
22. Okt 2008

Animation Systems:
8. Collisions

Charles A. Wüthrich
CogVis/MMC, Faculty of Media
Bauhaus-University Weimar

22. Okt 2008

Collisions

• When objects start to move, they
actually collide

• Two issues must be addressed:
– Detecting collision
– Computing appropriate response

• Detecting collision: two main
approaches
– Penalty method: calculate the

reaction after collision has
occurred

• when more particles involved,
assume they collided at same
instant

• Imprecise but often acceptable

– Back up time to first instant
of collision and compute
appropriate response

• By heavy no of collisions,
quite time consuming

• Computing the appropriate
response to collision
(depends on physics and
distribution of mass of the
object)
– Kinematic response
– Penalty method: introduce a

nonphysical force to restore
non penetration but compute
it at time of collision

– Calculation of impulse force

22. Okt 2008

Kinematic response

• A simple case is a particle moving at
constant velocity and impacting a
plane

• Questions:
– When is the impact?
– How does it bounce off?

• Use plane equation
E(p): ax+by+cz+d

• If normals correct, then
– If E(p)=0 then p plane point
– If E(p)>0 then p above plane
– If E(p)<0 then below plane

• The particle moves with equations:
 p(ti)=p(ti-1)+t ⋅ vave(t)

• When E(p(ti)) switches to ≤0 then
we had a collision

• Now the component of the
velocity parallel to the normal to
the plane is negated

• Some damping factor N is added
v(ti+1)=v(ti)-v(ti)N-kv(ti)N
=v(ti)-(1+k)v(ti)N

E(p)>0

E(p)=0

E(p)<0

22. Okt 2008

Penalty method

• Here we construct a reaction to
the collision

• A spring with zero rest length is
attached at the instant of collision

• The closest point on the surface
to the penetrating point is used as
attachment point

• The spring obeys Hooke‘s law:
F=-kd

• The approach needs to assign
arbitrary masses and constant,
and therefore is not ideal

• Moreover, for fast moving
points it might take a few
steps to push back the obj

• For polyhedra, it might also
generate torque

p(ti)

p(ti+1)

d force

22. Okt 2008

Polyhedras colliding

• Shape can be complicated for
complex objects

• Thus, collisions can be tested
before on bounding boxes

• Or by adding hierarchical
bounding boxes

• Testing a point to be inside a
polyhedron is not easy

• But for a polyhedron one needs to
test all vertices for the two
objects

• And each point has to be tested
against all the planes of the faces
of the polyhedron

• This works only for convex
polyhedra

• For concave polyhedra, one can
use a similar method to the point
in polygon test

• Construct a semi-infinite ray
from the point towards the
polyhedron, and check no of
intersections
– If they are even, then the point is

outside
– If they are odd, then it lies inside

• Of course counting double points
right has to be done

• In some cases, for solids of
simple shape and moving with an
easy movement, the volume of it
can be swept along its trajectory

22. Okt 2008

Impulse force of collision

• To do accurate computations,
time has to be backed to the
instant of collision

• Then the exact reaction can be
computed

• If a collision appeared between ti
and ti+1, then
– recursive bisection of the time

step between these two
timepoints will eventually yeld
the exact time of the impact

– Alternatively, a linear
approximation of the velocity
can be used to simplify the
calculations

• At the time of the impact, the
normal component of the point
velocity can be modified to
reflect the bounce

• This normal can be multiplied by
a scalar to model the degree of
elasticity of the impact

• This scalar is called coefficient of
restitution

22. Okt 2008

Impulse forces

• Once the simulation os backed up
to the time of the collision, the
reaction can be computed

• By working back from the
desired change in velocity, the
required change in momentum
can be deduced

• This equation uses the a new
term, the impulse, expressed in
units of momentum
J=FΔt=MaΔt=MΔv=
 Δ(Mv)=ΔP

• J can be seen as a large force
acting in a short time interval

• This allows computing the new
momentum

• To characterize elasticity, the
coeff. of restitution, ε is
computed (0≤ε≤1)

• The velocities along the normal
before and after the impact are
related by v+

rel=-εv-
rel

22. Okt 2008

Impulse forces

• Assume that the collisions of the two
objects A and B has been detected at
t

• Each obj Ob has position of mass
center xOb(t), lin. velocity vOb(t) and
ang. velocity ωOb(t)

• At the point of intersection, the
normal to the surface of contact is
determined (note, it can be a surface,
but also a point)

• Let rA and rB be the relative positions
of the contact points WRT the center
of mass

• Relative velocities of the contact
points WRT center of mass and the
velocities of the contct points are
computed as

• rA=pA-xA(t)
rB=pB-xB(t)
vrel=(pA°(t)-pB°(t))
pA°(t)=vA(t)+ωA(t)×rA
pB°(t)=vB(t)+ωB(t)×rB

pA
pB

ωA(t)

ωB(t)

xB(t)

xA(t)

vA(t)

vB(t)

22. Okt 2008

Impulse forces

• Linear and angular velocities of
the objects before the collision
vob

- ωob
- are updated vob

+ ωob
+

 vA
+=vA

-+jn/MA

 vB
+=vB

-+jn/MB
 ωA

+=ωA
- +IA

-1(t)(rA×j⋅n)
 ωB

+=ωB
- +IB

-1(t)(rB×j⋅n)
where the impulse J is a vector
quantity in the direction of the
normal
 J= j⋅n

• To find the impulse, the diff
between the velocities of the
contact points after collision in
the direction of the normal to the
surface of collision is formed

• vrel
+=n ⋅(p°A

+(t)-p°B
+(t))

 vrel
+=n ⋅(vA

+(t)+ ωA(t)×rA
 - vB(t)+ωB(t)×rB)

• Substituting previous equations
one obtains

• Contact between two obects is
defined by the point on each
involved and the normal to the
surface of contact

• If the collision occurs, the eq.
Above is used to compute the
magnitude of the impulse

• The impulse is then used to scale
the contact normal, and update
linear and angular momenta

BBBAAA

BA

rel

rnrtIrnrtIn
MM

v
j

!!+!!"++

"+#
=

##

+

)))((()))(((
11

))1((

11

$

22. Okt 2008

Friction

• An object resting on
another one has a resting
contact with it

• This apples a force due to
gravity which applies to
both objects and can be
decomposed along the
directions parallel FPa to the
resting surface and FN
perpendicular to it

• The static friction force is
proportional to FN:
 Fs=µsFN

• Once the object is moving,
there is a kinetic friction
taking place. This friction
creates a force, opposite to
the direction of travel, and
again proportional to the
normal
 Fk=µkFN

22. Okt 2008

Resting contact

• It is difficult to compute forces due to resting contact

• For each contact point, there is a force normal to the
surface of contact

• All these forces have to be computed for all objects
involved in resting contact

• For each contact point, a torque is also generated on it.

• If bodies have to rest, all those forces and torques have
to be zero

• Solutions to this problem include quadratic programming,
and are beyond the scope of this course

22. Okt 2008

Constraints

• One problem occuring in animation is the fact
that variables are not free.

• Constraints are usually set on objects and limit
the field of the independent variables.

• There are two types of constraints:
– hard constraints: strictly enforced

– soft constraints: the system only attempts to satisfy
them

22. Okt 2008

Flexible objects

• Spring-mass-damper model
is most used approach

• Springs: work with Hooke‘s
law: the force applied is
Fi,j=-Fj,i=ks(di,j(t)-leni,j)vi,j
where
– dij distance between the two

points
– lenij rest length of the spring
– ks spring constant
– vij unit vector from point i to

point j

• The flexible model is modelled as
a net of points with mass and
springs and dampers between
them

• A damper can impart a force in
the direction opposite to the
velocity of the spring length and
proportional to that velocity
 Fd

i=-kd vi(t)
• One can also introduce angular

dampers and springs between
faces

• Additional internal springs have
often to be added to add stability
to the system

22. Okt 2008

Virtual springs

• Induce forces that do not directly model
physical elements

• For example, in the penalty method

• Sometimes one can use a proportional
derivative controller which controls that a
certain variable and speed is close to the
desired value

• For example, this is used to keep the object
close to the desired speed

• A virtual spring is added to keep things as
desired

22. Okt 2008

Energy minimization

• One can use energy to control the motion of the
objects

• Energy constraints can be used to pin objects
together, to restore the shape of an object, to
minimize the curvature of a path or trajectory

• Energy constraints induce restoring forces on
the system

22. Okt 2008

Controlling groups of objects

• A particle system is a large
collection of individual
elements which taken
together represent a
conglomerate object

• The „global“ behaviour of
the particles is called
emergent behaviour

• This can be used both for
particle systems (which
usually have more
individuals) and for flocking

• Flock members have a more
sophisticated behaviour than a
simple element of particle system

• While particle systems behave
according to physics, flocking
particles add some intelligence to
the behaviour of the individuals

• The more intelligence is added,
the more the element moves in a
more interesting way, and the
more it shows autonomous
behaviour

22. Okt 2008

Particle systems

• In a particle system, due to the no
of its elements, simplified
assumptions are made

• Typical assumptions are
– Particles do not collide among

themselves
– Particles do not cast indiv.

shadows, but the aggregate may
do

– Particles only cast shadows on
the rest of the environment, not
among themselves

– Particles do not reflect light,
each is modeled as a point light
source

• Often particles are modeled
as having a finite life span

• To avoid dull behaviour,
often randomness is added

• When a particle system is
computed, the following
steps are taken:
– Generate new particles born

this frame
– Initialize attributes of new

particle
– Remove dying particles
– Animate active particles
– Render them

22. Okt 2008

Particle generation

• Particles are usually
generated according to a
stochastic process
– At each frame, a random

number rP of particles is
generated

– Generation has a user
specified distribution
centered at the desired
number of particles per frame

– rP=ave+Rand(seed) ⋅ range
where ave is the desired
average and range is the
desired variation range

• Sometimes it may be
convenient to have this
random function as a
function of time, i.e. to
make the number of desired
particles increase in time

• If the particles are used to
model a fuzzy object, then
the area of the screen
covered by the object As is
used to control the number
of particles
 rP=ave+Rand(seed) ⋅ range
⋅ As

22. Okt 2008

Particle attributes

• Attributes of the particles are
typically
– Position
– Velocity
– Shape parameters
– Color
– Transparency
– Lifetime

• At each frame, the lifetime of
each particle is decremented by
one until it reaches zero

• During lifetime, particles are
animated (position, velocity,
shape, color, transparency)

• At each frame, forces on the
particles are computed

• These result in an acceleration,
which determines a velocity

• Also other attributes may be a
function of time

• Rendering is often done modeling
them as a point light source
adding color to the pixel

• This to avoid particles to
contribute to lighting
computations

22. Okt 2008

Flocks

• Here the number of
members is small

• But each member has some
intelligence and simple
physics (avoid collision,
gravity, drag)

• Aggregate behavior
emerges from the members
(emergent behavior)

• Each member is called a
boid

• Two forces govern flock
behavior:
– collision avoidance: both

with other boids and with
obstacles

– Motion has some random
parameter to keep it from
looking regular

– flock centering: the boid tries
to be a flock member

– Flock centering keeps
together the flock but does
not have to be absolute,
otherwise flocks cannot split
around objects

22. Okt 2008

Flocks: local behavior

• Controlling locally the
behavior is the aim

• Three processes may be
modeled:
– Physics: similar to particle

with gravity, collision
detection and response

– Perception of the
environment: each boid views
its direct neighbors and
obstacles directly in front

– Reasoning and reaction to
determine the behavior

– Additionally velocity matching is
added (each boid tryies to match
the speed of its neighbours)

• Global control is either applied to
all boids or to a group leader
– In this case the boids follow the

leader
• The leader role can be rotated

among boids in time
• Usually all this is implemented as

three controllers which are
priorized in the following order:
collision avoidance, velocity
matching and flock centering

22. Okt 2008

Flock complexity

• The major problem with flocks is the fact that processing
complexity is n2.

• Even if interactions are allowed only with k nearest neighbors,
those have to be found

• One way to find efficiently is to perform a 3d bucket sort and
then check adjacent buckets for neighbors

• Of course, efficiency depends on the bucket size:
– The more buckets, the less boids per bucket

• Another way of doing it is through message passing, where
each boid informs the flock of its whereabouts

22. Okt 2008

Collision avoidance

• There are several ways to avoid collisions
– The simplest way is adding a repelling force around an

object

– However, this looks weird as the boid keeps
attempting to aim at the repelling surface and
contantly gets blown away

– Another method computes if the boid trajectory hits
the surface and starts a steering behavior

– Quite complicated is the simulation of a splitting flock
around an obstacle, since a balance has to be found
between collision avoidance and flock cohesion

22. Okt 2008

Autonomous behaviour

• Modeling intelligent behaviour is
a complex task

• Autonomous behaviour models
an object knowing about its
environment

• This can become as complicated
as one wants

• Usually applied to animals, but
also to people, cars on a road,
planes, or soldiers in a battle

• Knowledge of the environment is
provided by providing access to
the environment geometry

• Subjective vision can be achieved
by rendering the environment
from the point of view of the
 object

• Internal state is modeled by
intentions = the urge to satisfy a
need

• High level goals can be
decomposed in single low level
tasks (levels of behaviour)

• Internal state and knowledge of
the environment are input to the
reasoning unit, which produces a
strategy (=what needs to be done)

• Such strategy is turned into a
sequence of actions by the
planner, and actions are turned
into movement

• If intentions are competing, they
must be prioritized

22. Okt 2008

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

C
op

yr
ig

ht
 (c

) 1
98

8
IL

M

