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Introduction

• While animating through kynematics may be interesting for
plenty of applications, integrating physics is more difficult and a
challenging problem

• The easiest way of integrating physics is rigid body simulation
• While physics is concerned with the exactness of the

representation, animation is more interested in „credible“ effects,
and in rendering frame by frame

• Having to deal with the system at discrete time samples creates
numerical problems in the solution methods which are not
simple to deal with



Recap on physics (physics 101)

• In the equations of motion,
the following quantities play
a role
– Distance=speed ⋅ time

time= frame# ⋅timeperframe
averageVelocity=
   distancetraveled/time

• Linear motion
– s=position

v=velocity
a=acceleration

– s(t)=v(t) ⋅ t
v(t)=a(t) ⋅ t
s(t)= ⋅½ a(t) ⋅ t2

• Circular motion
–  θ angular position

ω angular velocity
θ(t)= ω(t) ⋅ t

– For a body in circular
motion, we have
a(t)=(-ω)2 ⋅ r

• Newton‘s law:
– F = m ⋅ a
– A body continues its own

motion therefore if the sum
of the forces acting on it =0
     ΣFi=0



Recap on physics (physics 101)

• Remember the definition of
center of mass
– The point at which the object is

balanced in all directions
– If an external force is applied to

a body in line with its center of
mass, then the body would
move as if it was a point at the
center of mass C

• Torque is the tendency of a
force to produce circular motion
– It is produced by a force off

center to the center of mass
–  τ = r × F
– Clearly, τ ⊥ F and τ ⊥ r

• An object does not move if Σ
Fi=0 and Στi=0
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Recap on physics (physics 101)

• Linear springs:
– Hooke‘s law:

         F= -k ⋅ x,
where x is the change from the
equilibrium length of the spring

• Friction:
– Static:

        Fs = s ⋅ fN
where Fs = frictional force
s=static friction coefficient
fN = normal force

– Kinetic:
        Fk = k ⋅ fN
with similar coefficient
definitions as in static friction

• Momentum: m ⋅ v
– In a closed system, total

momentum does not vary
• Angular momentum:

          L=r×p
where
r=vector from center of
    rotation
p=momentum (m ⋅ v)
– Note that

    τ= dL/dt
– In a closed system, total

angular momentm does not
vary

• Inertia tensor: the resistence of
an object to change its angular
momentum



Rigid body simulation

• If one wants to simulate rigid
bodies, many forces act on them

• Such forces vary in time conti-
nuously and in a non linear way

• Therefore it is not enough to
evaluate velocities and acce-
lerations at fixed timesteps Δt

• Evaluating the velocities at t0, t0+Δt,
t0+2Δt does not generate a correct
movement, and slowly drifts away
from the correct solution

• This solution method is an example
of the Euler integration method

• The accuracy of the method is
determined by the size of the time
step

• Obviously the shorter the time step,
the more computations are needed

• A better way of integrating the
equations bases on the Runge
Kutta method

– In particular, often 2nd order Runge
Kutta (midpoint method) is used

– Remember, the order of the RK
method is the magnitude of the error
term

– Even higher order ones, 4th or 5th
ones are used



Motion equations for a rigid body

• To develop the equation of
motion for a rigid body, we have
to apply some of the physics
presented before

• When a force is applied to a
rigid body, the force and the
relative torque are applied to the
body

• To uniquely solve for the
resulting motions of interacting
bodies, linear and angular
momentum have to be
conserved

• Finally, to calculate the angular
momentum the distribution of an
object mass in space has to be
characterized with its inertia
tensor.



Orientation and rotational movement

• Similar to position, velocity and
acceleration, 3D objects have
– orientation,
– angular velocity and
– angular acceleration

• which vary in time
• Let R(t) represent the object

rotation
• Angular velocity ω(t) is the rate

at which the object is rotated
(independent from linear
velocity)

• The direction of ω(t) indicates
the orientation of the axis about
which the object is rotating

• The magnitude of ω(t) gives the
speed of rotation in revs per unit
time



Orientation and rotational movement

• Consider a point a whose
position is defined in space
relative to a point b=x(t).

• Let a‘s position be defined by
r(t)

• Suppose that a is rotating and
the axis passes through b

• The change in r(t) is the cross
product of r(t) and ω(t)
    r °(t)=ω(t) × r(t)
    |r °(t)|=|ω(t)| |r(t)| sin θ

• Now consider  an object that
has a distribution of mass in
space

• Its orientation can be seen as a
transformed version of the
object local coord. system

• Its columns can be seen as
vectors defining the relative
positions of the object points

• Thus, the change of the rotation
matrix can be computed by
taking the cross product of ω(t)
with each of the columns of R(t)
   R(t)=[R1(t) R2(t) R3(t)]
   R° (t)=
    [ω(t)×R1(t) ω(t)×R2(t) ω(t) × R3(t)]

r(t)

a=b+r(t)ω(t)

θ

b=x(t)



Orientation and rotational movement

• By defining a special matrix to
represent cross products:

• It follows
 R°(t)= ω(t)*  R(t)

• Consider now a point Q on a rigid
object

• Its position in local coord system
does not change

• Its pos in world coords is
   q(t)=R(t)q+x(t)

• Differentiating this one obtains the
velocity

• The change in orientation is given
by the eq on the left

• Combining these, one obtains
   q°(t)=ω(t)* r(t)q+v(t)

• Substituting one obtains
   q°(t)=ω(t)(q(t)-x(t))+v(t)
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Center of mass

• The center of mass of a body is defined as the integral of the
differential mass times its position in the object

• In a body with discrete masses, then the center of mass is at
qi(t), the center of mass is at x(t)=Σmiqi(t)/Σmi



Forces and torque

• A linear force applied to a mass gives rise to a linear
acceleration
                    F=ma        (Newton‘s law)

• The various forces applied to a point sum up
                   F(t)=Σfi(t)

• The torque arising from the application of forces acting on a
point of an object is given by
                   τi(t)=(q(t)-x(t)) × fi(t)
                   τ(t)=Στi(t)



Momentum

• The momentum of an object
(= mass times velocity) is
decomposed into
– linear component: acts on

center of mass
– angular components: acts WRT

center
• Both are preserved in a closed

system
• Linear momentum p=m v
• Total linear momentum of a rigid

body: P(t)=Σmiq °i(t)
• Deriving p=mv we obtain

    P°(t)=M v°(t)=F(t)

• Angular momentum is a
measure of the rotating mass
weighted by the mass‘s
distance from the axis of
rotation

• L(t)=
Σ((q(t)-x(t)×mi(q°(t)-v(t)))
=Σ(R(t)q×mi(ω(t)×(q(t)-x(t))))
=Σ(mi(r(t)q×(ω(τ)×R(t)q)))

• Similar to linear momentum, torque
equals the change in angular
momentum
    L°(t)=τ(t)

• Note that since angular momentum
depends on distance to center of
mass, to mantain constant angular
momentum, the angular velocity
increases if the distance of the
mass decreases



Inertia tensor

• Angular momentum is related to
angular velocity the same way
linear momentum is related to
linear velocity P(t)=M⋅ v(t)

• We have
   L(t)=I(t)⋅ω(t)

• The distrib. of mass of the obj.
in space is defined through a
matrix, the inertia tensor I(t)

where the matrix terms are
computed by integrating over
the object, and I is symmetric

• In general,
Ixx=∫ ∫ ∫ ρ(q)(qy

2+qz
2)dxdydz

where ρ is the density of at an
obj. point q=(qx,qy,qz)

• In the case of discrete masses
Ixx=Σmi(yi

2+zi
2), Ixy=Σmixiyi Iyy=Σ

mi(xi
2+zi

2), Ixz=Σmixizi
Izz=Σmi(xi

2+yi
2), Iyz=Σmiyizi

• In a center of mass centered obj
space, the intertia tensor of a
transformed object depends on
the obj orientation but not on its
position, and therefore it
depends on time

• It can be transformed with
    I(t)=R(t)IobjR(t)T
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Motion equations

• The state of an object can be
determined by the vector
containing
– Position
– Orientation
– Linear momentum
– Angular momentum

• Object mass and its object
space inertia tensor Iobj do not
change in time

• At any time, the following
quantities can be computed:
Inertia tensor I(t)=R(t)IobjR(t)T

Angular vel. ω(t)=I(t)-1L(t)
Linear vel. v(t)=P(t)/M

• Now the time derivative can be
formed:

This is enough to run a
simulation

• A differential equation solver
can now be used
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Motion equations

• As the simplest solver, one can use Euler‘s method
– The values of the state array are updated by multiplying their time

derivatives by the length of the time step
• In practice, Runge-Kutta methods are used, especially 4th order ones
• Particular care has to be taken in updating the orientation of an object,

because if the derivative info is used to update the orientation matrix,
then the columns of the matrix can become nonorthogonal and not of
unit length

• Here it is wise to renormalize after each step
• Alternatively, one can update

– by applying the axis-angle rotation generated by angular velocity
– By using quaternions



Ordinary differential equations

• Problem involving ordinary
differential equations (ODE) can be
reduced to the study of first order
differential equations

• For example, the problem
  d2y/dx2+q(x)dy/dx=r(x)
can be rewritten as the two first
order equations
  dy/dx=z(x)
  dz/dx=r(x)-q(x)z(x)

• The generic problem in ordinary
differential equations can be thus
reduced to the study of a set of N
first order differential equation for
the functions yi (i=1,2,...,N)
   dyi(x)/dx=f´i(x,y1,...yN)
where the fi are known

• A problem involving ODEs is not
determined completely by its
equations.

• The boundary conditions also
determine how to solve the problem.

• Boundary conditions are algebraic
conditions on the values of the
functions yi

• In general, they can be satisfied at
the discrete specified points, but do
not hold inbetween these points

• They can be as simple as requiring
to pass through a certain point, or
as complicated as a complex
algebraic expression



Ordinary differential equations

• Boundary conditions divide into
two categories:
– Initial value problems: here all yi

are given at some starting value
xs, and one wants to find the yi
at some end point xf, or at
some discrete list of points

– Two-point boundary value
problems: here some conditions
are set at xs, and some at xf

• We will deal only with the first
class

• The main idea of a method for initial
value is the following:

– Rewrite dx and dy as finite Δy and Δ
x and multiply the equations by Δx

• This gives formulas for the change
in the functions when the variable x
is stepped at stepsize
Δx

• For Δx small, one obtains a decent
approximation of the diff. Equation

• Literal implementation of this
method is called Euler‘s method

– Euler method is not accurate
compared to other methods using
the same step size

– It is not very stable either



ODE: Runge Kutta

• One way or another, all
methods do the following:
– Add small increments to the

functions corresponding to the
derivatives multiplied by
stepsizes

• Runge Kutta methods
propagate a solution over an
interval by combining the
information from several Euler-
style steps (each involving one
evaluation of the f´) and then
using the info obtained to match
a taylor series up to some
higher order

• The formula for the Euler
method is
   yn+1=yn+hf´(xn,yn)
where h is the step chosen
(i.e. xn+1=xn+h)

• The problem with this is that info
on the derivative change goes
lost, since only info at the start
of the interval (at xn) is used

• This means that the step‘s error
is only one power of h smaller
than the correction, thus
 yn+1=yn+hf´(xn,yn)+O(h2)

• By definition, we call a method
such that its error term is
O(hn+1) as method of order n



x3x1 x2

ODE: Runge Kutta

• Suppose to use a step like before
(yn+1=yn+hf´(xn,yn)) to take a „trial“
step to the midpoint of the interval

• Then use the value of both x and y
at the midpoint to compute the „real“
step across the whole interval
   k1=hf´(xn,yn)
   k2=hf´(xn+½h,yn+½k1)
then one can write
   yn+1=yn+k2+O(h3)

• Note how all of the sudden the error
becomes of 3rd degree and
therefore the method becomes of
second order

• This by the way is second order
Runge-Kutta (midpoint methd)

• In R-K the derivative at the midpoint
is evaluated and used for the whole
interval
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ODE: Runge Kutta

• Why does this work better?
– Because by evaluating at the

midpoint one takes an
„average“ of the derivative on
the interval

– This cancels the second order
error

• Of course, one can decide now
to push this elimination further

• Fourth order R-K evaluates the
derivative four times:
– Initial point, twice at trial

midpoints, and once at the trial
endpoint

– From these derivatives the final
function value is computed

•    k1=hf´(xn,yn)
   k2=hf´(xn+h/2,yn+k1/2)
   k3=hf´(xn+h/2,yn+k2/2)
   k4=hf´(xn+h,yn+k3)
and the error term becomes
   yn+1=yn+k1/6+k2/3+k3/3
           +k4/6+O(h5)
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+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++
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