternion 
sphere.  

•  Since 4D spheres are difficult to 
imagine, we'll use a 3D sphere to 
visualize quaternion rotations and 
interpolations.  
 
 

•  Let's assume that the initial 
orientation of a vector emanating 
from the center of the sphere can be 
represented by q1 and the final 
orientation of the vector is q3.  
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From quaternions to a rotation matrix 

•  The figure shows that if we have an 
intermediate position q2, the 
interpolation from q1➝q2➝q3 will 
not necessarily follow the same path 
as the q1➝q3 interpolation.  
 

•  The initial and final orientations are 
the same, but the arcs are not.  

•  Quaternions simplify the 
calculations required when 
compositing rotations. For example, 
if you have two or more orientations 
represented as matrices, it is easy 
to combine them by multiplying two 
intermediate rotations.  
           R = R2R1  

•  Note: R2R1 means rotation R1 
followed by a rotation R2  
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+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++  

End 
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