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Parametric curvesParametric curves

• Curves and surfaces can 
have explicit, implicit, and 
parametric representations. 
– Explicit equations are of the 

form y=f(x)
– Implicit equations of the form 

f(x,y)=0
– Parametric equations are of 

the form 

• Parametric representations 
are the most common in 
computer graphics and 
animation.

• They are independent from 
the axes

{x= f  t 
y=g  t 
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Parametric curvesParametric curves

• Parametrization is not 
unique: take a look at the 
straight line:
L(P0,P1) = P0 + u(P1-P0)=
                  (1-u)P0+uP1, 
                  u ∈ [0,1] 
L(P0,P1) = v(P1-P0)/2 +     
         (P1+P0)/2, v ∈ [-1,1] 

• They represent the same 
line

• Parameterizations can be 
changed to lie between 
desired bounds. 
To reparameterize from 
u∈ [a,b] to w∈[0,1], 
we can use 
w=(u-a)/(b-a), which gives 
u = w(b-a) + a. 

• Thus, we have: 

P(u), u∈[a,b] = 
P(w(b-a)+a), w∈[0,1] 
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Linear interpolationLinear interpolation

• Consider the straight line 
passing through P0 and P1:
    P(u)=(1-u)P0+uP1

• Since (1-u) and u are 
functions of u, one can 
rewrite the eq. above as
 P(u)=F0(u)P0+F1(u)P1

• Note that F0(u)+F1(u)=1
• F0(u) and F1(u) are called 

blending functions.

• Alternatively, one can 
rewrite the function as
    P(u)=(P1- P0)u+P0

    P(u)=a1u+a0

• This called the algebraic 
form of the equation
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Linear interpolationLinear interpolation

• One can also rewrite theese 
equations in matrix 
notation: 

• Note that the last one of 
these equations decomposes 
the equation in the product 
of variables (U), 
coefficients (M) and 
geometric information (B)

Pu =[F0 u 
F1 u ][P0 P1 ]=FBT

Pu =[u 1 ][a1

a0]
Pu =[u 1 ][−1 1

1 0 ][P0

P1]=U T MB=FB=U T A
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Arc lengthArc length

• Note that there is not necessarily a linear relation 
between the parameter u and the arc length described by 
the curve

• For example, also the equation 

            P(u)=P0+((1-u)u+u)(P1-P0)

represents the same straight line, but the relationship 
between u and the arc length is non linear. 

• This means that there is not necessarily an obvious 
relationship between changes in parameter and distance 
travelled and changes in the parameter
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Derivatives of a curveDerivatives of a curve

• Any parametric curve of 
polynomial order can be 
expressed in the form 
         P(u)=UTMB

• Since only the matrix U 
contains the variable, then it 
is easy to compute the 
derivative of a parametric 
curve

• For a curve of third degree 
we have

P(u)=UTMB=
      [u3 u2 u 1] MB

P´(u)=U´TMB=
      [3u2 2u 1 0] MB

P´´(u)=U´´TMB=
      [6u 2 0 0] MB
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Hermite interpolationHermite interpolation

• Hermite interpolation 
generates a cubic 
polynomial between two 
points.

• Here, to specify completely 
the curve the user needs to 
provide two points P0 and 
P1 and the tangent to the 
curve in these two points P
´0 P´1

• Remember, we write in the 
form P(u)=UTMB

• For Hermite interpolation 
we have

U T [u3 u2 u 1 ]

M=[ 2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0 ]

B=[P0

P1

P0
'

P1
' ]
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Hermite interpolationHermite interpolation

• Suppose that an 
interpolation curve is 
wanted passing through n  
points P0,P1, …,Pn.

• The interpolation curve 
through them can be 
defined as a piecewise 
defined curve

• In fact, if one ensures that 
the resulting curve is not 
only continuous at the 
joints, but also that 
– Its tangent (=velocity)
– Its second order derivative 

(= acceleration)

  are continuous, then the 
curve can be used also in 
animations.

P0

P1

P´1

P´0

P´2

P2
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Continuity: parametric and geometricContinuity: parametric and geometric

• For a piecewise defined curve, there are two main ways 
of defining the continuity at the borders of the single 
intervals of definition
– 1st order parametric continuity (C1): the end tangent vector 

at the two ends must be exactly the same 
– 1st order geometric continuity (G1): the direction of the 

tangent must be the same, but the magnitudes may differ
– Similar definitions for higher oder  continuity (C2-G2)

• Parametric continuity is sensitive to the „velocity“ of the 
parameter on the curve, geometric continuity is not
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Catmull-Rom splineCatmull-Rom spline

• A Catmull-Rom spline is a 
special Hermite curve 
where the tangent of the 
middle points is computed 
as one half the vector 
joining the previous control 
point to the next one

•     P´i=1/2(Pi+1-Pi-1)
• From this we deduce:

Pi-1

Pi

P´i

Pi+1-Pi-1

Pi+1

U T=[u3 u2 u 1 ]

M=[−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0 ]

B=[P i−1

P i

P i1

Pi2
]
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Catmull-Rom splineCatmull-Rom spline

• If one wants to write the 
complete Catmull-Rom 
spline, one needs a method 
to find the tangents at the 
initial and final points 

• One method used involves 
subtracting P2 from P1 and 
then using the point obtined 
as the direction of the 
tangent

• P´0=½(P1-(P2-P1)-P0)=
½(2P1-P2-P0)

P0

P1

P´1
P´0

P2

-(P2-P1)
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Catmull-Rom splineCatmull-Rom spline

• Advantage of Catmull-Rom 
splines: fast and simple 
computations

• Disadvantage: tangent 
vector is not this flexible: 
for example, all curves 
below have same tangent in 
Pi 

Pi-1

Pi

P´i

Pi+1-Pi-1

Pi+1

Qi
Ri
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Catmull-Rom splineCatmull-Rom spline

• A simple alternative is to 
compute the tangent at the 
point as the ⊥ of  the 
bisector of the angle formed 
by Pi-1-Pi and Pi+1-Pi

• Another modification is to 
not impose same tangent 
lenth at the points, but 
different lenghts on the two 
sides of the joint. 

• The tangent vectors can be 
scaled for example by the 
ratio of the distance 
between current point and 
former point and the 
distance between former 
and next point. 

• This obtains more 
„adaptable“ tangents, but 
trades also off C1 continuity

Pi-1

Pi
P´i

Pi+1-Pi Pi+1

Pi-1-Pi
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Four point formFour point form

• Suppose you have 4 points P0P1P2P3 and to want a cubic 
segment fitting through them. 

• Une can set up a linear system of equations through the 
points and solve

Pu =[u3 u2 u 1 ][m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33
][P0

P1

P2

P3
]

[P0

P1

P2

P3
]=[u0

3 u0
2 u0 1

u1
3 u1

2 u1 1
u2

3 u2
2 u2 1

u3
3 u3

2 u3 1
][m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33
][P0

P1

P2

P3
]
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Four point formFour point form

• In the case that you want the parameter values 
at the points to be (0,1/3,2/3,1), the matrix is

With this form it is difficult to join segments 
with C1 continuity

M=
1
2 [−9 27 −27 9

18 −45 36 −9
−11 18 −9 2

2 0 0 0 ]
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Blended parabolasBlended parabolas

• One other method is through blending two 
overlapping parabolas

• The blending is done by taking the first 3 points 
to define a parabola, then the 2nd, 3rd and 4th 
point to define a second parabola, and then 
linearly interpolate the parabolas

• This is the resulting matrix for equally spaced 
points in parametric space

M=
1
2 [−1 3 −3 1

2 −5 4 −1
−1 0 1 0
0 2 0 0 ]
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Bezier curvesBezier curves

• Another way of defining a 
curve is to define it through 
two endpoints, which are 
interpolated, and two 
interior points, which 
control the shape.

• Bezier curves use the two 
additional control points to 
define the tangent

• P´(0)=3(P1-P0)
P´(1)=3(P3-P2)

• The corresponding matrix 
will be

which corresponds to the 
basic functions UM
    B0(t)=(1-t)3

    B1(t)=3t(1-t)2

    B2(t)=3t2(1-t) 

      B3(t)=t3

M=[−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0 ]
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Bezier curvesBezier curves
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Bezier curvesBezier curves

• In fact, Bezier curves can be of any order. The basis 
functions are 
                       Bin(t)=ti(1-t)n-in!/i!/(n-i)!
Where n is the degree and i=0,…,n.

• And the Bezier curve passing through the points P0,P1,…,
Pn is
                         Q(T)=Σi=0,…,nBin(t)Pi
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Bezier curves: De Casteljeau constructionBezier curves: De Casteljeau construction

• De Casteljeau came up with a geometric 
method for constructing a Bezier Curve

• The figure illustrates the construction of a point 
at t=1/3 for a curve of 3rd degree

P0

P1 P2

P3

1/3(P1 -P0)

1/3(P2 -P1)

1/3(P3 -P2)
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Uniform B-splinesUniform B-splines

• Uniform B-splines are most 
flexible type of curves, and 
also more difficult to 
understand

• They detach the order of the 
resulting polynomial from 
the number of control 
points. Suppose we have a 
number N of control points.

• Bezier curves are a special 
case of B-splines

• One starts by defining a uniform 
knot vector [0,1,2,…,N+k-1], 
where k is the degree of the B-
spline curve and n the number of 
control points. 

• Knots are uniformly spaced. 
• If k is the degree of the B-spline, 

then each single component of 
the B-spline will be defined 
between the consecutive control 
points Pi,Pi+1,…,Pi+k.

• The next bit will be defined 
between Pi+1,Pi+2,…,Pi+k+1
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Uniform B-splinesUniform B-splines

• The equation for k-order B-spline 
with N+1 control points 
(P0 , P1 , ... , PN ) is 

     P(t) = Σi=0,..,N Ni,k(t) Pi ,     
                      tk-1 <= t <= tN+1 

• In a B-spline each control point is 
associated with a basis function 
Ni,k which is given by the 
recurrence relations 
     Ni,k(t) = 
     Ni,k-1(t) (t - ti)/(ti+k-1 - ti) + 
     Ni+1,k-1(t) (ti+k - t)/(ti+k - ti+1), 
     Ni,1 = {1 if  ti <= t <=ti+1,    
                 0   otherwise } 

• Ni,k is a polynomial of order 
k (degree k-1) on each 
interval ti < t < ti+1. 

• k must be at least 2 (linear) 
and can be not more, than 
n+1 (the number of control 
points).

• A knot vector(t0,t1,..., tN+k) 
must be specified. Across 
the knots basis functions are 
C k-2 continuous. 
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Uniform B-splinesUniform B-splines

• B-spline basis functions as 
like as Bezier ones are 
nonnegative Ni,k ≥ 0 and 
have "partition of unity" 
property 
    Σi=0,N Ni,k(t) = 1,    
                tk-1 < t < tn+1 
therefore 
    0 ≤ Ni,k ≤ 1. 

• Since Ni,k = 0 for 
      t ≤ ti or t ≥ ti+k, 

a control point Pi influences 
the curve only for ti < t < 
ti+k. 
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B-splinesB-splines

• Depending on the relative spaces 
between knots in parameter 
spaces, we can have uniform or 
non-uniform B-splines

• The shapes of the Ni,k basis 
functions are determined entirely 
by the relative spacing between 
the knots (t0 , t1 , ... , tN+k).

• Scaling or translating the knot 
vector has no effect on shapes of 
basis functions and B-spline.

• Knot vectors are generally of 3 
types:

– Uniform knot vectors are the 
vectors for which   
   ti+1 - ti = const,   
e.g. [0,1,2,3,4,5]. 

– Open Uniform knot vectors are 
uniform knot vectors which have 
k-equal knot values at each end: 
    ti = t0 ,   i < k 
    ti+1-ti = const, k-1 ≤ i <n+1 
    ti = tk+n ,   i ≥ n+1 
eg[0,0,0,1,2,3,4,4,4](k=3,N=5)

– Non-uniform knot vectors. This 
is the general case, the only 
constraint is the standard ti≤ti+1 . 
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B-splinesB-splines

• The main properties of B-splines
– composed of (n-k+2) Bezier curves of k-order joined 

Ck-2 continuously at knot values (t0 , t1 , ... , tn+k) 

– each point affected by k control points 
– each control point affected k segments 
– inside convex hull 
– affine invariance 
– uniform B-splines don't interpolate deBoor control 

points (P0 , P1 , ... , PN ) 
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Uniform 3rd order B-splinesUniform 3rd order B-splines

• For a B-spline of order 
3, and the three control 
points Pi, Pi+1, Pi+2, Pi+3 
we have that the B-
spline can be written as 

• The curves defined by 
increasing i=0,...,N-3 
will define a C2-
continuous curve 

Pu =[u3 u2 u 1 ] 1
6 [−1 3 −3 1

3 −6 3 0
−3 0 3 0
1 4 1 0 ][

P i

Pi1

Pi2

Pi3
]
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Uniform B-splinesUniform B-splines
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Bezier and B-spline curvesBezier and B-spline curves
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B-splines: multiple knotsB-splines: multiple knots

• Knots can be made to 
coincide to obtain cusps 
and passing through a 
desired point
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Uniform B-splines: examplesUniform B-splines: examples

• Linear (N=3,k=2)

• Quadratic (N=3,k=3)

• Cubic (N=3,k=4)

• Closed (N=5,k=4)

•   For a given order k, uniform B-splines are shifted copies of one another 
since all the knots are equispaced 
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NURBSNURBS

• Stands for non-uniform rational B-splines
– Non-uniform: knots are not at same distance
– Rational: it‘s a fraction, with B-splines at the 

numerator and denominator

• Advantages: one can express circular arcs with 
NURBS

• Disadvantages: lots of computational effort
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NURBSNURBS

• Recall, that the B-spline is 
weighted sum of its control 
points 
    P(t) = Σi=0,..,N Ni,k(t) Pi ,    
              tk-1 ≤ t ≤ tN+1   
and the weights Ni,k have the 
"partition of unity" property 
    Σi=0,..,N Ni,k(t) = 1 . 

• As weights Ni,k depend on the 
knot vector only, it is useful to 
add to every control point one 
more weight wi which can be set 
independently 
P(t)= 
Σi=0,..,NwiNi,k(t)Pi/Σi=0,..,NwiNi,k(t) .

• Increasing a weight wi 
makes the point more 
influence and attracts the 
curve to it. 

• The denominator in the 2nd 
equation normalizes 
weights, so we will get the 
1st equation if we set 
wi = const for all i. 

• Full weights wiNi,k satisfy 
the "partition of unity" 
condition again. 
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Global vs local controlGlobal vs local control

• Depending on the curve formulation, moving a control 
point can have different effects 
– Local control: in this case the effect of the movement is 

limited in its influence along the curve
– Global control: moving a point redefines the whole curve

• Local control is the most desirable for manipulating a 
curve

• Almost all of the piecewise defined curves have local 
control

• Only exception: Hermite curves enforcing C2 continuity
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Modeling with splinesModeling with splines

• 3D Splines can be used to 
represent object boundaries 
by piecewise defined 
„patches“ joined at their 
definition edges so that they 
are continuous at the joins, 
like a „patchwork“

• Splines are very flexible in 
shape modeling

• But what is behind spline 
patches?
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BRep representation: patchesBRep representation: patches

• Here the idea is to find 
families of piecewise 
parametric functions that 
allow a good control on 
shape 

• Patches are joined at the 
edges so as to achieve the 
desired continuity

• Each patch is represented in 
parametric space
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BRep representation: patchesBRep representation: patches

• C0 continuity
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Spline patchesSpline patches

• A point Q on a patch is the tensor product of 
parametric functions defined by control points
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Spline patchesSpline patches

• A point Q on any patch is defined by multiplying 
control points by polynomial blending functions

Qu , v =UM [P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44
]M T V T

• What about M then? M describes the blending 
functions for a parametric curve of third degree
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Spline patchesSpline patches

M B− spline=[−1/6 1 /2 −1/2 1/6
1/2 −1 1/2 0
−1/2 0 1/2 0
1 /6 2/3 1/6 0 ] M Bezier=[−1 3 −3 1

3 −6 3 0
−3 3 0 0
1 0 0 0 ]
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Spline patchesSpline patches

• Third order patches allow 
the generation of free form 
surfaces, and easy 
controllability of the shape

• Why third order functions?
– Because they are the minimal 

order curves allowing 
inflection points

– Because they are the minimal 
order curves allowing to 
control the curvature (= 
second order derivative)
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+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++ 

End
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