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The 3D spaceThe 3D space

• Remember from CG? 
– We had a 3D space, and
– Right handed axes, with their 

units
• Of course one could choose also 

a left-handed coordinate system
• Further on, remember that one 

could make coincide the x axis 
with the x axis of the screen, and 
the y axis with the UP or DOWN 
direction of the screen side

• Which one one uses is 
indifferent, as long as it is 
consistent throughout
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TransformationsTransformations

• Remember we had homogenous coordinates, 
with                  

 [x y z] →[x y z 1]
[a b c d] →[a/d b/d c/d]

• And basic transformations:

– Translations

– Scaling

T=[1 0 0 d x

0 1 0 d y

0 0 1 d z

0 0 0 1
]

S=[s x 0 0 0
0 s y 0 0
0 0 s z 0
0 0 0 1

]
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TransformationsTransformations

– Rotations:

– In general, we would have:

                                      , where 

R z=[cos −sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1 ]

Rx=[1 0 0 0
0 cos −sin  0
0 sin cos 0
0 0 0 1 ] Ry=[cos  0 sin 0

0 1 0 0
−sin 0 cos 0

0 0 0 1 ]

T=[a11 a12 a12 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1
] [a11 a12 a12 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1
]

rotation translation
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Multiple transformationsMultiple transformations

• Advantage of transformation matrices: one can 
combine them by simply multiplying the 
corresponding matrices
     P´=M1P, P´´= M2P´   => P´´= M1M2P

• This way one can precompute once and for all 
the transformation matrix and apply it to all 
points to be transformed

• Note: matrix multiplication is non commutative
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Rotating axes to a desired orientationRotating axes to a desired orientation

• Problem: Given a coordinate system
x y z rotate it to a desired orientation
so it coincides with x´y´z´

• This is easy to solve: one has to
find a 3x3 matrix M so that
  `x´=Mx, y´=My, z´=Mz

thus                                , so

transforms an object in the xyz coords into the 
coords x´y´z´ 

• Note: x´x=length of projection of x´on x

x

y

z x´

y´

z´

M=[ x ´ x y ´ x z ´ x

x ´ y y ´ y z ´ y

x ´ z y ´ z z ´ z
] M=[ x ´ x y ´ x z ´ x 0

x ´ y y ´ y z ´ y 0
x ´ z y ´ z z ´ z 0
0 0 0 1

]
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Camera descriptionCamera description

Clipping planes

Distance to
view plane,

alternatively 
field of view

Window in 
image plane

VUP

PRP

VPN

FOV
CW

VRP



22. Okt 2008  

Perspective projection (to screen)Perspective projection (to screen)

• The transformation 
P(x,y,z) -> Pp(xp,yp,0) is performed by 
multiplying with the matrix Mper:

=> perspective transforms are 4x4 matrices too 

P p=M per P=[1 0 0 0
0 1 0 0
0 0 0 0

0 0 −1
d

1 ]⋅[ x
y
z
1 ]=[

x
y
0

1−z
d
]
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Representing object orientationRepresenting object orientation

• How do I represent best the position and 
orienta-tion of a object in space so as to „move“ 
it in time?

• A transformation matrix

will always be the result of the successive 
application of a 3x3 rotation matrix and of a 
translation (if the body is rigid)

T=[a11 a12 a12 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1
]

rotation translation
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Representing object orientationRepresenting object orientation

• Thus,

where

which means, one can consider the 
rotation separate from the translation to 
compute and anim.

T=[a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 1

][1 0 0 b14

0 1 0 b24

0 0 1 b34

0 0 0 1
]

b1=
a14

a11a14a12a24a13 a34

b2=
a24

a21a14a22 a24a23 a34

b3=
a14

a31 a14a32a24a33 a34
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x´´

Representing object orientationRepresenting object orientation

• Suppose that I defined two key 
positions of a rigid body, and that 
I want to compute the equal steps 
between the two positions to 
compute the animation 
(each key position been defined 
by a Rotation-translation pair)

• For the translation part, it seems 
to be easy to interpolate between 
the positions....but the rotation?

• Direct interpolation does 
not work, because the 
resulting interpolation 
matrices will not be 
normalized....

• But there ARE alternative 
methods to do this:
– Fixed angle
– Euler angle
– Axis angle
– Quaternions

x

y

z

y´

x´

z´

y´´

z´´
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Fixed angle representationFixed angle representation

• Angles used to rotate 
around fixed axes

• One can rotate first around 
one main axis, then the 
second and then the third

• As long as one keeps 
always the same order, one 
should be fine

• But, if you apply 
consequently those, the 
second rotation will 
influence back the first 
rotation

• This effect is called 
gimbal lock

• The same problem 
makes interpolation 
between key positions a 
problem sometimes

• The resulting rotations 
will make the object 
swing out of the desired 
rotating plane 
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Euler angle representationEuler angle representation

• Here the axes of 
rotation are on the local 
coordinate system of 
the object

• Also here, the order of the 
rotations is indifferent

• In fact, this method is very 
similar to fixed axes, and 
has same advantages and 
disadvantages

• Euler‘s rotation theorem:  
any orientation can be 
derived from another by 
ONE rotation around a 
particular axis

x

y

z

Yaw

Pitch

Roll

y

x

z
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Euler angle representationEuler angle representation

• Thus, given an object, 
any orientation can be 
represented with
– An angle
– An axis, i.e. a vector

• This can be used by 
using vector variations 
and angle intervals for 
computing the 
interpolation function

• Reasoning on vector 
interpolation and axis 
interpolation is much 
easier

x

y

z

Yaw

Pitch

Roll

y

x

z
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QuaternionsQuaternions

• This is the better approach 
to do interpolation of 
intermediate orientations 
when the object has 3 DOF

• A quaternion is a 4-tuple of 
real numbers [a,b,c,d].

• Equivalently, it is a pair 
[s,v] of a scalar s and a 3D 
vector v.

• More, it can be defined as
w + xi + yj + zk (where i2 = 
j2 = k2 = -1 and ij = k = -ji 
with real w, x, y, z) 

• On quaternions one 
defines two operations:
– Addition:

[s1,v1]+ [s2,v2]=
    [s1+s2,v1+v2]

– Multiplication: 
 [s1,v1]⋅[s2,v2]=
      [s1⋅s2-v1• v2, 
       s1⋅v2+s2⋅v1 +v1× v2]

– Note that  multiplication 
is associative, but NOT 
commutative ⇒ q1q2≠
q2q1
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Quaternions: definitionsQuaternions: definitions

• Units: 
– Additive: [0,0]
– Multiplicative: 

[1,0]=[1,0,0,0]
• Let v=[x,y,z]. 

Inverse:
– q-1=[s,v]-1=(1/║q║)2⋅[s,-v],

where
 ║q║=(s2+║v║)1/2

• Obviously, qq-1=[1,0,0,0]

• A point in 3D space can be 
also represented as the 
quaternion [0.v]. 
– or, alternatively, a vector 

from the origin 
• Property: 

[0,v1]⋅[0,v2]=
 [0,v1 × v2] iff v1 × v2=0

• Def: Unit-length quaternion 
is a quaternion q such that 
║q║=1.

• Obviously ∀q, q/║q║ is a 
unit length quaternion
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Rotating vectors through quaternionsRotating vectors through quaternions

• Consider a vector [0,v], and consider a 
quaternion q:
– The rotated vector v´ of v through the quaternion q is 

the vector
        v´=Rotq(v)= q⋅v⋅q-1

– A sequence of rotations can be chained:
Rotp(Rotq(v))= q(p⋅v⋅p-1)⋅q-1

= (q⋅p)⋅v⋅(p-1⋅q)-1= Rotpq(v)

– Note that:
Rot-1(Rot(v))= v
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Why is it called rotation?Why is it called rotation?

• The quaternion form of a 
rotation encodes axis-angle 
information. 

• Let q=[θ,x,y,z] be a unit 
length quaternion. 

• The following equation 
shows the unit 
representation of a rotation 
of an angle θ about the axis 
of rotation v=(x,y,z)
q=Rot[θ,(x,y,z)]=
       [cos(θ/2),sin(θ/2)⋅ 
(x,y,z)]=
       [cos(θ/2),sin(θ/2)⋅ v]=
 

• Converting from angle and 
axis notation to quaternion 
notation involves therefore 
two trigonometric 
operations, as well as 
several multiplies and 
divisions. 

• Notice that a quaternion and 
its negation [-s,-v] produce 
the same rotation (to prove 
it, simply write the formula 
here on the left for –q and 
you will see that the 
negative terms will 
disappear)
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From Euler angles to quaternionsFrom Euler angles to quaternions

• Converting Euler angles into 
quaternions is a similar process

• just have to be careful that 
operations are performed in 
correct order. 

• For example, let's say that a plane 
in a flight simulator first performs 
a yaw, then a pitch, and finally a 
roll. 

• One can represent this combined 
quaternion rotation as 
q = qyaw qpitch qroll where: 
qroll = [cos (y/2), (sin(y/2), 0, 0)] 
qpitch=[cos (q/2), (0, sin(q/2), 0)] 
qyaw = [cos(f /2), (0, 0, sin(f /2)] 

• The order in which the 
multiplications are done is 
important. 

• Quaternion multiplication is not 
commutative (due to the vector 
cross product that's involved). 

• In other words, changing the 
order in which you rotate an 
object around various axes can 
produce different resulting 
orientations, and therefore, the 
order is important. 
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From quaternions to a rotation matrixFrom quaternions to a rotation matrix

• Converting from a rotation 
matrix to a quaternion 
representation is a bit more 
difficult

• Conversion between a unit 
quaternion and a rotation 
matrix can be specified as 

• It's very difficult to specify a 
rotation directly using 
quaternions. It's best to store your 
character's or object's orientation 
as a Euler angle and convert it to 
quaternions before you start 
interpolating. 

• It's much easier to increment 
rotation around an angle, after 
getting the user's input, using 
Euler angles (that is, roll = roll + 
1), than to directly recalculate a 
quaternion. 

• If the quaternions are not unit 
quaternions, additional 
multiplications and a division are 
required in the computation. 

Rm=[1−2y2−2x2 2 xy2 wz 2 xz−2wy
2 xy−2 wz 1−2x2−2z2 2 yz−wx
2 xz2wy 2 yz−2 wx 1−2x2−2y2 ]
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From quaternions to a rotation matrixFrom quaternions to a rotation matrix

• One of the most useful aspects of 
quaternions is the fact that it's 
easy to interpolate between two 
quaternion orientations and 
achieve smooth animation. 

• To demonstrate why this is so, 
let's look at an example using 
spherical rotations. 

• Spherical quaternion 
interpolations follow the shortest 
path (arc) on a four-dimensional, 
unit quaternion sphere. 

• Since 4D spheres are difficult to 
imagine, we'll use a 3D sphere to 
visualize quaternion rotations and 
interpolations. 

• Let's assume that the initial 
orientation of a vector emanating 
from the center of the sphere can 
be represented by q1 and the final 
orientation of the vector is q3. 
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From quaternions to a rotation matrixFrom quaternions to a rotation matrix

• The figure shows that if we have 
an intermediate position q2, the 
interpolation from q1→q2→q3 
will not necessarily follow the 
same path as the q1→q3 
interpolation. 

• The initial and final orientations 
are the same, but the arcs are not. 

• Quaternions simplify the 
calculations required when 
compositing rotations. For 
example, if you have two or more 
orientations represented as 
matrices, it is easy to combine 
them by multiplying two 
intermediate rotations. 
           R = R2R1 

• Note: R2R1 means rotation R1 
followed by a rotation R2 
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+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++ 

End
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