
Computer Animation
4-Motion Control

SS 13

Prof. Dr. Charles A. Wüthrich,
Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de

Controlling motion along curves

• We all know now how to control
the shape of the curve

• To an animator, it is equally
important to know the speed at
which a curve is traced by
increasing parametric steps

• Obviously, since motion curves
are of higher order, this relation
is not straightforward

• Equal parameter intervals do
not lead to arcs of equal length
on the curve

• That is, speed is different at
different points of the curve

• This can be overcome through a
reparametri-zation of the curve

Curve length

• There are different methods to
compute such a
reparametrization

• One can create a table of
values so as to establish a
relationship between arc length
and parameter values

• In the first two method, one
creates a table of values to
establish the relationship
between parametric value
and approximate arc length

• Once the table is built, one
can use the table to
approximate values of the
parameter at steps of equal
length along the curve

Curve length

• The first method supersamples
the curve, and then uses
summed linear ´distance to
compute the approximate arc
length

• The second method uses
Gauss quadrature to
numerically estimate the arc
length

• Both methods can use adaptive
subdivision to control the error

• The third method analytically
computes arc length.
Unfortunately, it is not always
possible to do so for all curves.

Computing arc length

• To specify how fast the object
moves in the environment,
animators might want to specify
the time at which positions
along the curve are reached.

• This in general would be
position and frame pairs.

• Or, maybe, the animator might
want to specify velocities

• For example:
– start at position A
– accellerate till frame 20
– move at constant speed till frame 35
– Decelerate slowly till frame 60 and

end at position B
• It is clear what we want: be able to

control not only the curve (space
function), but also the relationship
between position and time
(distance-time function).

• The distance we are traveling along
the curve is called the arc length
and will be denoted by s.

Computing arc length

• Suppose that we are moving
along the curve

 P(u)=UTMB

• The relation between parameter
and arc length is not linear.

• When a unit change in
parameter results in a unit
change in curve length the
curve is said to be parametrized
by arc length

• How do I establish the
relationship between parameter
and arc length?

• What we want is to kow the
function s=G(u) which computes
the length of the curve from it
starting point for all values of
the paramenter u

• If we have G, then knowing G-1

allows us to compute the
parameter values corresponding
to a certain length

Arc length: analytic approach

• Obviously, the length of a curve
between parameter values u1
and u2 is

 s=∫ [u1,u2]|dP/du|du,

where

dP/du=
 ((dx(u)/du), (dy(u)/du), (dz(u),du))

and

 |dP/du|=SQRT(dx(u)/du)2+
 (dy(u)/du)2+ dx(z)/du)2)

• For a cubic curve
 P(u)=au3+bu2+cu+d
this will mean that the derivative
of one of the 3 eq with respect
to u is
 dx(u)/du=3axu2+2bxu+cx
and under the SQRT one would
have a curve of 4th degree
 Au4+Bu3+Cu2+Du+E

• With a bit of computations one
can compute then A,B,C,D

Arc length: Estimating through forward
differences

• Suppose we have P(u).
• One can compute a table of the

distance of P(u) from the point P(0)
at regular intervals:

P(0), P(Δu), P(2Δu),..,P(1)

that is, containing

 P((i+1)Δu)-P(i Δu)

• One can interpolate these values
first order (or higher order) to
estimate the length of a segment in
image space

• Conversely, one can use similar
methods to deduce from the right
hand column the corresponding
value of u

• Main problem with this approach is
controlling the error

......

G(2ΔU) +|P(3Δu)-P(2Δu)|=G(3 Δu)2 Δu

G(ΔU) +|P(2Δu)-P(Δu)|=G(2 Δu)Δu

|P(Δu)-P(0)|=G(Δu)0

Adaptive forward differences

• Since the relations between the
variation of the parameter and
the length of the curve is non-
linear, the method of the last
slide has problems when there
is a big error
– i.e. When the polyline implicitly

used to estimate the parameter
values inbetwen table points is
far from the actual curve

• This can be improved by
computing the value of the
midpoint of each interval
between the table points.
– if the sum of the sides A+B of

the triangle is too different in
length from the line joining the
interval extre-mes C (over a
threshold value), the midpoint is
added to the list

A AB B
C C
Bad Better

Numerical meth.: Gaussian quadrature

• Another approach to computing
lenght is bases on numerics

• Computing the length of the curve
implies computing the integral of the
curve length

• Gaussian quadrature uses unevenly
spaced intervals to achieve the
greatest accuracy

• Gaussian quadrature computes

 s=∫ [0,1]f(u)du~Σiwif(ui)

• Since Gaussian quadr. is usually
defined in the interval [0,1], one has
to reparametrize at first the original
interval [a,b] we are considering

• This is achieved by using the new
parameter t such that

 t=(2u-a-b)/(b-a)

• Do not forget to apply the usual
integral rules for changing
parameters, that is adding the factor
of parameter substitution to the
integral

Adaptive Gaussian quadrature

• If the curve derivative varies
very fast in some areas, and
less fast in other areas, the
gaussian quadrature will either
undersample part of the curve,
or oversample

• In this case, a similar adaptive
method to the one presented
before can be used:
– One subdivides intervals in half,
– each half is evaluated using

gaussian quadrature
– The sum of the two halves is

compared to the result of the
whole interval.

– If the difference is greater than
a certain threshold, then the
two halves are added to the
sample points

Finding u given s

• Suppose one wants to find the
value of the parameter u at a
given arc length s from the point
R(u1)

• This equals to solving the
equation
 s-LEN(u1,u)=0

• Arc length is monotonic, so
such a sol. is unique as long as
dR(u)/du is not 0

• Newton-Raphson integration can be
used: generate the seq. {pn}

 pn=pn-1-f(pn-1)/f´(pn-1)

where
– f is s-LEN(u1,Pn-1)=0 and can be

evaluated at pn-1 using techniques of
last slide

– f´ is dP/du evaluated at pn-1

• This eliminates the need for
quadrature, and is faster

• But can have two problems:
– Some pk might not be on the curve,

thus also pk+1,pk+2,.. will not
– When the derivative approaches 0

we divde by zero
• Use subdivision instead

1

Speed control

• On a arc-length parametrized curve,
it is possible to control speed

• Simplest (and dullest) control:
constant speed (equal space s in
equal time t)

• Easiest speed control is ease-
in/ease-out:

– From standstill, accelerate until
maximum speed

– Decelerates and stop
• Speed along a curve can be

controlled by varying arc length at
something else than a linear
function of t.

• The speed variations are seeable in
the distance-time curve, which plots
the space traversed s against the
time t.

• Here is an example of a distance-
time curve for ease-in

s

t1

Speed control: ease in/ease out

• There are different ways of
mathematically achieve ease
in/ease out

• The first one is to use the sinus
between –π/2 and π/2 and
scaling the parameter to cover
[0,1]

• S(t)=(1/2)(sin(πt-π/2)+1)

• This curve can be split and
joined with a straight line (take
care of continuity at the splits) to
add a period of constant speed

Speed control: constant acceleration

• The computational cost of the sinus
function is high.

• A better method is to use physics
for the calculations: s=vt, and v=at

• This obtains a parabolic ease-in
function thus s=at2

• Similarly for deceleration one can
use a constant (limited) deceleration
until the object stops

• To describe the distance-time
function of such a movement the
following equations are used

• In formulas:

d=½t2/2t1 0<t<t1
d=½v0t1+v0(t-t1) t1<t<t2
d=½v0t1+v0(t-t1) +
 (v0-½(v0(t-t2)/1-t2)(t-t2)
 t2<t<1

• Whereby v0 is the velocity
when acceleration ends

Speed control: constant acceleration

• a=a0 0<t<t1
a=0 t1<t<t2
a=-a0 t2<t<1

• v=v0t/t1 0<t<t1
v=v0 t1<t<t2
a=v0(1-(t-t2)/(1-t2) t2<t<1

• The formulas look really
complicated, but there are
different ways to plot this to
make it understandable

s

t1

a

t
1

0
t1

t2

v

t1t2t1

t1 t2

General distance-time functions

• Many interesting aspects come up
when allowing the user to control
motion

• The more influence a user is given,
the more problems come up

• Suppose the user defines some
velocities at some points:

– The rest of the velocity curve has to
be fitted to these „fixed“ values

– Sometimes leading to unwanted
effects (reverse velocity to fit the
time contraints)

• More intuitive is to control on the
space-time curve

– This because it allows to control
velocities as a tangent, and to adapt
the rest of the curve accordingly

• Motion control often requires
specifying positions at specific times

– The motion is specified as a series
of constraints at a specific time,
formally, a t-uple <ti,si,vi,ai,...>

– higher order approximation is
needed for smooth movement

Curve fitting

• If the animator specifies certain
constraints then the time
parametrized curve can be
computed using these
constraints as control points

• Suppose contraints are of the
form (Pi,ti) (i=1,...,j)

• It only requires to compute
the curve passing through
these points, i.e.

 P(t)=Σ1,nBiNi,k(t)

with 2 ≤ k ≤ n+1≤j
• In matrix form P=NB
• Inverting this equation leads

to find the control point
values for the curve

Curve Fitting to position-time pairs

• Suppose the user gives the following
positions and the corresponding
times

• One can fit a B-spline curve to the
values (Pi,ti) (i=1,...j):

– That is, take the general eq. of B-
splines and make it pass through
points

– Find corresp. control points.

• Computing the curve passing
through these points means
computing P(t)=Σ1,nBiNi,k(t)
with 2 ≤ k ≤ n+1≤j

• In matrix form P=NB,
• Inverting this equation leads to find

the control point values for the
curve: B=N-1P

• This is done through the
pseudoinverse:
P=NB
NTP=NTNB
[NTN]-1NTP=B

• Remember the tradeoff: the higher
the order, the higher the wiggling

P1
P2

P3

P4

P5

P6

t=0
t=10

t=35

t=50

t=55

t=60

Interpolation of quaternion rotations

• A major reason for choosing
quaternions is that they can be
easily interpolated

• Quaternion form can be interpolated
to produce good intermediate
orientations

• This does not work easily with direct
interpolation

• Unit quaternions are used to
represent orientation, and can be
seen as point of on the unit sphere
in 4-dimensional space

• To interpolate between two unit
quaternions, one can linearly
interpolate

• But this will not produce constant
speed rotation, because a path on a
sphere is not the same as a path on
a plane (which is what linear
interpol. follows)

• Equal speed interpolations can be
computed by interpolating directly
on the path on the sphere

Non equal intervals

Equal intervals

Interpolation of quaternion rotations

• The problem (of course) is how
to do that

• Remember: q=[s,v] and
–q=[-s,-v] represent the same
orientation

• So interpolation from q1 to q2
can be also carried between q1
and -q2.

• The difference is that one path
will be longer

• The shorter one is the one
distinguished by the smallest
angle

• One can compute the cosine of
the angle between q1 and q2:

 cosθ= q1⋅q2=s1⋅s2+v1×• v2

• If it is positive, then shor-test
path is from q1 to q2

• Else shortest path is from q1 to -
q2

Interpolation of quaternion rotations

• So, the spherical linear interpolation (SLERP) between q1 and q2 with
parameter u∈[0,1] is

 SLERP(q1,q2,u)=((sin((1-u)θ))/sinθ))q1+
 (sin(uθ))/sinθq2

• Note that this does not generate a unit quaternion, so one has to
normalize the result

• Notice that in the case u=1/2, SLERP is easy to compute except for a
scaling factor

• Finally notice that if a chain of SLERPs is performed, it will perform
similarly to linear interpolation (i.e. with rough changes)

• Higher order interpolations, based on Bezier curves, have been
developed, but are beyond the purpose of this lesson

Following a path

• Animating an object to move
along a path is quite natural and
common

• Not only following the path is
needed: also moving the
orientation

• Typically, one would have a
local coordinate system
associated with the object

• Let the coordinates be (u,v,w),
and suppose they are right
handed

• Suppose the origin of the coordinate
system follows the curve P(s), and
that the movement of P(s) is
specified

• Call POS the current position
• One can view the u,v,w coordinates

as a view vector, an up vector and a
vector perpendicular to u and v

• This is similar to camera definition in
Computer Graphics

Following a path: Frenet Frame

• The orientation of the camera
system can be made dependent
from the properties of the curve
P(s)

• A Frenet frame is given by the
following axes definitions

– w follows the tangent of the
curve (its first derivative P´(s))

– v is orthogonal to w and in the
direction of the second order
derivative (P´´(s))

– u is the cross product of w and
v

• In symbols:
 w=P´(s)
 u=(P´(s) × P´´(s)
 v=w × u

u

w

v

Following a path: Frenet Frame

• Frenet frames are quite nice,
but bear some flaws

• When the curve has no
curvature, its second order
derivative is zero. Here the
Frenet frame is undefined
– This problem can be solved by

interpolating the Frenet frames
at the start and end of the
rectilineal trait

– Since the tangent vector must
be the same at the extremities,
it is only a rotation that has to
be interpolated

u

w

v u
w

v

Following a path: Frenet Frame

• A more complicated problem occurs
at discontinuities in the curvature
vector

• For example, when the path follows
first a circle, and then a second
circle

• At the problem point, the curvature
will switch to pointing from one
circle center to the other one

• Here, the Frenet frame is defined
everywhere but is discontinuous

• Here, the object will rotate wildly
along the path with „instant
switches“

u

Problem spot

Curvature
(left)

Curvature
(right)

Following a path: Frenet Frame

• The worst problem is that the
path following is not so
natural:
– when we view at something,

we we do not look along the
tangent

– When we move, we
anticipate curves

• Similar effect to your car light
not following the road

• Also, one might want to
make the object bend
towards the interior to
„anticipate the force“

• or, opposite, to let it bend
out to give the effect of a
force acting on the object

u

Camera Path Following:
Center of Interest

• A more natural way of specifying the
orientation of a camera is to use the
center of interest (COI)

– One can view towards a fixed point
– Or alternatively the center of an

object
• Good method for a camera circling

some arena of action
• The center of interest is specified,

and so the view vector w=COI-POS

• This leaves one degree of freedom
in camera specification

• One simple way is to set the view
vector v as viewing „up“, i.e.
perpendicular to w and lying in the
wy plane
 w=COI-POS
 u= w × y
 v= u × w

• This works quite well for a camera
moving along a path and focussing
to a single object.

• When it gets very close to the
object, this results in drastic
changes (fly-near effect)

• This is not always bad!!!

Camera Path Following:
Center of Interest

• There are variations to
specifying a fixed point

• One can for example specify
various points on the camera
path itself

• The up vector
– is usually specified as lying in

the wy plane
• But one can also allow the user

to input
– Either a tilting value with

respect to the default up vector
– Or the up vector on a whole

• Following a points on the path is
relatively easy:
– If P(s) describes the position on

the curve, then P(s+δs), with δs
>0, specifies its position in the
future

– It is advisable to choose points
at equidistances on the curve,
so as to make changes not that
noticeable

– Alternatively, one can take the
baricenter of some future points
to avoid too much hopping

• The real flaw of this method is
the fact that camera views look
jerky

Camera Path Following:
Center of Interest

• A better method is to use
instead of some function of the
position path, a different
function altogether for the POI

• Let P(s) be the curve of the
camera path, and C(s) the curve
of the COI (obviously the
animator specifies this)

• Similarly, and up vector path
must be specified U(s), so that
the general up direction is U(s)-
P(s)

• The resulting coordinates for the
camera will then become

 w=C(s)-P(s)
 u=w × (U(s)-P(s))
 v=u × w

• This gives maximum control, but
is also difficult to control.

• An easy way of specifying C(s)
is to use fixed positions, with
ease-in/ease-out moves
between the different fixed
points

Smoothing paths

• There are several ways to
smooth a path if it has been
generated by a sample process,
such as a motion capturing
system

• This path acquisition method is
getting more and more frequent
and inexpensive

• However, data here can be
prone to noise or imprecision,
depending on the input method

C
ou

rte
sy

 A
ni

m
az

oo
 L

td
.

Smoothing paths: linear interpolation

• The simplest way of smoothing
the data is to average
neighbouring data point.

• Suppose we have the chain of
points {Pi}i=0,N

• In the simplest form, one
averages Pi as the average
itself and of Pi-1 and Pi+1.

– Obviously, here the „spikes“
are flattened, so applying
this method many times
makes little sense

11

11

4
1

2
1

4
1

2
2´ +!

+!

++=

+
+

= iii

ii
i

i PPP

PPP
P

Smoothing paths: cubic interpolation

• A second method use the four
adjacent points
Pi-2,Pi-1,Pi+1,Pi+2
on either side to fit a cubic curve
that is then evaluated at the
midpoint.

• This midpoint is averaged with
the original point to obtain the
smoothed point

• Remembering that a 3rd order
curve was
P(u)=au3+bu2+cu+d

• One obtains
 Pi-2=P(0)=d
 Pi-1=P(1/4)=
 a(1/64)+b(1/16)+c/4+d
 Pi+1=P(3/4)=
 a(27/64)+b(9/16)+3c/4+d
 Pi+2=P(1)=a+b+c+d

Pi-2

Pi-1

Pi+1

Pi+2

Pi

P(0)

P(1/4)
P(1/2) P(3/4)

P(1)

P´i

Smoothing paths: cubic interpolation

• For the last points, a parabolic arc can be computed to fit the
second and forelast points

• Notice that here the curve will be of the form au2+bu+c , and the
equation turns into
 P´1=P2+1/3(P0-P3)
and similarly for the last three points

Smoothing paths: convolution kernels

• If the data can be viewed as a
data function yi=f(xi) then
convolution can be used to
smooth the data

• Convolution with the convolution
kernel g(u) defined in the
interval
[-s,s] is in fact computing

 P(x)= ∫ [-s,s]f(x+u) g(u) du

• The resulting integral can be
computed directly or
approximated by discrete
means

Smoothing paths: B-spline approximation

• If the path does not necessarily have to pass through the
sample points, one can use approximation methods we saw
before

• Particularly B-splines are well adapted for the defining a path
tacked from real data

Path along a surface

• If an object needs to follow a
surface when it moves, then a
path on the surface itself has to
be found

• If we know start and endpoints,
then this is simple:
– trace a plane „perpendicular“ to

the surface
– Compute the intersection plane-

surface

• Alternatively, other methods can
be used, for example if one
wants to follow the „valleys“ on
the surface

• Here „greedy“ methods can be
used, or methods that compute
the normal to the surface and
follow it

Keyframe systems

• Early computer animation
systems were keyframe
systems

• Most were 2D too, and
implemented keyframe
animations made by hand

• In computer animation a key
frame is a variable set by the
user at specific timepoints

• The system interpolates
intermediate frames from the
key frames

• The interpolation is quite
straightforward if the shapes to
be interpolated have the same
number of controlling points

Keyframe systems

• In this case, linear interpolation can be
used to produce the inbetween frames

• However, this is not the general case
• The general problem is: given two curves

in 2D, how do I transform them into each
other?

• If both curves are of the same type (eg
Bezier of 3rd degree) then one can
interpolate between control points

• Another method is to use interpolating
functions to generate the same numbers
of points on both lines, and then
interpolate these points

• However, this does not allow
sufficient control

P(u)

Q(v)

Keyframe systems

• Reeves proposed a method based on surface patch technology to
solve the problem of interpolating a curve in time

• Basically, one defines a patch in 3D to join the curves and allow the
time parameter to be interpolated

• Sample points are taken on thepatch to define the intermediate curves
(=curves at inbetweens)

Animation languages

• In recent times, scripting languages have been developed to support
animation systems

• Most animation languages are not easy to understand, and are close to
hardcore programming

• A typical animation language is Renderman, or Alias/wavefront‘s MEL
• Their big advantage is control

Animation languages

• Some effort has been put to accomodate unskilled artistic animators
without scripting capabilities

• Simpler scripting languages such as ANIMA II have been developed
• Recently, actor based languages have appeared
• This is a novel approach but still at its infancy
• The idea is to have objects (=actors) and the instantiation of their

variables representing the moving parameters
• Finally, the development of avatars has generated the need for some

form of interaction with the animated models.

Charles A. Wüthrich

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

C
op

yr
ig

ht
 (c

) 1
98

8
IL

M

