
22. Okt 2008

Animation Systems:Animation Systems:
2. Basics2. Basics

Charles A. Wüthrich
CogVis/MMC, Faculty of Media
Bauhaus-University Weimar

22. Okt 2008

The 3D spaceThe 3D space

• Remember from CG?
– We had a 3D space, and
– Right handed axes, with their

units
• Of course one could choose also

a left-handed coordinate system
• Further on, remember that one

could make coincide the x axis
with the x axis of the screen, and
the y axis with the UP or DOWN
direction of the screen side

• Which one one uses is
indifferent, as long as it is
consistent throughout

22. Okt 2008

TransformationsTransformations

• Remember we had homogenous coordinates,
with

 [x y z] →[x y z 1]
[a b c d] →[a/d b/d c/d]

• And basic transformations:

– Translations

– Scaling

T=[1 0 0 d x

0 1 0 d y

0 0 1 d z

0 0 0 1
]

S=[s x 0 0 0
0 s y 0 0
0 0 s z 0
0 0 0 1

]

22. Okt 2008

TransformationsTransformations

– Rotations:

– In general, we would have:

 , where

R z=[cos −sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1]

Rx=[1 0 0 0
0 cos −sin  0
0 sin cos 0
0 0 0 1] Ry=[cos  0 sin 0

0 1 0 0
−sin 0 cos 0

0 0 0 1]

T=[a11 a12 a12 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1
] [a11 a12 a12 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1
]

rotation translation

22. Okt 2008

Multiple transformationsMultiple transformations

• Advantage of transformation matrices: one can
combine them by simply multiplying the
corresponding matrices
 P´=M1P, P´´= M2P´ => P´´= M1M2P

• This way one can precompute once and for all
the transformation matrix and apply it to all
points to be transformed

• Note: matrix multiplication is non commutative

22. Okt 2008

Rotating axes to a desired orientationRotating axes to a desired orientation

• Problem: Given a coordinate system
x y z rotate it to a desired orientation
so it coincides with x´y´z´

• This is easy to solve: one has to
find a 3x3 matrix M so that
 `x´=Mx, y´=My, z´=Mz

thus , so

transforms an object in the xyz coords into the
coords x´y´z´

• Note: x´x=length of projection of x´on x

x

y

z x´

y´

z´

M=[x ´ x y ´ x z ´ x

x ´ y y ´ y z ´ y

x ´ z y ´ z z ´ z
] M=[x ´ x y ´ x z ´ x 0

x ´ y y ´ y z ´ y 0
x ´ z y ´ z z ´ z 0
0 0 0 1

]

22. Okt 2008

Camera descriptionCamera description

Clipping planes

Distance to
view plane,

alternatively
field of view

Window in
image plane

VUP

PRP

VPN

FOV
CW

VRP

22. Okt 2008

Perspective projection (to screen)Perspective projection (to screen)

• The transformation
P(x,y,z) -> Pp(xp,yp,0) is performed by
multiplying with the matrix Mper:

=> perspective transforms are 4x4 matrices too

P p=M per P=[1 0 0 0
0 1 0 0
0 0 0 0

0 0 −1
d

1]⋅[x
y
z
1]=[

x
y
0

1−z
d
]

22. Okt 2008

Representing object orientationRepresenting object orientation

• How do I represent best the position and
orienta-tion of a object in space so as to „move“
it in time?

• A transformation matrix

will always be the result of the successive
application of a 3x3 rotation matrix and of a
translation (if the body is rigid)

T=[a11 a12 a12 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1
]

rotation translation

22. Okt 2008

Representing object orientationRepresenting object orientation

• Thus,

where

which means, one can consider the
rotation separate from the translation to
compute and anim.

T=[a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 1

][1 0 0 b14

0 1 0 b24

0 0 1 b34

0 0 0 1
]

b1=
a14

a11a14a12a24a13 a34

b2=
a24

a21a14a22 a24a23 a34

b3=
a14

a31 a14a32a24a33 a34

22. Okt 2008

x´´

Representing object orientationRepresenting object orientation

• Suppose that I defined two key
positions of a rigid body, and that
I want to compute the equal steps
between the two positions to
compute the animation
(each key position been defined
by a Rotation-translation pair)

• For the translation part, it seems
to be easy to interpolate between
the positions....but the rotation?

• Direct interpolation does
not work, because the
resulting interpolation
matrices will not be
normalized....

• But there ARE alternative
methods to do this:
– Fixed angle
– Euler angle
– Axis angle
– Quaternions

x

y

z

y´

x´

z´

y´´

z´´

22. Okt 2008

Fixed angle representationFixed angle representation

• Angles used to rotate
around fixed axes

• One can rotate first around
one main axis, then the
second and then the third

• As long as one keeps
always the same order, one
should be fine

• But, if you apply
consequently those, the
second rotation will
influence back the first
rotation

• This effect is called
gimbal lock

• The same problem
makes interpolation
between key positions a
problem sometimes

• The resulting rotations
will make the object
swing out of the desired
rotating plane

22. Okt 2008

Euler angle representationEuler angle representation

• Here the axes of
rotation are on the local
coordinate system of
the object

• Also here, the order of the
rotations is indifferent

• In fact, this method is very
similar to fixed axes, and
has same advantages and
disadvantages

• Euler‘s rotation theorem:
any orientation can be
derived from another by
ONE rotation around a
particular axis

x

y

z

Yaw

Pitch

Roll

y

x

z

22. Okt 2008

Euler angle representationEuler angle representation

• Thus, given an object,
any orientation can be
represented with
– An angle
– An axis, i.e. a vector

• This can be used by
using vector variations
and angle intervals for
computing the
interpolation function

• Reasoning on vector
interpolation and axis
interpolation is much
easier

x

y

z

Yaw

Pitch

Roll

y

x

z

22. Okt 2008

QuaternionsQuaternions

• This is the better approach
to do interpolation of
intermediate orientations
when the object has 3 DOF

• A quaternion is a 4-tuple of
real numbers [a,b,c,d].

• Equivalently, it is a pair
[s,v] of a scalar s and a 3D
vector v.

• More, it can be defined as
w + xi + yj + zk (where i2 =
j2 = k2 = -1 and ij = k = -ji
with real w, x, y, z)

• On quaternions one
defines two operations:
– Addition:

[s1,v1]+ [s2,v2]=
 [s1+s2,v1+v2]

– Multiplication:
 [s1,v1]⋅[s2,v2]=
 [s1⋅s2-v1• v2,
 s1⋅v2+s2⋅v1 +v1× v2]

– Note that multiplication
is associative, but NOT
commutative ⇒ q1q2≠
q2q1

22. Okt 2008

Quaternions: definitionsQuaternions: definitions

• Units:
– Additive: [0,0]
– Multiplicative:

[1,0]=[1,0,0,0]
• Let v=[x,y,z].

Inverse:
– q-1=[s,v]-1=(1/║q║)2⋅[s,-v],

where
 ║q║=(s2+║v║)1/2

• Obviously, qq-1=[1,0,0,0]

• A point in 3D space can be
also represented as the
quaternion [0.v].
– or, alternatively, a vector

from the origin
• Property:

[0,v1]⋅[0,v2]=
 [0,v1 × v2] iff v1 × v2=0

• Def: Unit-length quaternion
is a quaternion q such that
║q║=1.

• Obviously ∀q, q/║q║ is a
unit length quaternion

22. Okt 2008

Rotating vectors through quaternionsRotating vectors through quaternions

• Consider a vector [0,v], and consider a
quaternion q:
– The rotated vector v´ of v through the quaternion q is

the vector
 v´=Rotq(v)= q⋅v⋅q-1

– A sequence of rotations can be chained:
Rotp(Rotq(v))= q(p⋅v⋅p-1)⋅q-1

= (q⋅p)⋅v⋅(p-1⋅q)-1= Rotpq(v)

– Note that:
Rot-1(Rot(v))= v

22. Okt 2008

Why is it called rotation?Why is it called rotation?

• The quaternion form of a
rotation encodes axis-angle
information.

• Let q=[θ,x,y,z] be a unit
length quaternion.

• The following equation
shows the unit
representation of a rotation
of an angle θ about the axis
of rotation v=(x,y,z)
q=Rot[θ,(x,y,z)]=
 [cos(θ/2),sin(θ/2)⋅
(x,y,z)]=
 [cos(θ/2),sin(θ/2)⋅ v]=

• Converting from angle and
axis notation to quaternion
notation involves therefore
two trigonometric
operations, as well as
several multiplies and
divisions.

• Notice that a quaternion and
its negation [-s,-v] produce
the same rotation (to prove
it, simply write the formula
here on the left for –q and
you will see that the
negative terms will
disappear)

22. Okt 2008

From Euler angles to quaternionsFrom Euler angles to quaternions

• Converting Euler angles into
quaternions is a similar process

• just have to be careful that
operations are performed in
correct order.

• For example, let's say that a plane
in a flight simulator first performs
a yaw, then a pitch, and finally a
roll.

• One can represent this combined
quaternion rotation as
q = qyaw qpitch qroll where:
qroll = [cos (y/2), (sin(y/2), 0, 0)]
qpitch=[cos (q/2), (0, sin(q/2), 0)]
qyaw = [cos(f /2), (0, 0, sin(f /2)]

• The order in which the
multiplications are done is
important.

• Quaternion multiplication is not
commutative (due to the vector
cross product that's involved).

• In other words, changing the
order in which you rotate an
object around various axes can
produce different resulting
orientations, and therefore, the
order is important.

22. Okt 2008

From quaternions to a rotation matrixFrom quaternions to a rotation matrix

• Converting from a rotation
matrix to a quaternion
representation is a bit more
difficult

• Conversion between a unit
quaternion and a rotation
matrix can be specified as

• It's very difficult to specify a
rotation directly using
quaternions. It's best to store your
character's or object's orientation
as a Euler angle and convert it to
quaternions before you start
interpolating.

• It's much easier to increment
rotation around an angle, after
getting the user's input, using
Euler angles (that is, roll = roll +
1), than to directly recalculate a
quaternion.

• If the quaternions are not unit
quaternions, additional
multiplications and a division are
required in the computation.

Rm=[1−2y2−2x2 2 xy2 wz 2 xz−2wy
2 xy−2 wz 1−2x2−2z2 2 yz−wx
2 xz2wy 2 yz−2 wx 1−2x2−2y2]

22. Okt 2008

From quaternions to a rotation matrixFrom quaternions to a rotation matrix

• One of the most useful aspects of
quaternions is the fact that it's
easy to interpolate between two
quaternion orientations and
achieve smooth animation.

• To demonstrate why this is so,
let's look at an example using
spherical rotations.

• Spherical quaternion
interpolations follow the shortest
path (arc) on a four-dimensional,
unit quaternion sphere.

• Since 4D spheres are difficult to
imagine, we'll use a 3D sphere to
visualize quaternion rotations and
interpolations.

• Let's assume that the initial
orientation of a vector emanating
from the center of the sphere can
be represented by q1 and the final
orientation of the vector is q3.

C
ou

rte
sy

ht

tp
://

w
w

w
.g

am
as

ut
ra

.c
om

22. Okt 2008

From quaternions to a rotation matrixFrom quaternions to a rotation matrix

• The figure shows that if we have
an intermediate position q2, the
interpolation from q1→q2→q3
will not necessarily follow the
same path as the q1→q3
interpolation.

• The initial and final orientations
are the same, but the arcs are not.

• Quaternions simplify the
calculations required when
compositing rotations. For
example, if you have two or more
orientations represented as
matrices, it is easy to combine
them by multiplying two
intermediate rotations.
 R = R2R1

• Note: R2R1 means rotation R1
followed by a rotation R2

C
ou

rte
sy

ht

tp
://

w
w

w
.g

am
as

ut
ra

.c
om

22. Okt 2008

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

C
op

yr
ig

ht
 (c

) 1
98

8
IL

M

