
Computer Graphics:
9 - Global Illumination - Raytracing

Prof. Dr. Charles A. Wüthrich,

Fakultät Medien, Medieninformatik

Bauhaus-Universität Weimar

caw AT medien.uni-weimar.de

 Global Illumination Models

• Light reflected by a surface
is dependent
– on the surface itself,
– the direct light sources, and
– light which is reflected by

the other surfaces on the
environment towards the
current surface
(Reflections)

• Note that in local models
the third component is
modeled through ambient
light

• Kajiya introduced an
equation describing this

Local vs. Global illumination

• Until now, we have only
computed light
behaviour as local
illumination, except
– Shadows
– Environment mapping

• Obviously, the behaviour
of light is much richer,
and it includes
– Reflections
– Refractions
– More complex effects

(fog, colour bleeding...)

Complex illumination examples

Complex illumination examples

Complex illumination examples

What have we done

• Until now, we have done
the following:
– Projection,
– compute hidden

surfaces,
– Add shading,
– Add shadows

• This we have done
starting from the objects
in space.

What have we done

• Until now, we have done
the following:
– Projection,
– compute hidden

surfaces,
– Add shading,
– Add shadows

• This we have done
starting from the objects
in space.

• Why not think at
rendering from the point
of view of pixels?

Ray tracing

• Let us start thinking:
– My viewpoint is behind

the image plane
– The image plane is

made of pixels
– What if I shoot a straight

line (ray) from the
viewpoint through a
pixel center into my 3D
scene?

– My ray would intercept
objects...

Pij ray

screen

screen

Ray tracing

Pij ray

screen

screen

• Let us start thinking:
– My viewpoint is behind the

image plane
– The image plane is made of

pixels
– What if I shoot a straight

line (ray) from the viewpoint
through a pixel center into
my 3D scene?

– My ray would meet
objects...

– ... And accumulate light,
depending of which objects
(polygons) are intercepted...

– And depending on their light
reflection properties
(including transparency)

Ray casting

• We cast a ray through
the viewpoint and the
pixel centers of the
screen

• We intersect if with the
polygons of the scene

• We sort the polygons
intercepted by the ray
according to their depth

• We paint the pixel with
the color of the closest
polygon!

Pij ray

screen

screen

Ray casting

• We cast a ray through
the viewpoint and the
pixel centers of the
screen

• We intersect if with the
polygons of the scene

• We sort the polygons
intercepted by the ray
according to their depth

• We paint the pixel with
the color of the closest
polygon...

• ... obtaining HIDDEN
SURFACE for free!

Pij ray

screen

screen

Ray casting

• We cast a ray through the
viewpoint and the pixel
centers of the screen

• We intersect if with the
polygons of the scene

• We sort the polygons
intercepted by the ray
according to their depth

• We paint the pixel with the
color of the closest
polygon...

• ...if transparent, we
accumulate along the ray
the light reflection
properties of the polys met..

• ...obtaining TRANSPARENCY!

Pij ray

screen

screen

Ray casting

• The rays passing
through the screen
are called primary
rays.

• And the method
raycasting
[Appel68]

Ray casting: intersections

• Equation of line through
– Viewpoint V=(xv,yv,zv)

– Pixel Pij=(xij,yij,zij):

• Sphere: substitute into
sphere equation and
solve system
– Eq. of sphere with centre

(xC,yC,zC) and radius r:
(x-xC)2+(y-yC)2-(z-zC)2=r2

– resulting eq. in t has to
be checked for existance
of solution r :={

x=xV+t (x ij− xV)

y= yV+t (y ij− yV)

z= zV+t (zij−zV)

Ray Casting: Intersections

• Boxes (parallel to axes),
delimited by planes parallel to axes (x=i)
– Compute intersections with all parallel planes (x,y,z)

dir.
– resolve WRT parameter t
– analyze intervals and check if they overlap

t0

t1

t2

t3

t0

t1

t2

t3

Ray casting: Intersections

• Triangle:
– My ray passes through the

viewpoint and the pixel, so
a point P on the ray can be
expressed as P=V+(Pij-V)t.

– The triangle points can be
viewed in baricentric
coordinates, so a point T on
the triangle would be
 T=T0+(T1-T0)+(T2-T0)

– By setting equal such
equations I compute the
intersection point:
 V+(Pij-V)t=T0+(T1-T0)+(T2-
T0)

– These are 3 equations in 3
unknowns t, 

ray

T0

T1

T2

V

Pij

Ray casting: Intersections

• Polygon:
Project on one major plane
(check for special cases)

• Use 2D point in polygon:
– Send ray towards polygon
– check number of

intersections (even or odd)

• Quadrics:
Use their equations and
solve against parameter
t

x

y

[x y z 1] [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

]=0

Ray tracing

• But now I can add other
effects!
– If I hit with a ray a surface

i can lookup if the part
being drawn is in shade

– By shooting a ray from the
impact point to the light
source I can check if there
are objects inbetween, this
getting shadows.

– Shadows are almost for
free!

– The rays to the light
source are secondary rays

– They are called shadow
rays

Ray tracing

• Shadows can be done in
a hard manner or a soft
manner (soft shadows)

• In case of area light
sources, one interpolates
linearly between total
occlusion and no
occlusion

Recursive raytracing: reflections

• When a polygon is
hit, reflections can
be computed by
sending a
secondary ray in
the environment
and computing ist
“reflected light
contribution” to the
color of the pixel.

• Optics laws are
used

• By accumulatng
recursively, one
can simulate
multiple reflections

Recursive raytracing: reflections

Recursive raytracing: refractions

• Similarly, one can
compute a
refraction ray
according to
Snell’s refraction
law sin ϑ i

sin ϑ t
=
η tλ
η iλ

I

L

R

T

i

t

N

Recursive raytracing: refractions

Stochastic raytracing

• In stochastic
raytracing, more
random rays are
chosen in a direction
interval around the
main reflection

• This allows with one
method:
– glossy reflections
– soft shadows
– antialiasing

• Also called
Montecarlo raytracing

Stochastic raytracing

Stochastic raytracing

• Stochastic raytracing
can also be used to
simulate the depth
of field of cameras
– Achieved by

introducing a focus
plane

– The focus plane for
rays blurs the image
on the image plane

– Send stochastic rays
to it to simulate blur

Stochastic raytracing

Depth of field

Path tracing

• On glossy surfaces
one can generate
random rays too (path
tracing) in order to
simulate diffuse
reflections
– Colour bleeding
– Caustics

• In bidirectional path
tracing multiple rays
are shot
– from the eye
– From light sources

• Photon mapping is
similar

Raytracing efficiency

• Raytracing is not very efficient
when it comes to simulating
caustics and bleeding.

• Every ray has to be
intersected with all scene
polygons
– At each intesection,

multiple rays are generated
– This leads to a huge number

of rays structured in a tree
– Such a tree has to be

generated for each pixel of
the screen

• Recursive generation also
implies a stop criterion is
needed for the generation of
rays

• When do I stop?
– rays do not hit any objects
– maximal tree depth is

reached (two mirrors)
– Ray contribution is

neglegible (ray damping)
(ex. 5%)

Raytracing speedups

• Note that each ray has to be
intersected with the whole
polygons in the environment

• There are speedups to avoid
computing loads of
intersections
– Bounding volumes: complex

objects are wrapped in
simple volumes (hulls) and
intersection ray-object is
done first on hull, only if hit
is available real intersection
is done

– Hierarchical bounding
volumes: bounding volumes
are done hierarchically
(clusters of objects)

– Octrees can be used to do
intersections, or space can
be partitioned in volume
units

Conclusion

• Interactive rates (>15fps) for raytracing are being
achieved by
– Implementing in clusters, and distributing rays to

processors
– Doing it on graphics cards, albeit only for raycasting

• Raytracing does model well reflections and refractions,
however it is still an incomplete instrument (no colour
bleeding from surfaces)

• Raytracing is suitable for parallel machines, and
computer clusters (highly parallelizable)

• Often, raytraced pictures are overloaded with Christmas
balls and mirrors (questionable aesthetics)

• Take your time to take a look at radiance page on
http://www.education.siggraph.org under coursware or
http://radsite.lbl.gov/radiance/framew.html

Examples

C
ou

rt
es

y
M

ar
ti

n
M

oe
ck

, S
ie

m
en

s
L

ig
ht

in
g,

 1
99

4

Examples
C

ou
rt

es
y

R
. M

c
F

ar
la

nd
, S

. R
O

ut
en

, U
. o

f
In

di
an

a

Examples

©
 1

99
4

by
 G

re
g

W
ar

d,
 S

ab
a

R
of

ch
ae

i

Kajiyas Rendering Equation

• James T. Kajiya, Siggraph '86

• x, x', x'' : Points in the environment
• I(x,x') : Light Intensity from x' to x

I (x , x ')=g (x , x ') [ε (x , x ')+∫
S

p(x , x ', x '') I (x ', x '')dx '']

Where
• g(x,x') : Visibility term (geometry factor)

– g(x,x')=0 if x,x' mutually invisible else g= 1/d(x,x')2

• (x,x') : Light emitted directly from x' to x
• (x,x',x'') : Reflection coefficient

– Intensity arriving in x, that has been originated at x''‚ and
reflected through x'

• The integral is made on all surfaces in the environment

I (x , x ')=g (x , x ') [ε (x , x ')+∫
S

ρ(x , x ', x '') I (x ', x '')dx '']

Kajiyas Rendering Equation

Kajiyas Rendering Equation

x

x'

I(x,x')

e(x,x')

(x,x',x'')

x''

x''

I (x , x ')=g (x , x ') [ε (x , x ')+∫
S

ρ(x , x ', x '') I (x ', x '')dx '']

I(x',x'') x''

x''

 Kajiyas Rendering Equation

• Notes:
– g(x,x')*(x,x') codes visibility information.

If x=Viewpoint it is hidden surface computations
– The rendering equation is computationally very

complex, the integral extends to all surfaces in the
environment

– In „partecipating media“, such as foggy
environments, the integral is done on all points of
the volume considered

– All Illumination Methods are in some ways solutions
to the Kajiya's equation

I (x , x ')=g (x , x ') [ε (x , x ')+∫
S

ρ(x , x ', x '') I (x ', x '')dx '']

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

	Computer Graphics: 9 - Global Illumination - Raytracing
	Global Illumination Models
	Local vs. Global illumination
	Complex illumination examples
	Slide 5
	Slide 6
	What have we done
	Slide 8
	Ray tracing
	Slide 10
	Ray casting
	Slide 12
	Slide 13
	Slide 14
	Ray casting: intersections
	Ray Casting: Intersections
	Ray casting: Intersections
	Slide 18
	Slide 19
	Slide 20
	Recursive raytracing: reflections
	Slide 22
	Recursive raytracing: refractions
	Slide 24
	Stochastic raytracing
	Slide 26
	Slide 27
	Slide 28
	Path tracing
	Raytracing efficiency
	Raytracing speedups
	Conclusion
	Examples
	Slide 34
	Slide 35
	Kajiyas Rendering Equation
	Slide 37
	Slide 38
	Kajiyas Rendering Equation
	PowerPoint Presentation

