Computer Animation 8-Collisions SS 13

Prof. Dr. Charles A. Wüthrich,
Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de

Collisions

- When objects start to move, they actually collide
- Two issues must be addressed:
- Detecting collision
- Computing appropriate response
- Detecting collision: two main approaches
- Penalty method: calculate the reaction after collision has occurred
- when more particles involved, assume they collided at same instant
- Imprecise but often acceptable
- Back up time to first instant of collision and compute appropriate response
- By heavy no of collisions, quite time consuming
- Computing the appropriate response to collision (depends on physics and distribution of mass of the object)
- Kinematic response
- Penalty method: introduce a nonphysical force to restore non penetration but compute it at time of collision
- Calculation of impulse force

Kinematic response

- A simple case is a particle moving at constant velocity and impacting a plane
- Questions:
- When is the impact?
- How does it bounce off?
- Use plane equation

E(p): ax+by+cz+d

- If normals correct, then
- If $E(p)=0$ then p plane point
- If $E(p)>0$ then p above plane
- If $E(p)<0$ then below plane
- The particle moves with equations:
$p\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{p}\left(\mathrm{t}_{\mathrm{i}-1}\right)+\mathrm{t} \cdot \mathrm{vave}(\mathrm{t})$
- When $\mathrm{E}\left(\mathrm{p}\left(\mathrm{t}_{\mathrm{i}}\right)\right)$ switches to ≤ 0 then we had a collision
- Now the component of the velocity parallel to the normal to the plane is negated
- Some damping factor N is added
$v\left(\mathrm{t}_{i+1}\right)=v\left(\mathrm{t}_{\mathrm{i}}\right)-\mathrm{v}\left(\mathrm{t}_{\mathrm{i}}\right) \mathrm{N}-\mathrm{kv}\left(\mathrm{t}_{\mathrm{i}}\right) \mathrm{N}$
$=v\left(\mathrm{t}_{\mathrm{i}}\right)-(1+\mathrm{k}) v\left(\mathrm{t}_{\mathrm{i}}\right) \mathrm{N}$

Penalty method

- Here we construct a reaction to the collision
- A spring with zero rest length is attached at the instant of collision
- The closest point on the surface to the penetrating point is used as attachment point
- The spring obeys Hooke's law: $\mathrm{F}=-\mathrm{kd}$
- The approach needs to assign arbitrary masses and constant, and therefore is not ideal
- Moreover, for fast moving points it might take a few steps to push back the obj
- For polyhedra, it might also generate torque

Polyhedras colliding

- Shape can be complicated for complex objects
- Thus, collisions can be tested before on bounding boxes
- Or by adding hierarchical bounding boxes
- Testing a point to be inside a polyhedron is not easy
- But for a polyhedron one needs to test all vertices for the two objects
- And each point has to be tested against all the planes of the faces of the polyhedron
- This works only for convex polyhedra
- For concave polyhedra, one can use a similar method to the point in polygon test
- Construct a semi-infinite ray from the point towards the polyhedron, and check no of intersections
- If they are even, then the point is outside
- If they are odd, then it lies inside
- Of course correct counting double points has to be done
- In some cases, for solids of simple shape and moving with an easy movement, the volume of it can be swept along its trajectory

Impulse force of collision

- To do accurate computations, time has to be backed to the instant of collision
- Then the exact reaction can be computed
- If a collision appeared between t_{i} and t_{i+1}, then
- recursive bisection of the time step between these two timepoints will eventually yeld the exact time of the impact
- Alternatively, a linear approximation of the velocity can be used to simplify the calculations
- At the time of the impact, the normal component of the point velocity can be modified to reflect the bounce
- This normal can be multiplied by a scalar to model the degree of elasticity of the impact
- This scalar is called coefficient of restitution

Impulse forces

- Once the simulation is backed up to the time of the collision, the reaction can be computed
- By working back from the desired change in velocity, the required change in momentum can be deduced
- This equation uses the a new term, the impulse, expressed in units of momentum
$\mathrm{J}=\mathrm{F} \Delta \mathrm{t}=\mathrm{Ma} \Delta \mathrm{t}=\mathrm{M} \Delta \mathrm{v}=$ $\Delta(\mathrm{Mv})=\Delta \mathrm{P}$
- J can be seen as a large force acting in a short time interval
- This allows computing the new momentum
- To characterize elasticity, the coeff. of restitution, ε is computed ($0 \leq \varepsilon \leq 1$)
- The velocities along the normal before and after the impact are related by $\mathrm{v}^{+}{ }_{\text {rel }}=-\varepsilon \mathrm{V}_{\text {rel }}^{-}$

Impulse forces

- Assume that the collisions of the two objects A and B has been detected at t
- Each obj Ob has position of mass center $\mathrm{x}_{\mathrm{Ob}}(\mathrm{t})$, lin. velocity $\mathrm{v}_{\mathrm{Ob}}(\mathrm{t})$ and ang. velocity $\omega_{\mathrm{Ob}}(\mathrm{t})$
- At the point of intersection, the normal to the surface of contact is determined (note, it can be a surface, but also a point)
- Let r_{A} and r_{B} be the relative positions of the contact points WRT the center of mass
- Relative velocities of the contact points WRT center of mass and the velocities of the contct points are computed as
- $r_{A}=p_{A}-x_{A}(t)$
$r_{B}=p_{B}-x_{B}(t)$
$v_{\text {rel }}=\left(p_{A}{ }^{\circ}(t)-p_{B}{ }^{\circ}(t)\right)$
$p_{A}{ }^{\circ}(t)=v_{A}(t)+\omega_{A}(t) \times r_{A}$
$p_{B}{ }^{\circ}(t)=v_{B}(t)+\omega_{B}(t) \times r_{B}$

Impulse forces

- Linear and angular velocities of the objects before the collision $v_{\mathrm{ob}}{ }^{-} \omega_{\mathrm{ob}}$ - are updated $\mathrm{v}_{\mathrm{ob}}{ }^{+} \omega_{\mathrm{ob}}{ }^{+}$ $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{A}}{ }^{-}+\mathrm{jn} / \mathrm{M}_{\mathrm{A}}$ $\mathrm{V}_{\mathrm{B}}{ }^{+=}=\mathrm{V}_{\mathrm{B}}{ }^{-}+\mathrm{jn} / \mathrm{M}_{\mathrm{B}}$
$\omega_{A}{ }^{+}=\omega_{A}{ }^{-} I_{A^{-1}}{ }^{-1}(t)\left(r_{A} \times j \cdot n\right)$
$\omega_{B}{ }^{+}=\omega_{B}{ }^{-}+I_{B}{ }^{-1}(t)\left(r_{B} \times j \cdot n\right)$
where the impulse J is a vector quantity in the direction of the normal

$$
J=j \cdot n
$$

- To find the impulse, the difference between the velocities of the contact points after collision in the direction of the normal to the surface of collision is formed
- $\mathrm{v}_{\mathrm{rel}}{ }^{+}=\mathrm{n} \cdot\left(\mathrm{p}_{\mathrm{A}}^{0}{ }^{+}(\mathrm{t})-\mathrm{p}_{\mathrm{B}}^{0}{ }_{\mathrm{B}}{ }^{+}(\mathrm{t})\right)$
$v_{\text {rel }}{ }^{+}=n \cdot\left(v_{A}{ }^{+}(t)+\omega_{A}(t) \times r_{A}\right.$

$$
\left.-v_{B}(t)+\omega_{B}(t) \times r_{B}\right)
$$

- Substituting previous equations one obtains

$$
-\left((1+\varepsilon) \cdot v_{r e l}^{+}\right)
$$

$j=\frac{-\left((1+\varepsilon) \cdot v_{r e}^{+}\right)}{\frac{1}{M^{\prime}}+\frac{1}{M_{B}}+n \cdot\left(I_{A}^{-1}(t)\left(r_{A} \times n\right)\right) \times r_{A}+\left(I_{B}^{-1}(t)\left(r_{B} \times n\right)\right) \times r_{B}}$

- Contáct between two objects is defined by the point on each involved and the normal to the surface of contact
- If the collision occurs, the eq. above is used to compute the magnitude of the impulse
- The impulse is then used to scale the contact normal, and update linear and angular momenta

Friction

- An object resting on another one has a resting contact with it
- This apples a force due to gravity which applies to both objects and can be decomposed along the directions parallel F_{Pa} to the resting surface and F_{N} perpendicular to it
- The static friction force is proportional to F_{N} :

$$
F_{\mathrm{s}}=\mu_{\mathrm{s}} \mathrm{~F}_{\mathrm{N}}
$$

- Once the object is moving, there is a kinetic friction taking place. This friction creates a force, opposite to the direction of travel, and again proportional to the normal

$$
F_{k}=\mu_{k} F_{N}
$$

Resting contact

- It is difficult to compute forces due to the resting contact
- For each contact point, there is a force normal to the surface of contact
- All these forces have to be computed for all objects involved in resting contact
- For each contact point, a torque is also generated on it.
- If bodies have to rest, all those forces and torques have to be zero
- Solutions to this problem include quadratic programming, and are beyond the scope of this course

Constraints

- One problem occuring in animation is the fact that variables are not free.
- Constraints are usually set on objects and limit the field of the independent variables.
- There are two types of constraints:
- hard constraints: strictly enforced
- soft constraints: the system only attempts to satisfy them

Flexible objects

- To simulate elastic objects, Spring-mass-damper model is most used approach
- Springs: work with Hooke‘s law: the force applied is
$F_{i, j}=-F_{j, i}=k_{s}\left(d_{i, j}(t)-\operatorname{len} n_{i, j}\right) v_{i, j}$ where
- $d_{i j}$ distance between the two points
- len ${ }_{i j}$ rest length of the spring
- k_{s} spring constant
- $v_{i j}$ unit vector from point i to point j
- The flexible model is modelled as a net of points with mass and springs and dampers between them
- A damper can impart a force in the direction opposite to the velocity of the spring length and proportional to that velocity

$$
\mathrm{F}_{\mathrm{i}}^{\mathrm{d}}=-\mathrm{k}_{\mathrm{d}} \mathrm{v}_{\mathrm{i}}(\mathrm{t})
$$

- One can also introduce angular dampers and springs between faces
- Additional internal springs have often to be added to add stability to the system

Virtual springs

- Induce forces that do not directly model physical elements
- For example, in the penalty method
- Sometimes one can use a proportional derivative controller which controls that a certain variable and speed is close to the desired value
- For example, this is used to keep the object close to the desired speed
- A virtual spring is added to keep things as desired

Energy minimization

- One can use energy to control the motion of the objects
- Energy constraints can be used to pin objects together, to restore the shape of an object, to minimize the curvature of a path or trajectory
- Energy constraints induce restoring forces on the system

[^0]
[^0]: +++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

