
22. Okt 2008

Animation Systems:
6. Kinematics

Charles A. Wüthrich
CogVis/MMC, Faculty of Media
Bauhaus-University Weimar

22. Okt 2008

Hierarchical modeling

• Hierarchical modeling is
placing constraints on
objects organized in a tree
like structure

• Examples can be:
– A planet system
– A robot arm

• The latter is quite common
in graphics: it is constituted
by objects connected end to
end to form a multibody
jointed chain

• These are called articulated
figures

• They stem from robotics
• Robotics literature speaks

with a different
terminology:
– Manipulator: the sequence of

objects connected by joints
– Links: the rigid objects

making the chain
– Effector: the free end of the

chain
– Frame: local coordinate

system associated to each link

22. Okt 2008

Hierarchical modeling

• In graphics, most of the
links are revolute joints:
here one link rotates
around a fixed point of
the other link

• The other interesting
joint for graphics is the
prismatic joint, where
one link translates
relative to the other

• Joints restrain the
degree of freedom
(DOF) of the links

• Joints with more than
one degree of freedom
are called complex

• Typically, when a joint
has n>1 DOF it is
modeled as a set of n
one degree of freedom
joints

22. Okt 2008

Hierarchical modeling

• Humans and animals can be
modeled as hierarchical
linkages

• These are represented as a
tree structure of nodes
connected by arcs

• The highest node of this
structure is called the root
node, and is the node that
has position WRT the
global coordinate system

• All other nodes have their
position only as relative to
the root node

• A node that has no child is
called a leaf node

• Each node contains the info
necessary to define the
position of the
corresponding part

• Two types of
transformations are
associated with an arc
leading to a node:
– Rotation and translation of

the object to its position of
attachment to the father link

– Information responsible for
the joint articulation

22. Okt 2008

Hierarchical modeling

• How does this work?
• The idea is simple, store at each

node
– Info on the node geometry
– The transformation (its rotation)

with respect to the father node in
the tree

• To obtain the position of the i-th
node in the chain, one has to
simply multiply the
transformations to obtain the
position of the current arc to be
displayed

• The root node of course contains
info of its absolute position and
orientation in the global coord.
system

• To obtain the position of K2 in
WCS, one will then have to
multiply T0T1T2

T0: transformation to
 rotate K0 in WCS

T1: transformation to
 rotate K1 WRT K0

 = rotation by θ1

T2: transformation to
 rotate K2 WRT K1

 = rotation by θ2

θ1

θ2

22. Okt 2008

Forward kinematics

• Traversing the tree of the
nodes produces the correct
picture of the object

• Traversal is done depth first
until a leaf is met

• Once the corresponding arc
is evaluated, the tree is
backtracked up until the
first unexplored node is met

• This is repeated until there
are no nodes left inexplored

• A stack of transforms is
kept

• When tree is traversed
down-wards, the
corresponding trans-
formation is added to the
stack

• Moving up pops the
transformation from the
stack

• Current node position is
generated through
multiplying the current
stack transforms

22. Okt 2008

Forward kinematics

• To animate the whole, the
rotation parameters are
manipulated and the
corresponding transforms
are actualized

• A complete set of rotations
on the whole arcs is called a
pose

• A pose is obviously a vector
of rotations

• Moving an object by
positioning all its single
arcs manually is called
forward kinematics

• This is not so user-friendly
• Instead of specifying the

whole links, the animator
might want to specify the
end position of the effector

• The computer computes
then the position of the
other links

• This is called inverse
kinematics

22. Okt 2008

Denavit-Hartenberg Notation

• Used in robotics
• Frames are described

relative to an adiacent
frame by 4 parameters
describing position and
orientation of a child frame
WRT parent frame

• Let us take a simple
configuration like in this
drawing, where the link
rotates only in one direction

• ai: link length
• Θi+1: joint angle, i.e.

rotation around z axis with
the last link direction as 0
angle

22. Okt 2008

Denavit-Hartenberg Notation

• If the joint is non planar, then one
adds additional paramenters

• For general case, the x axis of the
i-th joint is defined as the ⊥
segment to the z-axes of the i-th
and (i+1)-th frames

• The link twist parameter αi is the
rotation of the i+1th frame‘s z
axis around the ⊥ relative to the z
axis of the i-th frame

• The link offset di+1 specifies the
distance along the z axis (rotated
by αi) if the (i+1)-th frame from
the i-th x axis

Angle zi zi+1 about xiαiLink twist

Distance zi zi+1 along xiaiLink length

Angle xi-1 xi about ziθiJoint angle

Distance xi-1 xi along zidiLink offset

SymbolName

αi

ai

θi+1

di+1

22. Okt 2008

Inverse kinematics

• The user gives the position of the
end effector and the computer
computes the joint angles

• One can have zero, one or
multiple solutions
– No solution: overconstrained

problem
– Multiple solutions:

underconstrained problem
– Reachable workspace: volume

that end effector can reach
– Dextrous workspace: volume

that end effector can reach in any
orientation

• Computing the solution to the
problem can at times be tricky

• If the mechanism is simple
enough, then the solution can be
computed analytically

• Given an initial and a final pose
vector, the solution can be
computed by interpolating the
values of the pose vector

• If the solution cannot be
computed analytically, then there
is a method based on the jacobian
to compute incrementally a
solution

22. Okt 2008

Inverse kinematics

• Consider the figure: the 2nd

arm rotates aroound the end
of the 1st arm.

• It is clear that all positions
between |L1-L2| and |L1+L2|
can be reached by the arm.

• Set the origin like in the
drawing

• In inverse kinematics, the
user gives the (X,Y)
position of the end effector

• Obviously there are only
solutions if
 |L1-L2|≤√X2+Y2≤|L1+L2|

θ1

θ2L1

L2

O x

y

22. Okt 2008

Inverse kinematics

• cosθT=X/(X2+Y2)½
⇒θT=acos(X/(X2+Y2)½)

• Because of the cosine rule we
have also that
 cos(θ1-θT)=
 (L1

2+X2+Y2-L2
2)/2L1√X2+Y2

and
 cos(π- θ2)=
 (L1

2+ L2
2-(X2+Y2))/2L1L2

from which we have
 θ1=acos((L1

2+X2+Y2-L2
2)

 /2L1√X2+Y2)+ θT
and
θ2=acos((L1

2+ L2
2-(X2+Y2))/2L1L2)

θ1

π−θ2

L1
L2

O x

y
(X,Y)

θT

• Note that two solutions are
possible, simmetric with
respect to the line joining
the origin and (X,Y)

22. Okt 2008

Inverse kinematics

• In general, for the quite simple armatures used in
robotics it is possible to implement such analytic
solutions

• Unfortunately this works only for simple cases

• For more complicated armatures, the number of possible
solutions there may be infinite solutions for a given
effector location, and computations become so difficult to
do that iterative numeric solution must be used

22. Okt 2008

Using the Jacobian

• When the solution is not
analytically computable,
incremental methods
converging to the solution
are used

• To do this, the matrix of the
partial derivatives has to be
computed

• This is called the Jacobian

• Suppose you have six
independent variables and
you have a six unknowns
that are functions of these
variables
 y1=f1(x1,x2,x3,x4,x5,x6)
 y2=f2(x1,x2,x3,x4,x5,x6)
 y3=f3(x1,x2,x3,x4,x5,x6)
 y4=f4(x1,x2,x3,x4,x5,x6)
 y5=f5(x1,x2,x3,x4,x5,x6)
 y6=f6(x1,x2,x3,x4,x5,x6)
or, in vector notation,
 Y=F(X)

22. Okt 2008

Using the Jacobian

• What happens when the
input variables change?

• The equations can be
written in differential form:
δyi=∂fi/∂x1 δx1+∂fi/∂x2 δx2
 +∂fi/∂x3 δx3+∂fi/∂x4 δx4
 +∂fi/∂x5 δx5+∂fi/∂x6 δx6
or, in vector form
 δY=∂F/∂X δX

• Given n equations in n
variables, the matrix

is called the Jacobian
matrix of the system

• The Jacobian can be seen as
a mapping of the velocities
of X to velocities of Y

!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$

%

&

'

'

'

'

'

'

'

'

'

'

'

'
'

'

'

'

'

'

=

n

nnn

n

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

J

L

MOMM

L

L

21

1

2

2

2

1

2

1

2

1

1

1

22. Okt 2008

Using the Jacobian

• The Jacobian matrix is a
linear function of the xi
variables

• When time moves on to the
next instant, X has changed
and so has the Jacobian

• When the jacobian is applied to a
linked appendage, the xi variables
are the angles of the joints and
the yi variables are end effector
positions

where V is the vector of linear
and rotational changes and
represents the desired change in
the end effector

• The desired change will be based
on the difference between the
current position/orientation to the
desired goal configuration

XXJY &&)(=

!! &)(JV =

22. Okt 2008

Using the Jacobian

• Such velocities are vectors in 3
space, so each has x,y,z
components

• is a vector of joint angle
velocities which is the unkowns

• The Jacobian matrix J relates the
two and is a function of the
current pose

• Each term of the Jacobian relates
the change of a specific joint to a
specific change in the end
effector

• The rotational change in the end
effector is the velocity of the joint
angle around its axis of
revolution at the joint currently
considered

• V=[vx,vy,vz,ωx,ωy,ωz]T

!&

!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$

%

&

'

'

'

'

'

'

'

'

'

'

'

'
'

'

'

'

'

'

=

n

zzz

n

yyy

n

xxx

vvv

vvv

J

(

)

(

)

(

)

(((

(((

L

MOMM

L

L

21

21

21

[]
n

!!!! &&&& ,...,,
21

=

22. Okt 2008

Using the Jacobian

• How are the angular and
linear velocities computed?

• One finds the difference
between the end effector‘s
current position and desired
position

• The problem is to find out
the best linear combination
of velocities induced by the
various joints that would
achieve the desired
velocities of the end
effector

• The Jacobian is formed (by
posing the problem in angle
form)

• Once the Jacobian is
formed, it has to be inverted
in order to solve the
problem

• If the Jacobian is square,
then
– From

we have
– If J-1 does not exist, the

system is called singular

!&JV =
!&=

"
VJ
1

22. Okt 2008

Using the Jacobian

• If the Jacobian is non
square then if the
manipulator is redundant it
is still possible to find
solutions to the problem

• This is done by using the
pseudoinverse matrix
 J+=(JTJ)-1JT=JT(JJT)-1

• The pseudoinverse maps
desired velocities of the end
effector to the required
velocities at the joint angle

• after making the following
substitutions
 J+V=θ
 JT(JJT)-1V=θ
 β=(JJT)-1V
 (JJT)β=V
 JTβ=θ° (*)

• And LU decomposition can be
used to solve this eq. for β

• Remember that the Jacobian
varies at every instant

• This means that if a too big step
is taken in angle space, the end
effector might travel to the wrong
place

(*) due to the clumsiness of the program I am using here, I
have decided to indicate derivative vectors like this, which
allows me to avoid an eq. editor

22. Okt 2008

Using the Jacobian

• The pseudoinverse minimizes
joint angle rates, but this might at
times result in „innatural“
movements

• To better control the kinematic
model, a control expression can
be added to the pseudo inverse
Jacobian solution

• The control expression is used to
solve for certain control angle
rates having certain attributes,
and adds nothing to the desired
end effector

• θ° =(J+J-I)z
 V=J θ°

 V=J (J+J-I)z
 V=(JJ+J-J)z
 V=(J-J)z
 V=0z
 V=0(*)

• To bias the angle towards a
specific solution, desired angle
gains α are added to the
equations, and the equation is
solved like before.

• In fact, for α=0 one has the same
pseudoinverse solution

(*) due to the clumsiness of the program I am using here, I
have decided to indicate derivative vectors like this, which
allows me to avoid an eq. editor

22. Okt 2008

Using the Jacobian

• Simple Euler integration can be used at this
point to update the joint angles

• At the next step, since the Jacobian has
changed, the computations have to be redone
and a new step is taken

• This is repeated until the end effector desired
position is reached

22. Okt 2008

Summary: articulated bodies

• Very useful for enforcing certain relationships
among elements of an animation

• Allows animator to concentrate on effector
forgetting the rest of the body

• Damn hard to do, to date not real in real time

• Adding control expressions can be tricky

• No physics considered. Only kinematics

22. Okt 2008

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

C
op

yr
ig

ht
 (c

) 1
98

8
IL

M

