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Controlling motion along curvesControlling motion along curves

• We all know now how to 
control the shape of the 
curve

• To an animator, it is equally 
important to know the 
speed at which a curve is 
traced by increasing 
parametric steps

• Obviously, since motion 
curves are of higher order, 
this relation is not 
straightforward 

• Equal parameter intervals 
do not lead to arcs of equal 
length on the curve

• That is, speed is different at 
different points of the curve

• This can be overcome 
through a reparametri-
zation of the curve
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Curve lengthCurve length

• There are different methods 
to compute such a 
reparametrization

• One can create a table of 
values so as to establish a 
relationship between arc 
length and parameter values

• In the first two method, 
one creates a table of 
values to establish the 
relationship between 
parametric value and 
approximate arc length 

• Once the table is built, 
one can use the table to 
approximate values aof 
the parameter at steps 
of equal length along 
the curve
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Curve lengthCurve length

• The first method 
supersamples the curve, and 
then uses summed linear 
´distance to compute the 
approximate arc length

• The second method uses 
Gauss quadrature to 
numerically estimate the arc 
length

• Both methods can use 
adaptive subdivision to 
control the error

• The third method 
analytically computes arc 
length. Unfortunately, it is 
not always possible to do so 
for all curves.
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Computing arc lengthComputing arc length

• To specify how fast the 
object moves in the 
environment, animators 
might want to specify the 
time at which positions 
along the curve are reached.

• This in general would be 
position and frame pairs.

• Or, maybe, the animator 
might want to specify 
velocities

• For example: 
– start at position A
– accellerate till frame 20
– move at constant speed till frame 35
– Decelerate slowly till frame 60 and 

end at position B
• It is clear what we want: be able to 

control not only the curve (space 
function), but also the relationship 
between position and time (distance-
time function). 

• The distance we are traveling along 
the curve is called the arc length and 
will be denoted by s.
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Computing arc lengthComputing arc length

• Suppose that we are moving 
along the curve 
         T

• The relation between 
parameter and arc length is 
not linear.

• When a unit change in 
parameter results in a unit 
change in curve length the 
curve is said to be 
parametrized by arc length

• How do I establish the 
relationship between 
parameter and arc length?

• What we want is to kow the 
function                which 
computes the length of the 
curve from it starting point 
for all values of the 
paramenter u

• If we have    , then knowing 
 -1  allows us to compute 
the parameter values 
corresponding to a certain 
length

P U =U T MB

s=G u 

G
G−1
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Arc length: analytic approachArc length: analytic approach

• Obviously, the length of a 
curve between parameter 
values    and     is   
                            
                             
where
  dP/du=((dx(u)/du), (dy(u)/du), 
               (dz(u),du))
and
 |dP/du|=

• For a cubic curve
  
this will mean that the 
derivative of one of the 3 eq 
with respect to u is
   
and under the SQRT one 
would have a curve of 4th 
degree

• With a bit of computations 
one can compute then 
A,B,C,D

u1 u2

s=∫
u1

u2

∣dP /du∣du

dx u /du 2dy u/du 2dz u /du 2

P u =a⋅u3b⋅u2c⋅ud

dx u/du=3⋅a x⋅u22⋅bx⋅ucx

A⋅u4B⋅u3C⋅u2D⋅uE



22. Okt 2008  

Arc length: Estimating through forward Arc length: Estimating through forward 
differencesdifferences

• Suppose we have P(u).
• One can compute a table of the 

distance of  P(u) from the point 
P(0) at regular intervals: 
P(0), P(∆u), P(2∆u),..,P(1)
that is, containing 
   P((i+1)∆u)-P(i ∆u) 

• One can interpolate these values 
first order (or higher order) to 
estimate the length of a segment 
in image space

• Conversely, one can use similar 
methods to deduce from the right 
hand column the corresponding 
value of u

• Main problem with this approach 
is controlling the error

0 |P(∆u)-P(0)|=G(∆u)

∆u G(∆U) +|P(2∆u)-P(∆u)|=G(2 ∆u)

2 ∆u G(2∆U) +|P(3∆u)-P(2∆u)|=G(3 ∆u)
... ...
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Adaptive forward differencesAdaptive forward differences

• Since the relations between 
the variation of the 
parameter and the length of 
the curve is non-linear, the 
method of the last slide has 
problems when there is a 
big error
– i.e. When the polyline 

implicitly used to estimate the 
parameter values inbetwen 
table points is far from the 
actual curve 

• This can be improved by 
computing the value of the  
midpoint of each interval 
between the table points. 
– if the sum of the sides A+B 

of the triangle is too diffe-
rent in length from the line 
joining the interval extre-mes 
C (over a threshold value), 
the midpoint is added to the 
list

A AB B
C C
Bad Better
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Numerical meth.: Gaussian quadratureNumerical meth.: Gaussian quadrature

• Another approach to computing 
lenght bases on numerics

• Computing the length of the 
curve implies computing the 
integral of the curve length

• Gaussian quadrature uses 
unevenly spaced intervals to 
achieve the greatest accuracy

• Gaussian quadrature computes

 
• Since Gaussian quadr. is usually 

defined in the interval [0,1], one 
has to reparametrize at first the 
original interval [a,b] we are 
considering

• This is achieved by using the new 
parameter
t such that
    t=(2u-a-b)/(b-a)

• Do not forget to apply the usual 
integral rules for changing 
parameters, that is adding the 
factor of parameter substitution to 
the integral

s=∫
0

1

f udu~∑
i

wi f ui
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Adaptive Gaussian quadratureAdaptive Gaussian quadrature

• If the curve derivative 
varies very fast in some 
areas, and less fast in other 
areas, the gaussian 
quadrature will either 
undersample part of the 
curve, or oversample

• In this case, a similar 
adaptive method to the one 
presented before can be 
used:
– One subdivides intervals in 

half, 
– each half is evaluated using 

gaussian quadrature
– The sum of the two halves is 

compared to the result of the 
whole interval. 

– If the difference is greater 
than a certain threshold, then 
the two halves are added to 
the sample points
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Finding u given sFinding u given s

• Suppose one wants to find 
the value of the parameter u 
at a given arc length s from 
the point R(u1)

• This equals to solving the 
equation
    s-LEN(u1,u)=0

• Arc length is monotonic, so 
such a sol. is unique as long 
as dR(u)/du is not 0

• Newton-Raphson integration can 
be used: generate the seq. {pn}
  pn=pn-1-f(pn-1)/f´(pn-1)
where

– f is s-LEN(u1,Pn-1)=0 and can be 
evaluated at pn-1 using techniques 
of last slide

– f´ is dP/du evaluated at pn-1

• This eliminates the need for 
quadrature, and is faster

• But can have two problems:
– Some pk might not be on the 

curve, thus also pk+1,pk+2,.. will 
not

– When the derivative approaches 
0 we divde by zero

• Use subdiv instead
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1

Speed controlSpeed control

• On a arc-length parametrized 
curve, it is possible to control 
speed

• Simplest (and dullest) control: 
constant speed (equal space s in 
equal time t)

• Easiest speed control is ease-
in/ease-out: 

– From standstill, accelerate until 
maximum speed

– Decelerates and stop
• Speed along a curve can be 

controlled by varying arc length 
at something else than a linear 
function of t. 

• The speed variations are seeable 
in the distance-time curve, which 
plots the space traversed s against 
the time t.

• Here is an example of a distance-
time curve for ease-in

s

t1
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Speed control: ease in/ease outSpeed control: ease in/ease out

• There are different ways of 
mathematically achieve 
ease in/ease out

• The first one is to use the 
sinus between –π/2 and π/2 
and scaling the parameter to 
cover [0,1]

• S(t)=(1/2)(sin(πt-π/2)+1)

• This curve can be split and 
joined with a straight line  
(take care of continuity at 
the splits) to add a period of 
constant speed  
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Speed control: constant accelerationSpeed control: constant acceleration

• The computational cost of the 
sinus function is high.

• A better method is to use physics 
for the calculations: s=vt, and 
v=at

• This obtains a parabolic ease-in 
function thus s=at2

• Similarly for deceleration one can 
use a constant (limited) 
deceleration until the object stops

• To describe the distance-time 
function of such a movement the 
following equations are used

• In formulas
d=½t2/2t1               0<t<t1

d=½v0t1+v0(t-t1)    t1<t<t2

d=½v0t1+v0(t-t1) +
    (v0-½(v0(t-t2)/1-t2)(t-t2)
                              t2<t<1

• Whereby v0  is the velocity 
when acceleration ends
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Speed control: constant accelerationSpeed control: constant acceleration

• a=a0                       0<t<t1

a=0                        t1<t<t2 
a=-a0                      t2<t<1

• v=v0t/t1                  0<t<t1

v=v0                       t1<t<t2 
a=v0(1-(t-t2)/(1-t2) t2<t<1

• The formulas look really 
complicated, but there are 
different ways to plot this to 
make it understandable

s

t1

a

t
1

0
t1

t2

v

t1t2t1

t1 t2
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General distance-time functionsGeneral distance-time functions

• Many interesting aspects come up 
when allowing the user to control 
motion

• The more influence a user is 
given, the more problems come 
up

• Suppose the user defines some 
velocities at some points:

– The rest of the velocity curve has 
to be fitted to these „fixed“ 
values

– Sometimes leading to unwanted 
effects (reverse velocity to fit the 
time contraints)

• More intuitive is to control on the 
space-time curve

– This because it allows to control 
velocities as a tangent, and to 
adapt the rest of the curve 
accordingly

• Motion control often requires 
specifying positions at specific 
times

– The motion is specified as a 
series of constraints at a specific 
time, formally, a t-uple 
<ti,si,vi,ai,...>

– higher order approximation is 
needed for smooth movement
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Curve fittingCurve fitting

• If the animator specifies 
certain constraints then the 
time parametrized curve can 
be computed using these 
constraints as control points 

• Suppose constraints are of 
the form (Pi ,ti) (i=1,...,j)

• It only requires to 
compute the curve 
passing through these 
points, i.e.
     

with 2 ≤ k ≤ n+1≤j
• In matrix form P=NB
• Inverting this equation 

leads to find the control 
point values for the 
curve

P t =∑
i=1

n1

Bi N i ,k t 
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Curve Fitting to position-time pairsCurve Fitting to position-time pairs

• Suppose the user gives the 
following positions and the 
corresponding times

• One can fit a B-spline curve to the 
values (Pi,ti) (i=1,...j): 

– That is, take the general eq. of B-
splines and make it pass through 
points

– Find corresp. control points.

• Computing the curve passing 
through these points means 
computing 

with 2 ≤ k ≤ n+1≤j
• In matrix form P=NB, 
• Inverting this equation leads to 

find the control point values for 
the curve: B=N-1P

• This is done through the 
pseudoinverse: 
P=NB
NTP=NTNB
[NTN]-1NTP=B

• Remember the tradeoff: the 
higher the order, the higher the 
wiggling

P1
P2

P3

P4

P5

P6

t=0
t=10

t=35

t=50

t=55

t=60

P  t=∑
i=1

n1

Bi N i , k t 
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Interpolation of quaternion rotationsInterpolation of quaternion rotations

• A major reason for choosing 
quaternions is that they can be 
easily interpolated

• Quaternion form can be 
interpolated to produce good 
intermediate orientations

• This does not work easily with 
direct interpolation

• Unit quaternions are used to 
represent orientation, and can be 
seen as point of on the unit 
sphere in 4-dimensional space

• To interpolate between two unit 
quaternions, one can linearly 
interpolate

• But this will not produce constant 
speed rotation, because a path on 
a sphere is not the same as a path 
on a plane (which is what linear 
interpol. follows)

• Equal speed interpolations can be 
computed by interpolating 
directly on the path on the sphere

Non equal intervals

Equal intervals



22. Okt 2008  

Interpolation of quaternion rotationsInterpolation of quaternion rotations

• The problem (of course) is 
how to do that

• Remember: q=[s,v] and 
–q=[-s,-v] represent the 
same orientation

• So interpolation from q1 to 
q2 can be also carried 
between q1 and -q2.

• The difference is that one 
path will be longer

• The shorter one is the one 
distinguished by the 
smallest angle 

• One can compute the cosine 
of the angle between q1 and 
q2:
cosθ= q1⋅q2=s1⋅s2+v1×• v2

• If it is positive, then shor-
test path is from q1 to q2 

• Else shortest path is from q1 
to -q2



22. Okt 2008  

Interpolation of quaternion rotationsInterpolation of quaternion rotations

• So, the spherical linear interpolation (SLERP) between q1 and q2 
with parameter u∈[0,1] is
    SLERP(q1,q2,u)=((sin((1-u)θ))/sinθ))q1+
                                (sin(uθ))/sinθq2

• Note that this does not generate a unit quaternion, so one has 
to normalize the result

• Notice that in the case u=1/2, SLERP is easy to compute except 
for a scaling factor

• Finally notice that if a chain of SLERPs is performed, it will 
perform similarly to linear interpolation (i.e. with rough 
changes)

• Higher order interpolations, based on Bezier curves, have been 
developed, but are beyond the purpose of this lesson
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Following a pathFollowing a path

• Animating an object to 
move along a path is quite 
natural and common

• Not only following the path 
is needed: also moving the 
orientation

• Typically, one would have a 
local coordinate system 
associated with the object

• Let the coordinates be 
(u,v,w), and suppose they 
are right handed

• Suppose the origin of the 
coordinate system follows the 
curve P(s), and that the 
movement of P(s) is specified

• Call POS the current position
• One can view the u,v,w 

coordinates as a view vector, an 
up vector and a vector 
perpendicular to u and v

• This is similar to camera 
definition in Computer Graphics
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Following a path: Frenet FrameFollowing a path: Frenet Frame

• The orientation of the 
camera system can be made 
dependent from the 
properties of the curve P(s)

• A Frenet frame is given by 
the following axes 
definitions

– w follows the tangent of the 
curve (its first derivative 
P´(s))

– v is orthogonal to w and in 
the direction of the second 
order derivative (P´´(s))

– u is the cross product of w 
and v

• In symbols:
     w=P´(s)
     u=(P´(s) × P´´(s)
     v=w × u

u

w

v
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Following a path: Frenet FrameFollowing a path: Frenet Frame

• Frenet frames are quite 
nice, but bear some flaws

• When the curve has no 
curvature, its second order 
derivative is zero. Here the 
Frenet frame is undefined
– This problem can be solved 

by interpolating the Frenet 
frames at the start and end of 
the rectilineal trait

– Since the tangent vector must 
be the same at the 
extremities, it is only a 
rotation that has to be 
interpolated

u

w

v u
w

v
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Following a path: Frenet FrameFollowing a path: Frenet Frame

• A more complicated problem 
occurs at discontinuities in the 
curvature vector

• For example, when the path 
follows first a circle, and then a 
second circle

• At the problem point, the 
curvature will switch to pointing 
from one circle center to the other 
one

• Here, the Frenet frame is defined 
everywhere but is discontinuous

• Here, the object will rotate wildly 
along the path with „instant 
switches“

u

Problem spot

Curvature 
(left)

Curvature 
(right)
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Following a path: Frenet FrameFollowing a path: Frenet Frame

• The worst problem is 
that the path following 
is not so natural: 
– when we view at 

something, we we do not 
look along the tangent

– When we move, we 
anticipate curves

• Similar effect to your 
car light not following 
the road 

• Also, one might want to 
make the object bend 
towards the interior to 
„anticipate the force“

• .... or, opposite, to let it 
bend out to give the 
effect of a force acting 
on the object

u
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Camera Path Following: Camera Path Following: 
Center of InterestCenter of Interest

• A more natural way of specifying 
the orientation of a camera is to 
use the center of interest (COI)

– One can view towards a fixed 
point

– Or alternatively the center of an 
object

• Good method for a camera 
circling some arena of action

• The center of interest is specified, 
and so the view vector w=COI-
POS 

• This leaves one degree of 
freedom in camera specification

• One simple way is to set the view 
vector v as viewing „up“, i.e. 
perpendicular to w and lying in 
the wy plane 
    w=COI-POS
    u= w × y
    v= u × w

• This works quite well for a 
camera moving along a path and 
focussing to a single object.

• When it gets very close to the 
object, this results in drastic 
changes (fly-near effect)

• This is not always bad!!!
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Camera Path Following: Camera Path Following: 
Center of InterestCenter of Interest

• There are variations to 
specifying a fixed point

• One can for example 
specify various points on 
the camera path itself

• The up vector 
– is usually specified as lying 

in the wy plane
• But one can also allow the 

user to input 
– Either a tilting value with 

respect to the default up 
vector

– Or the up vector on a whole

• Following a points on the 
path is relatively easy:
– If P(s) describes the position 

on the curve, then P(s+δs), 
with δs >0, specifies its 
position in the future

– It is advisable to choose 
points at equidistances on the 
curve, so as to make changes 
not that noticeable

– Alternatively, one can take 
the baricenter of some future 
points to avoid too much 
hopping

• The real flaw of this method 
is the fact that camera views 
look jerky
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Camera Path Following: Camera Path Following: 
Center of InterestCenter of Interest

• A better method is to use 
instead of some function of 
the position path, a different 
function altogether for the 
POI

• Let P(s) be the curve of the 
camera path, and C(s) the 
curve of the COI (obviously 
the animator specifies this)

• Similarly, and up vector 
path must be specified U(s), 
so that the general up 
direction is U(s)-P(s)

• The resulting coordinates 
for the camera will then 
become
    w=C(s)-P(s)
    u=w × (U(s)-P(s))
    v=u × w

• This gives maximum 
control, but is also difficult 
to control.

• An easy way of specifying 
C(s) is to use fixed 
positions, with ease-in/ease-
out moves between the 
different fixed points
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Smoothing pathsSmoothing paths

• There are several ways to 
smooth a path if it has been 
generated by a sample 
process, such as a motion 
capturing system

• This path acquisition 
method is getting more and 
more frequent and 
inexpensive

• However, data here can be 
prone to noise or 
imprecision, depending on 
the input method
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Smoothing paths: linear interpolation Smoothing paths: linear interpolation 

• The simplest way of 
smoothing the data is to 
average neighbouring data 
point. 

• Suppose we have the chain 
of points {Pi} i=0,N

• In the simplest form, one 
averages Pi as the average 
itself and of Pi-1 and Pi+1.

– Obviously, here the 
„spikes“ are flattened, so 
applying this method 
many times makes little 
sense

11
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Smoothing paths: cubic interpolation Smoothing paths: cubic interpolation 

• A second method use the 
four adjacent points 
Pi-2,Pi-1,Pi+1,Pi+2  
on either side to fit a cubic 
curve that is then evaluated 
at the midpoint.

• This midpoint is averaged 
with the original point to 
obtain the smoothed point

• Remembering that a 3rd 
order curve was
P(u)=au3+bu2+cu+d   

• One obtains
 Pi-2=P(0)=d
 Pi-1=P(1/4)=
  a(1/64)+b(1/16)+c/4+d
 Pi+1=P(3/4)=
  a(27/64)+b(9/16)+3c/4+d
 Pi+2=P(1)=a+b+c+d

Pi-2

Pi-1

Pi+1

Pi+2

Pi

P(0)

P(1/4)
P(1/2) P(3/4)

P(1)

P´i



22. Okt 2008  

Smoothing paths: cubic interpolation Smoothing paths: cubic interpolation 

• For the last points, a parabolic arc can be 
computed to fit the second and forelast points 

• Notice that here the curve will be of the form 
au2+bu+c , and the equation turns into
                 P´1=P2+1/3(P0-P3)
and similarly for the last three points
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Smoothing paths: convolution kernels Smoothing paths: convolution kernels 

• If the data can be viewed as 
a data function yi=f(xi) then 
convolution can be used to 
smooth the data

• Convolution with the 
convolution kernel g(u) 
defined in the interval 
[-s,s] is in fact computing

 

• The resulting integral can 
be computed directly or 
approximated by discrete 
means

P x=∫
−s

s

f xu g u du
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Smoothing paths: B-spline approximationSmoothing paths: B-spline approximation

• If the path does not necessarily have to pass 
through the sample points, one can use 
approximation methods we saw before

• Particularly B-splines are well adapted for the 
defining a path tacked from real data
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Path along a surfacePath along a surface

• If an object needs to follow 
a surface when it moves, 
then a path on the surface 
itself has to be found

• If we know start and 
endpoints, then this is 
simple: 
– trace a plane „perpendicular“ 

to the surface
– Compute the intersection 

plane-surface

• Alternatively, other 
methods can be used, for 
example if one wants to 
follow the „valleys“ on the 
surface

• Here „greedy“ methods can 
be used, or methods that 
compute the normal to the 
surface and follow it
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Keyframe systemsKeyframe systems

• Early computer animation 
systems were keyframe 
systems

• Most were 2D too, and 
implemented keyframe 
animations made by hand 

• In computer animation a 
key frame is a variable set 
by the user at specific 
timepoints

• The system interpolates 
intermediate frames from 
the key frames

• The interpolation is quite 
straightforward if the 
shapes to be interpolated 
have the same number of 
controlling points
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Keyframe systemsKeyframe systems

• In this case, linear interpolation can 
be used to produce the inbetween 
frames

• However, this is not the general case
• The general problem is: given two 

curves in 2D, how do I transform 
them into each other?

• If both curves are of the same type 
(eg Bezier of 3rd degree) then one 
can interpolate between control 
points

• Another method is to use 
interpolating functions to generate 
the same numbers of points on both 
lines, and then interpolate these 
points

• However, this does not allow 
sufficient control

P(u)

Q(v)
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Keyframe systemsKeyframe systems

• Reeves proposed a method based on surface patch 
technology to solve the problem of interpolating a curve 
in time

• Basically, one defines a patch in 3D to join the curves 
and allow the time parameter to be interpolated

• Sample points are taken on thepatch to define the 
intermediate curves (=curves at inbetweens)
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Animation languagesAnimation languages

• In recent times, scripting languages have been developed 
to support animation systems

• Most animation languages are not easy to understand, 
and are close to hardcore programming

• A typical animation language is Renderman, or 
Alias/wavefront‘s MEL

• Their big advantage is control
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Animation languagesAnimation languages

• Some effort has been put to accomodate unskilled artistic 
animators without scripting capabilities

• Simpler scripting languages such as ANIMA II have been 
developed

• Recently, actor based languages have appeared

• This is a novel approach but still at its infancy

• The idea is to have objects (=actors) and the 
instantiation of their variables representing the moving 
parameters

• Finally, the development of avatars has generated the 
need for some form of interaction with the animated 
models.
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