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Collisions

• When objects start to move,
they actually collide

• Two issues must be addressed:
– Detecting collision
– Computing appropriate

response
• Detecting collision: two main

approaches
– Penalty method: calculate the

reaction after collision has
occurred

• when more particles involved,
assume they collided at same
instant

• Imprecise but often acceptable

– Back up time to first instant
of collision and compute
appropriate response

• By heavy no of collisions,
quite time consuming

• Computing the appropriate
response to collision
(depends on physics and
distribution of mass of the
object)
– Kinematic response
– Penalty method: introduce a

nonphysical force to restore
non penetration but
compute it at time of
collision

– Calculation of impulse force



Kinematic response

• A simple case is a particle moving
at constant velocity and impacting a
plane

• Questions:
– When is the impact?
– How does it bounce off?

• Use plane equation
E(p): ax+by+cz+d

• If normals correct, then
– If E(p)=0 then p plane point
– If E(p)>0 then p above plane
– If E(p)<0 then below plane

• The particle moves with equations:
  p(ti)=p(ti-1)+t ⋅ vave(t)

• When E(p(ti)) switches to ≤0
then we had a collision

• Now the component of the
velocity parallel to the normal to
the plane is negated

• Some damping factor N is
added
v(ti+1)=v(ti)-v(ti)N-kv(ti)N
=v(ti)-(1+k)v(ti)N

E(p)>0

E(p)=0

E(p)<0



Penalty method

• Here we construct a reaction to
the collision

• A spring with zero rest length is
attached at the instant of
collision

• The closest point on the surface
to the penetrating point is used
as attachment point

• The spring obeys Hooke‘s law:
F=-kd

• The approach needs to assign
arbitrary masses and constant,
and therefore is not ideal

• Moreover, for fast moving
points it might take a few
steps to push back the obj

• For polyhedra, it might also
generate torque

p(ti)

p(ti+1)

d force



Polyhedras colliding

• Shape can be complicated for
complex objects

• Thus, collisions can be tested
before on bounding boxes

• Or by adding hierarchical bounding
boxes

• Testing a point to be inside a
polyhedron is not easy

• But for a polyhedron one needs to
test all vertices for the two objects

• And each point has to be tested
against all the planes of the faces of
the polyhedron

• This works only for convex
polyhedra

• For concave polyhedra, one can
use a similar method to the point in
polygon test

• Construct a semi-infinite ray from
the point towards the polyhedron,
and check no of intersections

– If they are even, then the point is
outside

– If they are odd, then it lies inside
• Of course correct counting double

points has to be done
• In some cases, for solids of simple

shape and moving with an easy
movement, the volume of it can be
swept along its trajectory



Impulse force of collision

• To do accurate computations,
time has to be backed to the
instant of collision

• Then the exact reaction can be
computed

• If a collision appeared between
ti and ti+1, then
– recursive bisection of the time

step between these two
timepoints will eventually yeld
the exact time of the impact

– Alternatively, a linear
approximation of the velocity
can be used to simplify the
calculations

• At the time of the impact, the
normal component of the point
velocity can be modified to
reflect the bounce

• This normal can be multiplied by
a scalar to model the degree of
elasticity of the impact

• This scalar is called coefficient
of restitution



Impulse forces

• Once the simulation is backed
up to the time of the collision,
the reaction can be computed

• By working back from the
desired change in velocity, the
required change in momentum
can be deduced

• This equation uses the a new
term, the impulse, expressed in
units of momentum
J=FΔt=MaΔt=MΔv=
   Δ(Mv)=ΔP

• J can be seen as a large force
acting in a short time interval

• This allows computing the new
momentum

• To characterize elasticity, the
coeff. of restitution, ε is
computed (0≤ε≤1)

• The velocities along the normal
before and after the impact are
related by   v+

rel=-εv-
rel



Impulse forces

• Assume that the collisions of the
two objects A and B has been
detected at t

• Each obj Ob has position  of mass
center xOb(t), lin. velocity vOb(t) and
ang. velocity ωOb(t)

• At the point of intersection, the
normal to the surface of contact is
determined (note, it can be a
surface, but also a point)

• Let rA and rB be the relative
positions of the contact points WRT
the center of mass

• Relative velocities of the contact
points WRT center of mass and the
velocities of the contct points are
computed as

• rA=pA-xA(t)
rB=pB-xB(t)
vrel=(pA°(t)-pB°(t))
pA°(t)=vA(t)+ωA(t)×rA
pB°(t)=vB(t)+ωB(t)×rB

pA
pB

ωA(t)

ωB(t)

xB(t)

xA(t)

vA(t)

vB(t)



Impulse forces

• Linear and angular velocities of
the objects before the collision
vob

- ωob
- are updated vob

+ ωob
+

   vA
+=vA

-+jn/MA
     vB

+=vB
-+jn/MB

     ωA
+=ωA

- +IA-1(t)(rA×j⋅n)
     ωB

+=ωB
- +IB-1(t)(rB×j⋅n)

where the impulse J is a vector
quantity in the direction of the
normal
             J= j⋅n

• To find the impulse, the
difference between the
velocities of the contact points
after collision in the direction of
the normal to the surface of
collision is formed

• vrel
+=n ⋅(p°A

+(t)-p°B
+(t))

 vrel
+=n ⋅(vA

+(t)+ ωA(t)×rA
              - vB(t)+ωB(t)×rB)

• Substituting previous equations
one obtains

• Contact between two objects is
defined by the point on each
involved and the normal to the
surface of contact

• If the collision occurs, the eq.
above is used to compute the
magnitude of the impulse

• The impulse is then used to
scale the contact normal, and
update linear and angular
momenta
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Friction

• An object resting on another
one has a resting contact with it

• This apples a force due to
gravity which applies to both
objects and can be
decomposed along the
directions parallel FPa to the
resting surface and FN
perpendicular to it

• The static friction force is
proportional to FN:
            Fs=µsFN

• Once the object is moving, there
is a kinetic friction taking place.
This friction creates a force,
opposite to the direction of
travel, and again proportional to
the normal
         Fk=µkFN



Resting contact

• It is difficult to compute forces due to the resting contact
• For each contact point, there is a force normal to the surface of contact
• All these forces have to be computed for all objects involved in resting

contact
• For each contact point, a torque is also generated on it.
• If bodies have to rest, all those forces and torques have to be zero
• Solutions to this problem include quadratic programming, and are

beyond the scope of this course



Constraints

• One problem occuring in animation is the fact that variables are
not free.

• Constraints are usually set on objects and limit the field of the
independent variables.

• There are two types of constraints:
– hard constraints: strictly enforced
– soft constraints: the system only attempts to satisfy them



Flexible objects

• To simulate elastic objects,
Spring-mass-damper model is
most used approach

• Springs: work with Hooke‘s law:
the force applied is
Fi,j=-Fj,i=ks(di,j(t)-leni,j)vi,j
where
– dij distance between the two

points
– lenij rest length of the spring
– ks spring constant
– vij unit vector from point i to

point j

• The flexible model is modelled as a
net of points with mass and springs
and dampers between them

• A damper can impart a force in the
direction opposite to the velocity of
the spring length and proportional to
that velocity
  Fd

i=-kd vi(t)
• One can also introduce angular

dampers and springs between faces
• Additional internal springs have

often to be added to add stability to
the system



Virtual springs

• Induce forces that do not directly model physical elements
• For example, in the penalty method
• Sometimes one can use a proportional derivative controller

which controls that a certain variable and speed is close to the
desired value

• For example, this is used to keep the object close to the desired
speed

• A virtual spring is added to keep things as desired



Energy minimization

• One can use energy to control the motion of the objects
• Energy constraints can be used to pin objects together, to

restore the shape of an object, to minimize the curvature of a
path or trajectory

• Energy constraints induce restoring forces on the system



Charles A. Wüthrich

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

C
op

yr
ig

ht
 (c

) 1
98

8 
IL

M
 


