
Computer Animation
Natural Phenomena SS 13

Prof. Dr. Charles A. Wüthrich,
Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de

Groups of objects

• Multiple objects can form groups
• Among them, we will introduce

– Particles
– Flocks
– Autonomous agents

Controlling groups of objects

• A particle system is a large
collection of individual elements
which taken together represent
a conglomerate object

• The „global“ behaviour of the
particles is called emergent
behaviour

• This can be used both for
particle systems (which usually
have more individuals) and for
flocking

• Flock members have a more
sophisticated behaviour than a
simple element of particle system

• While particle systems behave
according to physics, flocking
particles add some intelligence to
the behaviour of the individuals

• The more intelligence is added, the
more the element moves in a more
interesting way, and the more it
shows autonomous behaviour

Particle systems

• In a particle system, due to the no of
its elements, simplified assumptions
are made

• Typical assumptions are
– Particles do not collide among

themselves
– Particles do not cast indiv. shadows,

but the aggregate may do
– Particles only cast shadows on the

rest of the environment, not among
themselves

– Particles do not reflect light, each is
modeled as a point light source

• Often particles are modeled as
having a finite life span

• To avoid dull behaviour, often
randomness is added

• When a particle system is
computed, the following steps
are taken:
– Generate new particles born

this frame
– Initialize attributes of new

particle
– Remove dying particles
– Animate active particles
– Render them

Particle generation

• Particles are usually generated
according to a stochastic
process
– At each frame, a random

number rP of particles is
generated

– Generation has a user specified
distribution centered at the
desired number of particles per
frame

– rP=ave+Rand(seed) ⋅ range
where ave is the desired
average and range is the
desired variation range

• Sometimes it may be
convenient to have this random
function as a function of time,
i.e. to make the number of
desired particles increase in
time

• If the particles are used to
model a fuzzy object, then the
area of the screen covered by
the object As is used to control
the number of particles

 rP=ave+Rand(seed) ⋅ range ⋅ As

Particle attributes

• Attributes of the particles are
typically
– Position
– Velocity
– Shape parameters
– Color
– Transparency
– Lifetime

• At each frame, the lifetime of
each particle is decremented by
one until it reaches zero

• During lifetime, particles are
animated (position, velocity,
shape, color, transparency)

• At each frame, forces on the
particles are computed

• These result in an acceleration,
which determines a velocity

• Also other attributes may be a
function of time

• Rendering is often done
modeling them as a point light
source adding color to the pixel

• This to avoid particles to
contribute to lighting
computations

Flocks

• Here the number of
members is smaller

• But each member has some
intelligence and simple
physics (avoid collision,
gravity, drag)

• Aggregate behavior emerges
from the members
(emergent behavior)

• Each member is called a
boid

• Two forces govern flock
behavior:
– collision avoidance: both

with other boids and with
obstacles

– Motion has some random
parameter to keep it from
looking regular

– flock centering: the boid
tries to be a flock member

– Flock centering keeps
together the flock but does
not have to be absolute,
otherwise flocks cannot split
around objects

Flocks: local behavior

• Controlling locally the
behavior is what one aims at

• Three processes may be
modeled:
– Physics: similar to particle

with gravity, collision
detection and response

– Perception of the
environment: each boid
views its direct neighbors
and obstacles directly in
front

– Reasoning and reaction to
determine the behavior

– Additionally velocity matching is
added (each boid tryies to
match the speed of its
neighbours)

• Global control is either applied
to all boids or to a group leader
– In this case the boids follow the

leader
• The leader role can be rotated

among boids in time
• Usually all this is implemented

as three controllers which are
priorized in the following order:
collision avoidance, velocity
matching and flock centering

Flock complexity

• The major problem with flocks is the fact that processing
complexity is N2.

• Even if interactions are allowed only with k nearest neighbors,
those have to be found

• One way to find efficiently is to perform a 3d bucket sort and
then check adjacent buckets for neighbors

• Of course, efficiency depends on the bucket size:
– The more buckets, the less boids per bucket

• Another way of doing it is through message passing, where
each boid informs the flock of its whereabouts

Collision avoidance

• There are several ways to avoid collisions
– The simplest way is adding a repelling force around an object
– However, this looks weird as the boid keeps attempting to aim at

the repelling surface and contantly gets blown away
– Another method computes if the boid trajectory hits the surface and

starts a steering behavior
– Quite complicated is the simulation of a splitting flock around an

obstacle, since a balance has to be found between collision
avoidance and flock cohesion

Autonomous behaviour

• Recently, authors concentrated in learning and
simulating how “intelligent” behaviour can be
implemented.

• Needs-goals priorization
• Some concentrated on “learning simulations” and life

games

Autonomous behaviour

• Modeling intelligent behaviour is a
complex task

• Autonomous behaviour models an
object knowing about its
environment

• This can become as complicated as
one wants

• Usually applied to animals, but also
to people, cars on a road, planes, or
soldiers in a battle

• Knowledge of the environment is
provided by providing access to the
environment geometry

• Subjective vision can be achieved
by rendering the environment from
the point of view of the
 object

• Internal state is modeled by
intentions = the urge to satisfy a
need

• High level goals can be
decomposed in single low level
tasks (levels of behaviour)

• Internal state and knowledge of the
environment are input to the
reasoning unit, which produces a
strategy (=what needs to be done)

• Such strategy is turned into a
sequence of actions by the planner,
and actions are turned into
movement

• If intentions are competing, they
must be prioritized

• Look at this link:
http://www.youtube.com/watch?v=pqBSNAOsM
Dc&feature=related

Natural Phenomena

• One of the most challenging parts of animation systems is trying
to model nature

• Many techniques and special mathematics is needed to do so
• Since nature is complex, it is often very time consuming to

simulate nature
• Typical simulations include plants, water, clouds

Plants

• Plants possess an extraordinary complexity
• Lots of work was done on modeling the static representation of

plants (Prusinkiewicz & Lindenmayer)
• Their observation was that plants develop according to a

recursive branching structure
• If one understands how recursive branching works, one can

model its growing process
• On the book there is one page explaining the underlying

botanical concepts

L-systems

• Plants are simulated through L-
systems

• L-Systems are parallel rewriting
systems

• Simplest class of L-systems:
D0L-system
– D: deterministic
– 0: productions are context free

• A D0L-system is a set of
production rules αi →βi, where
– αi: predecessor symbol
– βi: sequence of symbols

• In deterministic L-systems, αi
occur only once on the left hand
side of the rules

• An initial string, the axiom, is given
• All symbols in the string that have

production rules are applied to the
current string at each step

– This means replacing all symbols
with a production rule

– If there is no production rule for a
symbol αi, the production αi → αi is
applied

• Applying all production rules
generates a new string

• This is done recursively until no
production rules can be applied

Example

• Let the alphabet consist of the
letters a,b

• Suppose we have two production
rules:

– a → ab
– b → a

• And suppose that the axiom is b
• Then we obtain that we can

generate the following strings

• b
a
ab
aba
abaab
....

• Or, more figuratively:

b
a

a b

aa b

a b a ba

Interpreting L-systems

• The strings produced by L-systems are just strings
• To produce images from them one must interpret those strings

geometrically
• There are two common ways of doing this
• Geometric replacement: each symbol of a string is replaced by a

geometric element
– Example: replace symbol X with a straight line and symbol Y with a

V shape so that the top of the V sligns with the end of the straight
line

– Example: XXYYXX

Interpreting L-systems

• Use turtle graphics: the symbols
of the string are interpreted as
drawing commands given to a
simple cursor called turtle

• The state of a turtle at a given
time is expressed as a triple
(x,y,α) where x,y give the
coordinate of the turtle in the
plane, and α gives the direction
of it is pointing to with respect to
a given reference direction

• Two more parameters defined
by the user are also used:
– d: linear step size
– δ: rotational step size

• Given the reference direction,
the initial state of the turtle
(x0,y0,α0), and the parameters d
and δ the user can generate the
turtle interpretation of the string
containing some symbols of the
alphabet

L-systems

• Even more useful: if the
symbols are interpreted as cells,
or parts of a plant, the
generation process of an L-
system can simulate the
growing of a plant

• The interpretation would be:
substitute last year‘s leaf buds
with a small piece of branch

• Or,, a branch will be replaced by
three branches centered in the
direction of the previous branch
and having an angle between
them of 22 degrees“

• Through this, the growing
process of a plant can be
simulated C

ou
rte

sy
 H

un
g-

W
en

 C
he

n,
 C

or
ne

ll
U

ni
ve

rs
ity

 Bracketed L-systems

• In bracketed L-systems,
brackets are used to mark the
beginning and end of additional
offshoots of the main branch

• Production rules are context
free but non deterministic, i.e.
there are more than one
production rule per symbol

• Which one is chosen? It can
either be chosen at random or
follow certain rules, which can
be derived for example by
„simulated temperature of that
year“

C
ou

rte
sy

 H
un

g-
W

en
 C

he
n,

 C
or

ne
ll

U
ni

ve
rs

ity

 Stochastic and Context sensitive
L-systems

• Stochastic L-systems assign a
user-specified probability to
each production so that the left
hand side symbol probabilities
add to 1

• These productions will control
how likely a production will form
a branch at a branching point

• In context sensitive L-systems,
the productions are sensitive to
a sequence of symbols rather
than a single symbol

• If n left symbols are considered
in the production, and m right
symbols are produced, we have
a (n,m)L-system

 Parametric and timed L-systems

• In parametric L-systems,
symbols can have one or more
parameters associated to them

• These parameters can be set
and modified by the productions
of the L-system

• Additionally, optional conditional
terms can be associated with
the productions

• All this to simulate differences in
the change through time in a
plant

• Timed L-systems add two things
– A global time variable helping

control the evolution of a string

– And a local age value τi assoc.
with each letter µi.

– The production
(µ0,β0)→((µ1,α1),...,(µn,αn))
indicates that µ0 has a terminal
age of β0.

– Each symbol has one and only
one terminal age

– When a new symbol is
generated, it is initialized at age
0 and exists until it reaches β0

– After its lifespan ends, the
symbol will become something
else and „mutate“

• The environment can influence
plant growth in many ways,
which can influence the
production rules

L-systems

• Adding all these factors allow
the generation of very complex
objects

• They look pretty realistic too

C
ou

rte
sy

 P
rz

em
ys

la
w

 P
ru

si
nk

ie
w

ic
z,

 M
ar

k
H

am
m

el
,

R
ad

om
ir

M
ec

h
 U

ni
v.

 O
f C

al
ga

ry

Water

• Water is challenging: its appearance and motion take various forms
• Modeling water can be done by adding a bump map on a plane surface
• Alternatively, one can use a rolling height field, to which ripples are

added later in a postprocessing step
• When doing ocean waves, water is assumed not to get transported,

although waves do travel either like sinus or cicloidally
• If water has to be transported (=flow) this adds a lot of computational

complexity

Small waves

• Simple way: big blue polygon
• Add normal perturbation with sinuisoidal function and you have small

waves
• Usually you would start sinuisoidal perturbation from a single point

called source point
• Sinus perturbation has, however crests of the same amplitude. This is

not so realistic, and waves can be perturbated through smaller radial
waves to achieve non self-similarity

• Similarly, one can superimpose more different sinuisoidal waves to
achieve an interesting complex surface

• All these methods give a first decent approximation, but not always
very realistic

Wave functioning

• A better way of doing water
is to incorporate physical
laws

• There is a variety of types of
waves:
– Tidal waves
– Waves created by the wind

• In general, at a distance s of
the sourcepoint we have that

• Where
– A maximum amplitude
– C speed of propagation
– L wavelength

(it holds C=L/T, with T time for
one wave cycle to pass a given
point (freq.))

– t time
• Waves move differently from the

water itself. A water particle
would almost move circularly:
– Follow wave crest, sink down

and move backwards, then
come up again

!
"

#
$
%

& '
=

L
CtsAtsf)((2

cos),(
(

Wave functioning

• Small waves (with little
steepness) work almost like
sinus curves

• The bigger they get, the more
they look like a sharply crested
peak, i.e. They approach the
shape of a cycloid
(point on wheel)

• When a wave approaches the
shoreline, at an angle, the
nearest part to the coastline
slows down

• While its speed C and wavelength L
reduce near the coast, its period
stays the same and amplitude
remains the same or increases.

• But because the speed of the water
particles remains the same, the
wave tends to break as it
approaches the shore

• Litterally, particles are „thrown
forward“ beyond the front of the
wave

Gaseous Phenomena

• Gas is quite complicated to do
• But occurs often (smoke, fire, clouds)
• Fluid dynamics long studied, and applies to both gas and liquids

– Uncompressible --> Liquid
– Compressible --> Gas

• There are different types of movement in fluids
– Steady state flow: velocity and acceleration at any point in space

are constant
– Vortices: circular swirls of material,

• depend on space and not on time in steady state flow
• In time varying flow, particles carrying non zerovortex strength travel

through the environment and „push“ other particles. This can be
simulated by using a distance-based force

Gaseous phenomena

• There are 3 main approaches to modeling gas:
– Grid-based methods (Eulerian formulation)
– Particle-based methods (Lagrangian formulation)
– Hybrid methods

Grid-based method

• Decomposes space into grid cells
• Density of gas in a cell is updated

from time to time step
• The density of gas in a cell is used

to determine the visibility and
illumination for rendering

• Attributes of gas in a cell can be
used to track the gas travelling
across the cells

• Flow out of a cell is computed
based on cell velocity, size and
density

• External forces (wind or obstacles)
are used to accelerate particles in a
cell

• Major disadvantage: grid is fixed, so
you have to know before what grid
to lay over the whole simulated
environment

Particle-based method

• Here, particles (or globs of gas) are
tracked in space

• Often this is done like a particle
system

• One can render either invividual
particles, or as spheres of gas of a
given density

• Technique similar to rigid body
dynamics

• Disadvantage: loads of particles are
needed to simulate a dense
expansive gas

• Particles have masses, and external
forces are easy to incorporate by
updating the particle acceleration

vi(t)

ai(t) vi(t+dt) ai(t+dt)

Hybrid method

• In hybrid methods, particles are
tracked in a spacial grid

• They are passed from cell to
cell as they traverse the space

• Rendering parameters of the
cells are determined by
counting the particles in a cell at
a certain time point and looking
at the particle type

• Particles are used to carry and
distribute attributes through the
grid, and the grid is used for
computing the rendering

Computational fluid dynamics

• CFD solves the physical
equations directly

• Equations are derived from the
Navier-Stokes equations

• Standard approach is based in
a grid: set up differential
equations based on
conservation of momentum,
mass and energy in and out of
differential elements

• Quite complicated

Flow

Differental element

Flow out
Flow in

C
ou

rte
sy

 J
ap

an
 A

er
os

pa
ce

Ex

pl
or

at
io

n
A

ge
nc

y
(J

A
X

A
)

Clouds

• The biggest problem with clouds
is that we are so familiar with
them, i.e. we know well realistic
looking ones

• Made of ice crystals or water
droplets suspended on air
(depending on temperature).

• Formed when air rises, and
humidity condensates at lower
temperatures

• Many many shapes: cirrus,
stratocumulus, cumulus

C
ou

rte
sy

 D
an

ie
l B

ra
m

er
, U

IU
C

Clouds

• Clouds have differet detail at
different scales

• Clouds form in a turbulent
chaotic way and this shows in
their structure

• Illumination charateristics are
not easy, and vary because the
ice and water droplets absorb,
scatter and reflect light

• There are two illumination
model types for clouds:
– low albedo
– High albedo

C
ou

rte
sy

 D
an

ie
l B

ra
m

er
, U

IU
C

Cloud illumination

• Low albedo: assumes that
secondary scattering effects are
neglegible

• High albedo: computes
secondary order and high order
scattering effects

• Optically thick clouds like cumuli
need high albedo models

• Self shadowing and cloud
shadowing on landscape have
also to be considered

C
ou

rte
sy

 D
an

ie
l B

ra
m

er
, U

IU
C

Cloud illumination: surface methods

• Early models used either by using Fourier synthesis to control
the transparency of large hollow ellypsoids

• Others used randomized overlapping spheres to genrate the
shape

• A solid clous texture is combined with transparency to control
the transparency of the spheres

• Transparency near the edges is increased to avoid seeing the
shape of the spheres

• Such surface models are not so realistic, because the surfaces
are hollow

Cloud illumination: volume methods

• More accurate models have to be
used in order to capture the 3D
structure of a cloud [Kajiya, Stam
and Fiume, Foster and Metaxas,
Neyret]

• Meyret did a model based of a
convective cloud model using
bubbling and convection
preocesses

• However, it uses large particles
(surfaces) to model the cloud
structure

• One can use particle systems, but a
very large number of particles is
needed

• Other approaches use volume-
rendered implicit functions,
sometimes combining them with
particle systems approaches

• Implicit functions rendering can be
used on the large scale, to define
the global structure of a cloud, and
combined with simpler procedural
techniques to produce the detail

• To add a „bit“ to complexity, clouds
also need to be animated since they
change in time

Fire

• Fire is even more difficult:
– it has the same complexity of gas and clouds
– but has very violent internal processes producing light and motion

• Recently, good advances were made
• At the „exactness“ limit of the models, CFD can be used to

produce fire and simulate its internal development, but it is
difficult to control

• Studies on simulating the development and spreading of fire
began to appear, but are usually not concerned with the internal
processes within fire.

Fire: particle systems

• Computer generated fire has
been used in movies since a
long time, exactly since Star
Wars II

• In this film, an expanding wall of
fire spread out from a single
impact point

• The model uses a two-level
hierarchy of particles
– First level at impact point to

simulate initial ignition
– Second level: concentric rings

of particles, timed to progress
concentrically to form a wall of
fire and of explosions

• Each of these rings is made
of a number of particle
systems positioned on the
ring and overlapping with
neighbors so as to form a
continuous ring.

• The individual particle
systems are modelled to
look like explosions

• Particles are oriented to fly
up and away from the planet
surface

• The initial position of a
particle is randomly chosen
from the circular base of the
particle systems

• Initial ejection direction is
forced into a certain cone

Fire: other approaches

• Two dimensional animated texture maps have been used to
simulate a gas flame

• This works however only in one direction
• Others (Stam and Fiume) presented advection-diffusion

equations to evolve both density and temperature fields
• The users control the simulation by specifying the wind field

Charles A. Wüthrich

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

C
op

yr
ig

ht
 (c

) 1
98

8
IL

M

