Computer Animation 0-Introduction SS 15

Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik Bauhaus-Universität Weimar caw AT medien.uni-weimar.de

Overview

- Specifying motion [5 W]
 - History of animation, computer animation
 - Review splines
 - Keyframing parameterized models
 - Freeform deformations
 - Morphing
 - Review quaternions
 - Rigid bodies
 - Inverse kinematics
 - Character skinning
- 2D motion [2 W]
 - Interpolated motion

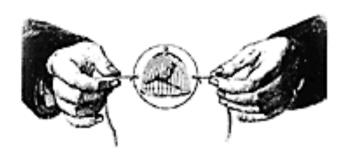
- Passive motion (physics-based and procedural methods) [4 W]
 - Particle systems
 - Rigid bodies
 - Contact and collision
 - Mass-spring systems
 - Noise and turbulence
- Active motion (controller and datadriven methods) [3 W]
 - Flocking behaviour
 - Motion optimization
 - Motion capture

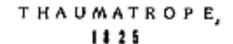
Aim of the course

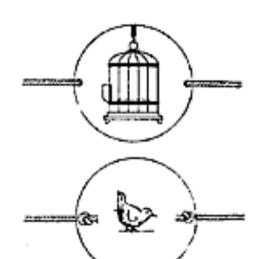
- To present techniques used in animations, i.e. "moving objects"
 - Algorithms
 - Mathematical methods
 - Movement studies
 - Not for the faint of heart
 - Lots of math, but also fun

Exercitations

- Final grades
 - 40% exercitations
 - 60% final exam.
- Exercitations:
 - Aline.Helmke[at]uni-weimar.de and Bernhard.Bittorf[at]uni-weimar.de


Literature


- Rick Parent: "Computer Animation. Algorithms and Techniques", Morgan Kaufman 2002
- http://www.blender.org
- http://www.uni-weimar.de/medien/cg

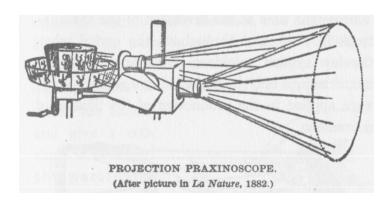

Computer Animation 1-History SS 13

Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik Bauhaus-Universität Weimar caw AT medien.uni-weimar.de

- First experiments with persistence of vision done early 1800
- Animation existed before the camera
- Perhaps simplest device: thaumatrope
 - Flipping circle with two drawings

- Flipbook
 - Very common, and survived till today
- Motion through page flipping

- Zoetrope: wheel of light
- Cylinder
 - Inside: drawings
 - Slits cut between frames on cylinder
 - Allow viewer to see only one frame
 - Illusion of movement



- Phenakistoscope: greek for "spindle viewer"
- Two disks rotating in sync (or one at the mirror)
 - Back side: drawings
 - Slits cut between frames on cylinder
 - User can see only one small part of frame at a time
 - Illusion of movement

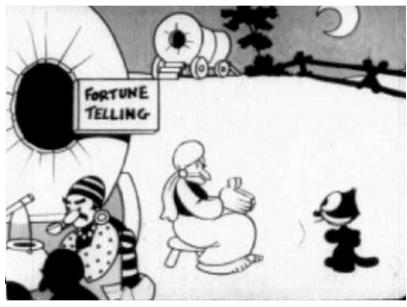
- Praxinoscope: greek for "who knows?"
- Here rotating mirrors are used for allowing only the view on one frame at the back of the external cylinder

- Filming of two-dimensional handdrawings
- Georges Méliès (1896) used camera tricks (multiple cam exposures, stop motion) to make objects appear, disappear and change shape.
- Emile Cohl produced several vignettes
- J. Stuart Blackton animated smoke on a movie (1900) and created first animated cartoon in 1906.

- Windsor Mc Cay, a newspaper cartoonist, produced first animated cartoons
 - *Little Nemo* (1911)
 - Gertie the dinosaur (1914).
- Technique used:
 - Draw each image on rice paper
 - Film them individually
- In many of his works, he interacted live with his characters

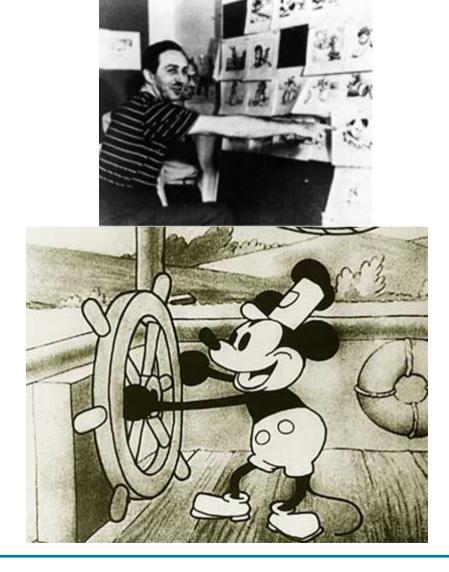
- John Bray started 1910 to work at patenting the animation processes.
- Was joined in 1914 by Earl Hurd, who patented the use of translucent cels to compositing multilayered images
- Bray patented also
 - The use of grayscale
 - He then enhanced overlaying to include a peg system for registration of the layers
 - Finally he patented drawing on long sheets to allow panning on the background

- Out of Bray 's studio came following authors:
 - Max Fleischer (Betty Boop)
 - Paul Terry (*Terrytoons*)
 - George Stallings (*Tom and Jerry*)
 - Walter Lanz (Woody Woodpecker)



- In 1915 Fleischer patented rotoscoping: draw images on cells by tracing previously recorded live actions
- Bray did experiment also with colour (1920) in the short "The debut of Thomas Cat"

"Conventional" animation: arts?


- Technology developed fast
- However, the artistic side struggled for long
- First complete character with personality:
 - Felix the Cat (Otto Messmer) very successful in mid 1920s

Copyright (c) 1926 Pat Sullivan Studio

Walt Disney

- Walt Disney was the most successful conventional animator
- First to use storyboards for animations
- In 1928, he was the first to add sound to animations in "Steamboat Willie"

Walt Disney

- Major technical innovation of Walt Disney:
 - Multiplane camera
 - Camera mounted on top
 - Each plane holds an animation cell
 - Planes move along 3 axes
- Allows parallax motion (multiplane backgrounds)

Courtesy Sébastien Barthe

Walt Disney: arts

- Disney preferred to give characters a long lasting personalities
- Focus on character, build stories around it
- Major characters: Mickey Mouse, Pluto, Goofy, Donald Duck
- Studied intensively real life motion
- Developed first "mood pieces"
 - Skeleton Dance in 1929
 - Fantasia in 1940

Copyright (c) Walt Disney Productions

C Walt Disney Productions

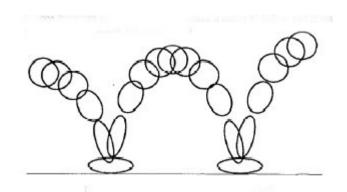
Animation studios

- The success of Walt Disney pushed others to initiate animation studios
- Well known animation studios: Fleischer, Iwerks, Van Beuren, Universal Pictures, Paramount, MGM, Warner Brothers.

Alternative techniques

- Stop motion
- techniques have been
- also very popular:
 - Clay animation
 - Puppet animation
- Here figures are
- moved one frame
- at a time, and snapshots are tak
- Father of these techniques:
 Willis O 'Brian (King Kong)
- Ray Harryshausen (Mighty Joe Young)
- In Europe: Fusako Yusaki (Fernet Branca)

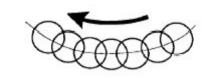
Copyright (c) Fernet Branca

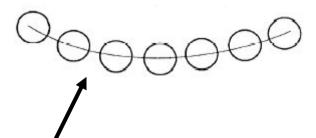

Computer animation: the principles

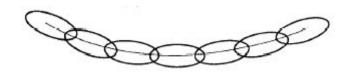
- Animation has its roots in 2D animation, and rules of course have been found out for 2D animation (the grammar of animation)
- These principles are nowadays quite well known. John Lassater (Pixar) outlined these principles in a nice article at Siggraph 87

- 1. Squash and stretch
- Timing
- 3. Anticipation
- Staging
- 5. Followthrough and overlapping action
- Straight ahead action and pose-topose action
- Slow in and slow out
- 8. Arcs
- 9. Exaggeration
- 10. Secondary action
- 11. Appeal

Principles: squash and stretch


Example




Images Copyright (c) ACM The Association of Computing Machinery

 Used also to avoid strobing in fast movement

Percieved as separate objects

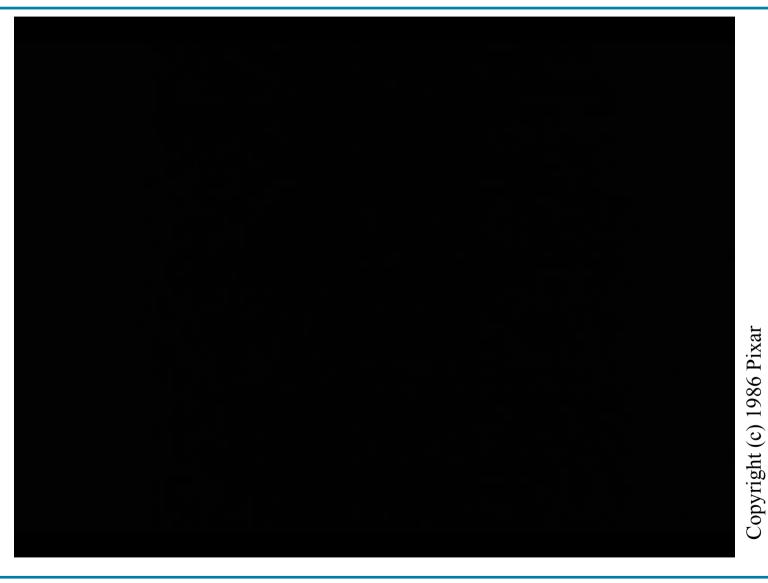
Principles: timing

- Timing: the speed of an action
 - Not too long (boring)
 - Not too short (one sees nothing)
 - Weight of object is defined by timing
 - the heavier, the slower it accelerates
 - The lighter, the faster they accelerate
 - Big and heavy objects move slooooowwww

- Emotions can be also expressed through different timings:
 - Tilting a head with one inbetween may indicate it has been hit by a bat
 - But with seven inbetweens it tries to get a better look at something

Principles: Anticipation

- Actions are subdivided in 3 parts:
 - Preparation (anticipation)
 - the action itself (staging)
 - its termination.
- Anticipation prepares the action and notifies the viewer something is going to happen
- In nature, it is the same: you can't kick unless you pull the leg backwards


- Anticipation aims at making the viewer look at the right part of the image
- If the viewer knows what to expect, then action itself can be faster
- Exaggerated anticipation can be used to emphasize heavy weights (bending back to lift one)

Principles: Anticipation

- Actions are subdivided in 3 parts:
 - Preparation (anticipation)
 - the action itself
 - its termination.

- Anticipation prepares the action and notifies the viewer something is going to happen
- In nature, it is the same: you can't kick unless you pull the leg backwards
- Let us make an example

Principles: Anticipation

Principles: Staging

- Staging is the presentation of an idea so it is unmistakably clear.
- This can be an action, a personality, an expression, or even a mood
- Staging, anticipation and timing are all integral part to directing the eye.
- Very important is to allow users to see only one thing at a time

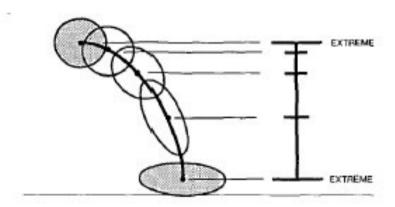
- Animators in fact tell a story saying "look at this, then this"
- Staging is mostly done in silhoutte: actions are done outside of the body so as to make them pop out more clearly (e.g. Scratching is done on side)

Principles: Follow-through and overlapping action

- Follow through is the termination of an action
- Actions usually last longer than their end. Ex: hand throwing ball goes on after
- Actions of parts of an object are not simultaneous. Some parts start before (the *lead*).
- For example, hips move before legs for walking

- Similarly, appendices would "follow" the action, and do this according to their weight
- Slight variations are added to loose parts to make action look more interesting (overlapping)
- Actions themselves overlap, just as we curve not by turning promptly but on smooth curves

Principles: Follow-through and overlapping action


- There are mainly two approaches to hand drawn animation
 - The animator can produce one pic at a time in sequence (straight ahead)
 - The animator can produce key poses and then draw the inbetweens (pose to pose)
 - Inbetweens are done knowing the timing necessary for action
 - For complex shapes they are difficult to do

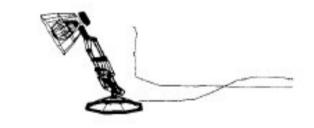
- Automatical inbetweening becomes therefore difficult to do
- Moreover, parts of figures may require different keyframe timings

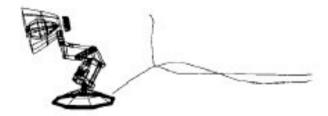
Principles: Slow in, slow out

- This deals with the spacing of the inbetween drawings between the extreme poses
- Mathematically it means controlling acceleration
- The animator indicates the inbetweens with a timing chart drawn to the side to specify where the inbetween drawings are placed in the timescale

Here is an example of a timegraph of a ball bounce:

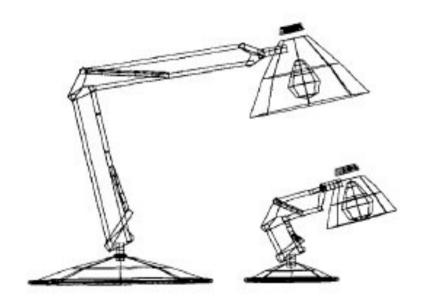
Principles: Arcs


- The visual path of action is described by an arc
- All movements follow an arc
- Sometimes, they are on a straight line, but mostly they are on an arc
- Even if characters move on a straight line, they usually rotate on themselves


Arcs are usually done on 3rd order splines, to be able to control velocity and acceleration

Principles: Exaggeration and secondary action

- Exaggeration in animation does not mean distorting, just accentuating
- Make sad characters sadder, wild characters frantic
- Balance exaggeration in the scene so all looks "equally exaggerated"
- Do not overdo exaggeration, and keep it "natural"

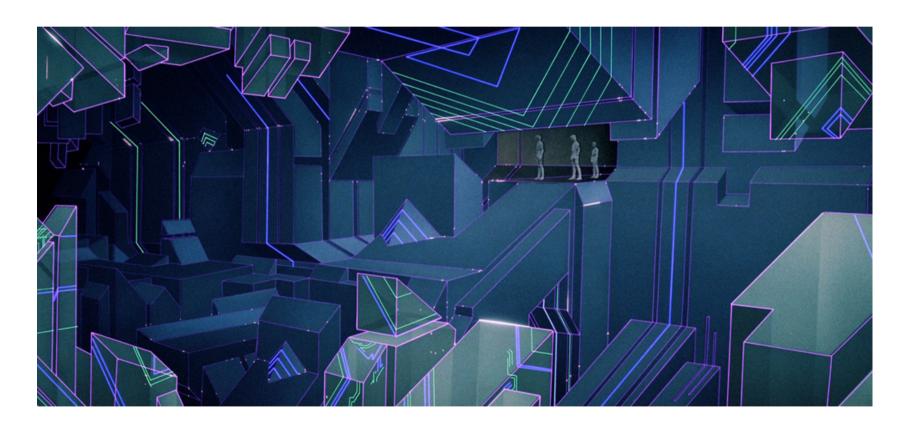

- Secondary actions are actions resulting directly from another one
- Example: a power chord of a device has its own secondary movement if you move the device itself

Principles: Appeal

- Appeal is anything the viewer likes to see, or would look at:
 - Weak drawing
 - Too complicated drawing
 - Akward moves
- Simple rules to avoid flatness of design:
 - Do not make characters symmetric: they would look dull
 - Think of detail when you develop a character

Principles: Personality

- Personality is given by the successful application of the above principles
- A story is good when viewers look at the character and at the story
- Animators have full control of every move, but they are good at animating when a character becomes a character


- Questions animators have always present to express a characters personality are:
 - What mood is the character in?
 - How would he move to perform this action?
- No two characters would do an action the same way
- AND the personality of the character should be familiar to the audience

Computer Animation: examples

First movie to make extensive use of animation?

Computer Animation: examples

- First movie to make extensive use of animation?
- Tron, Disney, 1982

Computer Animation: examples

• Finding Nemo: Copyright Pixar (2003)

Geri 's Game: Copyright Pixar (1999)

For the Birds: Copyright Pixar (2001)

Traditional animation: production

- Production indicates the whole film
- Productions are split in sequences: each sequence is usually identified by an associated staging area.
 There are 1 to 12 sequences in a production
- A sequence is broken in one or more *shots*. Each shot is a continuous camera recording
- A shot is broken down into individual *frames*. A frame is a single image

Production							
Sequence 1		Sequence 2				Sequence 3	
Shot 1	Shot 2	Shot 1	Shot 2	Shot 3	Shot 4	Shot 1	Shot 2
12							n

Frames

Traditional animation: production steps

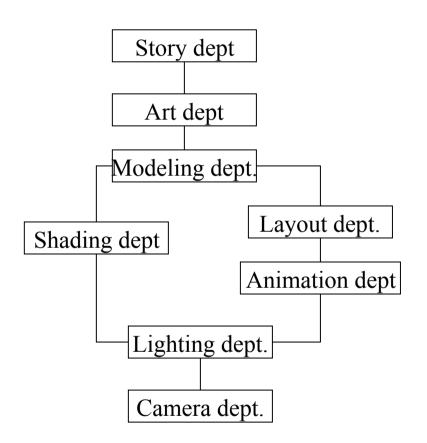
- First a *preliminary story* is decided
- This includes a script
- A *storyboard* is developed: it lays out action scenes by sketching representative frames and writing text to it
 - A storyboard is used for discussing action

- For each character, model sheets are done. They are drawings of the character in different poses for keeping the characters consistency across animation
- The exposure sheet records all info of each frame (camera moves, sound cues, composing elements)
- The route sheet records stats and responsibility for each scene
- A story reel may be produced: a recording of the keyframes, each for as long as the scene it represents. It helps reviewing the timing of movie

Traditional animation: production steps

- Once storyboard is decided, work on the *detailed story* is done (detail in action)
- *Keyframes* (or *extremes*) are identified and drawn by master animators
- Assistant animators draw the inbetweens between the keys (inbetweening)

- Test shots are done on short sequences to check rendering and movement
- Sometimes movement can be checked on pencil drawings
- Once sequence is fixed
 - Inking is done (transferring contours to the cels)
 - Opaquing is done (filling with colour)


Traditional animation: sound

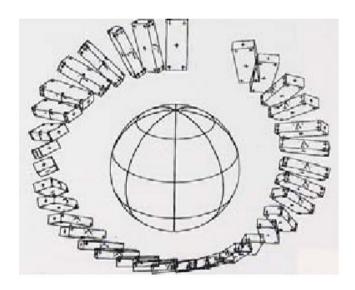
- Sound is extremely important in animation
- Contrary to regular movies, precise timing is possible
- Depending on importance of sound, either
 - Animation is done first :
 here a scratch track (or rough sound track) can be built while storyboard is developed
 - Sound track is done first e.g. for lipsyncing

And in Computer Animation?

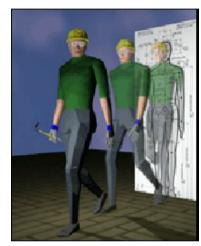
- Many of the tasks and tools before are used here too: storyboarding, model sheets, keyframing....
- However, computer animation allows more flexibility
- Moreover, animators can turn on/off effects to concentrate on partial aspects
- They can even simplify rendering to check for particular aspects
- Moreover, even at rendering time certain aspects can be turned on/off to speed up the process e.g. Which objects cast shadows to where

Producing a Computer Animation

- Story Dept: Converts screenplay to storyboard and to story reel
- Art Dept: Creates design and color studies, including detailed model description and lighting scenarios
- Modeling Dept: Creates the characters and the world they live. Often parametrizes figures to control movement of figures
- Layout Dept: Implements staging and blocking. Is responsible for taking the film from 2D to 3D
- Shading dept: Adds textures, displacement shaders and lighting models
- Animation dept: Responsible for character "life". Produce gestures and subtle animation detail
- Lighting dept: Assigns teams to each sequence so that lighting is done as the arts department wishes
- Camera dept: renders the frames


Editing

- Once images are produced, they have to be assembled into the final movie
- Originally, sequences got mixed one after the other linearly in time (the output was linear)
- Later, timestamps were added so that some non linear editing was possible


- Nowadays, almost every PC is capable of non-linear editing
- Here, tracks can be mixed, inserted, overlayed, sound can be added to them at will

History: early days (60s-70s)

- It all started from Ivan
 Sutherland 's interactive machine
 (MIT 63)
- First animated computer sequence: Ed Jazzac (Bell Labs)

Early 70s: Univ. of Utah established program of CG (Catmull)

- Early Labs (late 70s):
 - U. Pennsylvania (N. Badler)
 - NYIT (Catmull)
 - Ohio State (De Fanti, Csuri)
 - U. Montreal (D. And N. Thalmann)
- Animation mostly in Labs

History: towards maturity (80s)

- Three major events:
 - Development of graphics capable hardware (SGI) and rendering
 - Development of complex algorithms for modeling
 - Appearance of first animation studios and first complex films
- First animated computer film: Tron (Disney 1982)

- Big animation studios at that time:
 - Digital Pictures
 - Image West
 - Cranston-Csuri
 - Pacific Data Film
 - Lucasfilm (who became Pixar)
- First animation Oscars won: Tin Toy (1988)

History: maturity(?) (90s-today)

- Major productions of
 - Complex special effects
 - Whole productions
 - Digital characters in movies
- Two real big players:
 - Pixar (Star Trek II, Toy Story, Monsters.....)
 - ILM (Terminator II, The Abyss, Casper, Jurassic Park,)
- Animation big in commercials
 - Here smaller studios work

- Software available nowadays off the shelf
- Hardware too (despite Pixar 's Renderfarms)
- Modeling possible at home


History: maturity(?) (90s-today)

• 3D movies: Avatar.

Courtesy 20th Century Fox © 2009

End

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++