
22. Okt 2008

Animation Systems:Animation Systems:
4. Motion control4. Motion control

Charles A. Wüthrich
CogVis/MMC, Faculty of Media
Bauhaus-University Weimar

22. Okt 2008

Controlling motion along curvesControlling motion along curves

• We all know now how to
control the shape of the
curve

• To an animator, it is equally
important to know the
speed at which a curve is
traced by increasing
parametric steps

• Obviously, since motion
curves are of higher order,
this relation is not
straightforward

• Equal parameter intervals
do not lead to arcs of equal
length on the curve

• That is, speed is different at
different points of the curve

• This can be overcome
through a reparametri-
zation of the curve

22. Okt 2008

Curve lengthCurve length

• There are different methods
to compute such a
reparametrization

• One can create a table of
values so as to establish a
relationship between arc
length and parameter values

• In the first two method,
one creates a table of
values to establish the
relationship between
parametric value and
approximate arc length

• Once the table is built,
one can use the table to
approximate values aof
the parameter at steps
of equal length along
the curve

22. Okt 2008

Curve lengthCurve length

• The first method
supersamples the curve, and
then uses summed linear
´distance to compute the
approximate arc length

• The second method uses
Gauss quadrature to
numerically estimate the arc
length

• Both methods can use
adaptive subdivision to
control the error

• The third method
analytically computes arc
length. Unfortunately, it is
not always possible to do so
for all curves.

22. Okt 2008

Computing arc lengthComputing arc length

• To specify how fast the
object moves in the
environment, animators
might want to specify the
time at which positions
along the curve are reached.

• This in general would be
position and frame pairs.

• Or, maybe, the animator
might want to specify
velocities

• For example:
– start at position A
– accellerate till frame 20
– move at constant speed till frame 35
– Decelerate slowly till frame 60 and

end at position B
• It is clear what we want: be able to

control not only the curve (space
function), but also the relationship
between position and time (distance-
time function).

• The distance we are traveling along
the curve is called the arc length and
will be denoted by s.

22. Okt 2008

Computing arc lengthComputing arc length

• Suppose that we are moving
along the curve
 T

• The relation between
parameter and arc length is
not linear.

• When a unit change in
parameter results in a unit
change in curve length the
curve is said to be
parametrized by arc length

• How do I establish the
relationship between
parameter and arc length?

• What we want is to kow the
function which
computes the length of the
curve from it starting point
for all values of the
paramenter u

• If we have , then knowing
 -1 allows us to compute
the parameter values
corresponding to a certain
length

P U =U T MB

s=G u 

G
G−1

22. Okt 2008

Arc length: analytic approachArc length: analytic approach

• Obviously, the length of a
curve between parameter
values and is

where
 dP/du=((dx(u)/du), (dy(u)/du),
 (dz(u),du))
and
 |dP/du|=

• For a cubic curve

this will mean that the
derivative of one of the 3 eq
with respect to u is

and under the SQRT one
would have a curve of 4th
degree

• With a bit of computations
one can compute then
A,B,C,D

u1 u2

s=∫
u1

u2

∣dP /du∣du

dx u /du 2dy u/du 2dz u /du 2

P u =a⋅u3b⋅u2c⋅ud

dx u/du=3⋅a x⋅u22⋅bx⋅ucx

A⋅u4B⋅u3C⋅u2D⋅uE

22. Okt 2008

Arc length: Estimating through forward Arc length: Estimating through forward
differencesdifferences

• Suppose we have P(u).
• One can compute a table of the

distance of P(u) from the point
P(0) at regular intervals:
P(0), P(∆u), P(2∆u),..,P(1)
that is, containing
 P((i+1)∆u)-P(i ∆u)

• One can interpolate these values
first order (or higher order) to
estimate the length of a segment
in image space

• Conversely, one can use similar
methods to deduce from the right
hand column the corresponding
value of u

• Main problem with this approach
is controlling the error

0 |P(∆u)-P(0)|=G(∆u)

∆u G(∆U) +|P(2∆u)-P(∆u)|=G(2 ∆u)

2 ∆u G(2∆U) +|P(3∆u)-P(2∆u)|=G(3 ∆u)
... ...

22. Okt 2008

Adaptive forward differencesAdaptive forward differences

• Since the relations between
the variation of the
parameter and the length of
the curve is non-linear, the
method of the last slide has
problems when there is a
big error
– i.e. When the polyline

implicitly used to estimate the
parameter values inbetwen
table points is far from the
actual curve

• This can be improved by
computing the value of the
midpoint of each interval
between the table points.
– if the sum of the sides A+B

of the triangle is too diffe-
rent in length from the line
joining the interval extre-mes
C (over a threshold value),
the midpoint is added to the
list

A AB B
C C
Bad Better

22. Okt 2008

Numerical meth.: Gaussian quadratureNumerical meth.: Gaussian quadrature

• Another approach to computing
lenght bases on numerics

• Computing the length of the
curve implies computing the
integral of the curve length

• Gaussian quadrature uses
unevenly spaced intervals to
achieve the greatest accuracy

• Gaussian quadrature computes

• Since Gaussian quadr. is usually

defined in the interval [0,1], one
has to reparametrize at first the
original interval [a,b] we are
considering

• This is achieved by using the new
parameter
t such that
 t=(2u-a-b)/(b-a)

• Do not forget to apply the usual
integral rules for changing
parameters, that is adding the
factor of parameter substitution to
the integral

s=∫
0

1

f udu~∑
i

wi f ui

22. Okt 2008

Adaptive Gaussian quadratureAdaptive Gaussian quadrature

• If the curve derivative
varies very fast in some
areas, and less fast in other
areas, the gaussian
quadrature will either
undersample part of the
curve, or oversample

• In this case, a similar
adaptive method to the one
presented before can be
used:
– One subdivides intervals in

half,
– each half is evaluated using

gaussian quadrature
– The sum of the two halves is

compared to the result of the
whole interval.

– If the difference is greater
than a certain threshold, then
the two halves are added to
the sample points

22. Okt 2008

Finding u given sFinding u given s

• Suppose one wants to find
the value of the parameter u
at a given arc length s from
the point R(u1)

• This equals to solving the
equation
 s-LEN(u1,u)=0

• Arc length is monotonic, so
such a sol. is unique as long
as dR(u)/du is not 0

• Newton-Raphson integration can
be used: generate the seq. {pn}
 pn=pn-1-f(pn-1)/f´(pn-1)
where

– f is s-LEN(u1,Pn-1)=0 and can be
evaluated at pn-1 using techniques
of last slide

– f´ is dP/du evaluated at pn-1

• This eliminates the need for
quadrature, and is faster

• But can have two problems:
– Some pk might not be on the

curve, thus also pk+1,pk+2,.. will
not

– When the derivative approaches
0 we divde by zero

• Use subdiv instead

22. Okt 2008

1

Speed controlSpeed control

• On a arc-length parametrized
curve, it is possible to control
speed

• Simplest (and dullest) control:
constant speed (equal space s in
equal time t)

• Easiest speed control is ease-
in/ease-out:

– From standstill, accelerate until
maximum speed

– Decelerates and stop
• Speed along a curve can be

controlled by varying arc length
at something else than a linear
function of t.

• The speed variations are seeable
in the distance-time curve, which
plots the space traversed s against
the time t.

• Here is an example of a distance-
time curve for ease-in

s

t1

22. Okt 2008

Speed control: ease in/ease outSpeed control: ease in/ease out

• There are different ways of
mathematically achieve
ease in/ease out

• The first one is to use the
sinus between –π/2 and π/2
and scaling the parameter to
cover [0,1]

• S(t)=(1/2)(sin(πt-π/2)+1)

• This curve can be split and
joined with a straight line
(take care of continuity at
the splits) to add a period of
constant speed

22. Okt 2008

Speed control: constant accelerationSpeed control: constant acceleration

• The computational cost of the
sinus function is high.

• A better method is to use physics
for the calculations: s=vt, and
v=at

• This obtains a parabolic ease-in
function thus s=at2

• Similarly for deceleration one can
use a constant (limited)
deceleration until the object stops

• To describe the distance-time
function of such a movement the
following equations are used

• In formulas
d=½t2/2t1 0<t<t1

d=½v0t1+v0(t-t1) t1<t<t2

d=½v0t1+v0(t-t1) +
 (v0-½(v0(t-t2)/1-t2)(t-t2)
 t2<t<1

• Whereby v0 is the velocity
when acceleration ends

22. Okt 2008

Speed control: constant accelerationSpeed control: constant acceleration

• a=a0 0<t<t1

a=0 t1<t<t2
a=-a0 t2<t<1

• v=v0t/t1 0<t<t1

v=v0 t1<t<t2
a=v0(1-(t-t2)/(1-t2) t2<t<1

• The formulas look really
complicated, but there are
different ways to plot this to
make it understandable

s

t1

a

t
1

0
t1

t2

v

t1t2t1

t1 t2

22. Okt 2008

General distance-time functionsGeneral distance-time functions

• Many interesting aspects come up
when allowing the user to control
motion

• The more influence a user is
given, the more problems come
up

• Suppose the user defines some
velocities at some points:

– The rest of the velocity curve has
to be fitted to these „fixed“
values

– Sometimes leading to unwanted
effects (reverse velocity to fit the
time contraints)

• More intuitive is to control on the
space-time curve

– This because it allows to control
velocities as a tangent, and to
adapt the rest of the curve
accordingly

• Motion control often requires
specifying positions at specific
times

– The motion is specified as a
series of constraints at a specific
time, formally, a t-uple
<ti,si,vi,ai,...>

– higher order approximation is
needed for smooth movement

22. Okt 2008

Curve fittingCurve fitting

• If the animator specifies
certain constraints then the
time parametrized curve can
be computed using these
constraints as control points

• Suppose constraints are of
the form (Pi ,ti) (i=1,...,j)

• It only requires to
compute the curve
passing through these
points, i.e.

with 2 ≤ k ≤ n+1≤j
• In matrix form P=NB
• Inverting this equation

leads to find the control
point values for the
curve

P t =∑
i=1

n1

Bi N i ,k t 

22. Okt 2008

Curve Fitting to position-time pairsCurve Fitting to position-time pairs

• Suppose the user gives the
following positions and the
corresponding times

• One can fit a B-spline curve to the
values (Pi,ti) (i=1,...j):

– That is, take the general eq. of B-
splines and make it pass through
points

– Find corresp. control points.

• Computing the curve passing
through these points means
computing

with 2 ≤ k ≤ n+1≤j
• In matrix form P=NB,
• Inverting this equation leads to

find the control point values for
the curve: B=N-1P

• This is done through the
pseudoinverse:
P=NB
NTP=NTNB
[NTN]-1NTP=B

• Remember the tradeoff: the
higher the order, the higher the
wiggling

P1
P2

P3

P4

P5

P6

t=0
t=10

t=35

t=50

t=55

t=60

P  t=∑
i=1

n1

Bi N i , k t 

22. Okt 2008

Interpolation of quaternion rotationsInterpolation of quaternion rotations

• A major reason for choosing
quaternions is that they can be
easily interpolated

• Quaternion form can be
interpolated to produce good
intermediate orientations

• This does not work easily with
direct interpolation

• Unit quaternions are used to
represent orientation, and can be
seen as point of on the unit
sphere in 4-dimensional space

• To interpolate between two unit
quaternions, one can linearly
interpolate

• But this will not produce constant
speed rotation, because a path on
a sphere is not the same as a path
on a plane (which is what linear
interpol. follows)

• Equal speed interpolations can be
computed by interpolating
directly on the path on the sphere

Non equal intervals

Equal intervals

22. Okt 2008

Interpolation of quaternion rotationsInterpolation of quaternion rotations

• The problem (of course) is
how to do that

• Remember: q=[s,v] and
–q=[-s,-v] represent the
same orientation

• So interpolation from q1 to
q2 can be also carried
between q1 and -q2.

• The difference is that one
path will be longer

• The shorter one is the one
distinguished by the
smallest angle

• One can compute the cosine
of the angle between q1 and
q2:
cosθ= q1⋅q2=s1⋅s2+v1×• v2

• If it is positive, then shor-
test path is from q1 to q2

• Else shortest path is from q1
to -q2

22. Okt 2008

Interpolation of quaternion rotationsInterpolation of quaternion rotations

• So, the spherical linear interpolation (SLERP) between q1 and q2
with parameter u∈[0,1] is
 SLERP(q1,q2,u)=((sin((1-u)θ))/sinθ))q1+
 (sin(uθ))/sinθq2

• Note that this does not generate a unit quaternion, so one has
to normalize the result

• Notice that in the case u=1/2, SLERP is easy to compute except
for a scaling factor

• Finally notice that if a chain of SLERPs is performed, it will
perform similarly to linear interpolation (i.e. with rough
changes)

• Higher order interpolations, based on Bezier curves, have been
developed, but are beyond the purpose of this lesson

22. Okt 2008

Following a pathFollowing a path

• Animating an object to
move along a path is quite
natural and common

• Not only following the path
is needed: also moving the
orientation

• Typically, one would have a
local coordinate system
associated with the object

• Let the coordinates be
(u,v,w), and suppose they
are right handed

• Suppose the origin of the
coordinate system follows the
curve P(s), and that the
movement of P(s) is specified

• Call POS the current position
• One can view the u,v,w

coordinates as a view vector, an
up vector and a vector
perpendicular to u and v

• This is similar to camera
definition in Computer Graphics

22. Okt 2008

Following a path: Frenet FrameFollowing a path: Frenet Frame

• The orientation of the
camera system can be made
dependent from the
properties of the curve P(s)

• A Frenet frame is given by
the following axes
definitions

– w follows the tangent of the
curve (its first derivative
P´(s))

– v is orthogonal to w and in
the direction of the second
order derivative (P´´(s))

– u is the cross product of w
and v

• In symbols:
 w=P´(s)
 u=(P´(s) × P´´(s)
 v=w × u

u

w

v

22. Okt 2008

Following a path: Frenet FrameFollowing a path: Frenet Frame

• Frenet frames are quite
nice, but bear some flaws

• When the curve has no
curvature, its second order
derivative is zero. Here the
Frenet frame is undefined
– This problem can be solved

by interpolating the Frenet
frames at the start and end of
the rectilineal trait

– Since the tangent vector must
be the same at the
extremities, it is only a
rotation that has to be
interpolated

u

w

v u
w

v

22. Okt 2008

Following a path: Frenet FrameFollowing a path: Frenet Frame

• A more complicated problem
occurs at discontinuities in the
curvature vector

• For example, when the path
follows first a circle, and then a
second circle

• At the problem point, the
curvature will switch to pointing
from one circle center to the other
one

• Here, the Frenet frame is defined
everywhere but is discontinuous

• Here, the object will rotate wildly
along the path with „instant
switches“

u

Problem spot

Curvature
(left)

Curvature
(right)

22. Okt 2008

Following a path: Frenet FrameFollowing a path: Frenet Frame

• The worst problem is
that the path following
is not so natural:
– when we view at

something, we we do not
look along the tangent

– When we move, we
anticipate curves

• Similar effect to your
car light not following
the road

• Also, one might want to
make the object bend
towards the interior to
„anticipate the force“

• or, opposite, to let it
bend out to give the
effect of a force acting
on the object

u

22. Okt 2008

Camera Path Following: Camera Path Following:
Center of InterestCenter of Interest

• A more natural way of specifying
the orientation of a camera is to
use the center of interest (COI)

– One can view towards a fixed
point

– Or alternatively the center of an
object

• Good method for a camera
circling some arena of action

• The center of interest is specified,
and so the view vector w=COI-
POS

• This leaves one degree of
freedom in camera specification

• One simple way is to set the view
vector v as viewing „up“, i.e.
perpendicular to w and lying in
the wy plane
 w=COI-POS
 u= w × y
 v= u × w

• This works quite well for a
camera moving along a path and
focussing to a single object.

• When it gets very close to the
object, this results in drastic
changes (fly-near effect)

• This is not always bad!!!

22. Okt 2008

Camera Path Following: Camera Path Following:
Center of InterestCenter of Interest

• There are variations to
specifying a fixed point

• One can for example
specify various points on
the camera path itself

• The up vector
– is usually specified as lying

in the wy plane
• But one can also allow the

user to input
– Either a tilting value with

respect to the default up
vector

– Or the up vector on a whole

• Following a points on the
path is relatively easy:
– If P(s) describes the position

on the curve, then P(s+δs),
with δs >0, specifies its
position in the future

– It is advisable to choose
points at equidistances on the
curve, so as to make changes
not that noticeable

– Alternatively, one can take
the baricenter of some future
points to avoid too much
hopping

• The real flaw of this method
is the fact that camera views
look jerky

22. Okt 2008

Camera Path Following: Camera Path Following:
Center of InterestCenter of Interest

• A better method is to use
instead of some function of
the position path, a different
function altogether for the
POI

• Let P(s) be the curve of the
camera path, and C(s) the
curve of the COI (obviously
the animator specifies this)

• Similarly, and up vector
path must be specified U(s),
so that the general up
direction is U(s)-P(s)

• The resulting coordinates
for the camera will then
become
 w=C(s)-P(s)
 u=w × (U(s)-P(s))
 v=u × w

• This gives maximum
control, but is also difficult
to control.

• An easy way of specifying
C(s) is to use fixed
positions, with ease-in/ease-
out moves between the
different fixed points

22. Okt 2008

Smoothing pathsSmoothing paths

• There are several ways to
smooth a path if it has been
generated by a sample
process, such as a motion
capturing system

• This path acquisition
method is getting more and
more frequent and
inexpensive

• However, data here can be
prone to noise or
imprecision, depending on
the input method

C
ou

rte
sy

 A
ni

m
az

oo
 L

td
.

22. Okt 2008

Smoothing paths: linear interpolation Smoothing paths: linear interpolation

• The simplest way of
smoothing the data is to
average neighbouring data
point.

• Suppose we have the chain
of points {Pi} i=0,N

• In the simplest form, one
averages Pi as the average
itself and of Pi-1 and Pi+1.

– Obviously, here the
„spikes“ are flattened, so
applying this method
many times makes little
sense

11

11

4
1

2
1

4
1

2
2´ +−

+−

++=

++
= iii

ii
i

i PPP

PPP
P

22. Okt 2008

Smoothing paths: cubic interpolation Smoothing paths: cubic interpolation

• A second method use the
four adjacent points
Pi-2,Pi-1,Pi+1,Pi+2
on either side to fit a cubic
curve that is then evaluated
at the midpoint.

• This midpoint is averaged
with the original point to
obtain the smoothed point

• Remembering that a 3rd
order curve was
P(u)=au3+bu2+cu+d

• One obtains
 Pi-2=P(0)=d
 Pi-1=P(1/4)=
 a(1/64)+b(1/16)+c/4+d
 Pi+1=P(3/4)=
 a(27/64)+b(9/16)+3c/4+d
 Pi+2=P(1)=a+b+c+d

Pi-2

Pi-1

Pi+1

Pi+2

Pi

P(0)

P(1/4)
P(1/2) P(3/4)

P(1)

P´i

22. Okt 2008

Smoothing paths: cubic interpolation Smoothing paths: cubic interpolation

• For the last points, a parabolic arc can be
computed to fit the second and forelast points

• Notice that here the curve will be of the form
au2+bu+c , and the equation turns into
 P´1=P2+1/3(P0-P3)
and similarly for the last three points

22. Okt 2008

Smoothing paths: convolution kernels Smoothing paths: convolution kernels

• If the data can be viewed as
a data function yi=f(xi) then
convolution can be used to
smooth the data

• Convolution with the
convolution kernel g(u)
defined in the interval
[-s,s] is in fact computing

• The resulting integral can
be computed directly or
approximated by discrete
means

P x=∫
−s

s

f xu g u du

22. Okt 2008

Smoothing paths: B-spline approximationSmoothing paths: B-spline approximation

• If the path does not necessarily have to pass
through the sample points, one can use
approximation methods we saw before

• Particularly B-splines are well adapted for the
defining a path tacked from real data

22. Okt 2008

Path along a surfacePath along a surface

• If an object needs to follow
a surface when it moves,
then a path on the surface
itself has to be found

• If we know start and
endpoints, then this is
simple:
– trace a plane „perpendicular“

to the surface
– Compute the intersection

plane-surface

• Alternatively, other
methods can be used, for
example if one wants to
follow the „valleys“ on the
surface

• Here „greedy“ methods can
be used, or methods that
compute the normal to the
surface and follow it

22. Okt 2008

Keyframe systemsKeyframe systems

• Early computer animation
systems were keyframe
systems

• Most were 2D too, and
implemented keyframe
animations made by hand

• In computer animation a
key frame is a variable set
by the user at specific
timepoints

• The system interpolates
intermediate frames from
the key frames

• The interpolation is quite
straightforward if the
shapes to be interpolated
have the same number of
controlling points

22. Okt 2008

Keyframe systemsKeyframe systems

• In this case, linear interpolation can
be used to produce the inbetween
frames

• However, this is not the general case
• The general problem is: given two

curves in 2D, how do I transform
them into each other?

• If both curves are of the same type
(eg Bezier of 3rd degree) then one
can interpolate between control
points

• Another method is to use
interpolating functions to generate
the same numbers of points on both
lines, and then interpolate these
points

• However, this does not allow
sufficient control

P(u)

Q(v)

22. Okt 2008

Keyframe systemsKeyframe systems

• Reeves proposed a method based on surface patch
technology to solve the problem of interpolating a curve
in time

• Basically, one defines a patch in 3D to join the curves
and allow the time parameter to be interpolated

• Sample points are taken on thepatch to define the
intermediate curves (=curves at inbetweens)

22. Okt 2008

Animation languagesAnimation languages

• In recent times, scripting languages have been developed
to support animation systems

• Most animation languages are not easy to understand,
and are close to hardcore programming

• A typical animation language is Renderman, or
Alias/wavefront‘s MEL

• Their big advantage is control

22. Okt 2008

Animation languagesAnimation languages

• Some effort has been put to accomodate unskilled artistic
animators without scripting capabilities

• Simpler scripting languages such as ANIMA II have been
developed

• Recently, actor based languages have appeared

• This is a novel approach but still at its infancy

• The idea is to have objects (=actors) and the
instantiation of their variables representing the moving
parameters

• Finally, the development of avatars has generated the
need for some form of interaction with the animated
models.

22. Okt 2008

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

C
op

yr
ig

ht
 (c

) 1
98

8
IL

M

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43

