

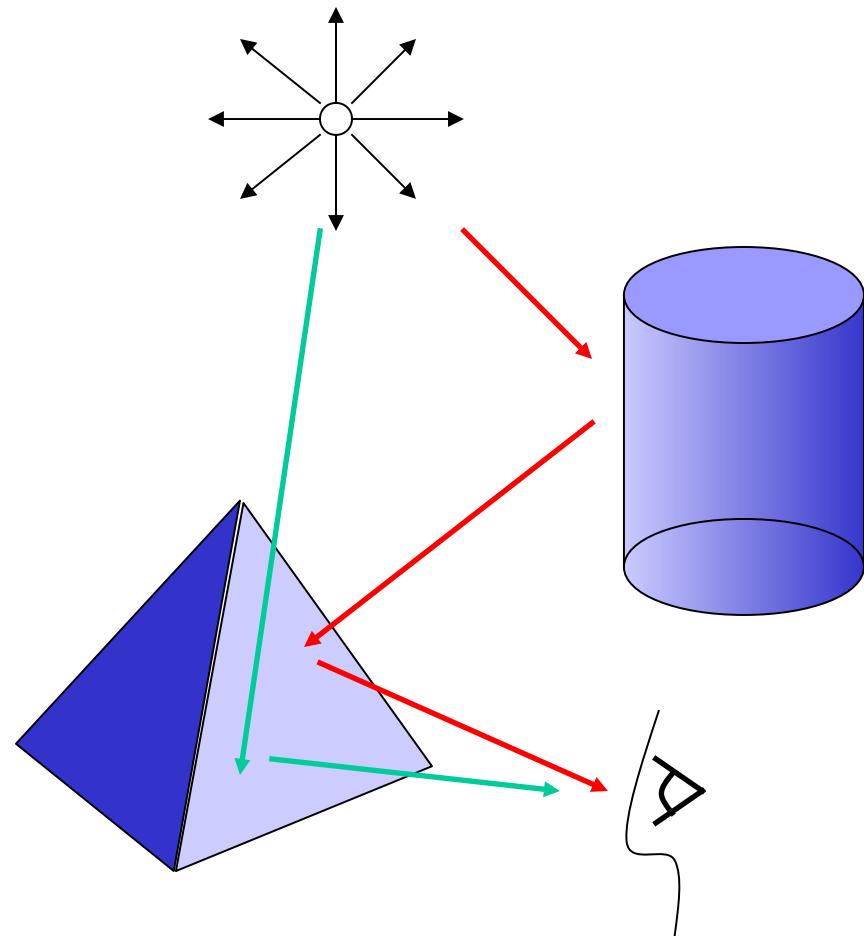
Computer Graphics:

9 - Global Illumination - Raytracing

Prof. Dr. Charles A. Wüthrich,
Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de

Global Illumination Models

- Light reflected by a surface is dependent
 - on the surface itself,
 - the direct light sources, and
 - light which is reflected by the other surfaces on the environment towards the current surface (Reflections)
- Note that in local models the third component is modeled through ambient light
- Kajiya introduced an equation describing this



Local vs. Global illumination

- Until now, we have only computed light behaviour as local illumination, except
 - Shadows
 - Environment mapping
- Obviously, the behaviour of light is much richer, and it includes
 - Reflections
 - Refractions
 - More complex effects (fog, colour bleeding...)

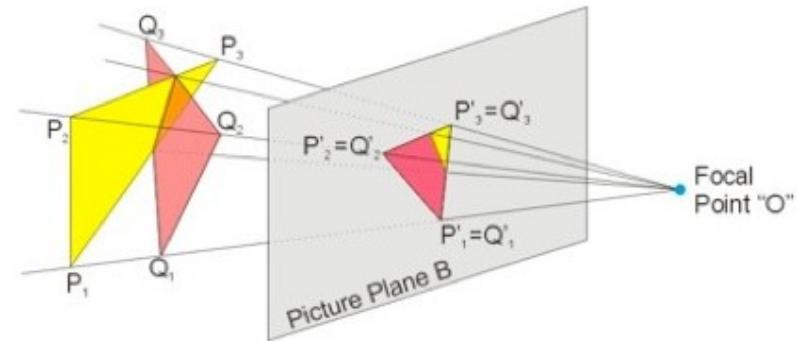
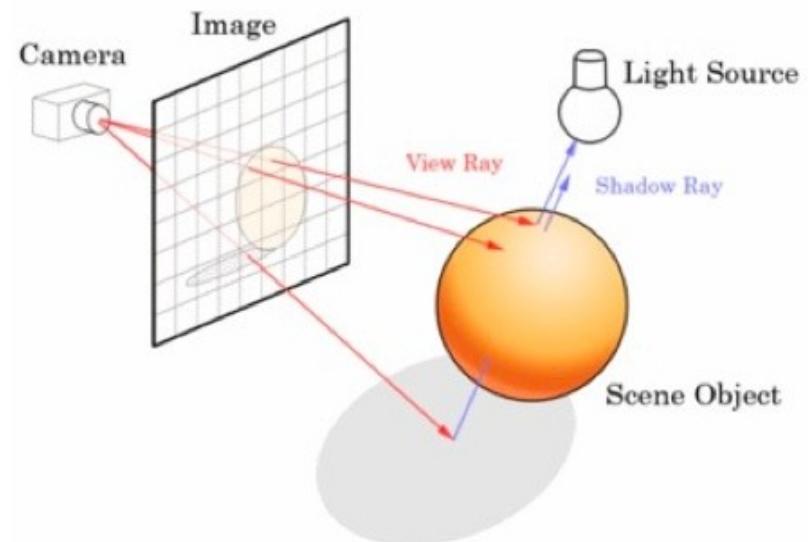
Complex illumination examples

Complex illumination examples

Complex illumination examples

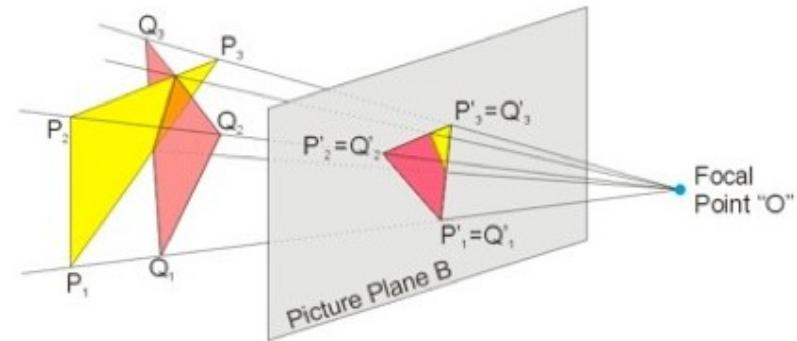
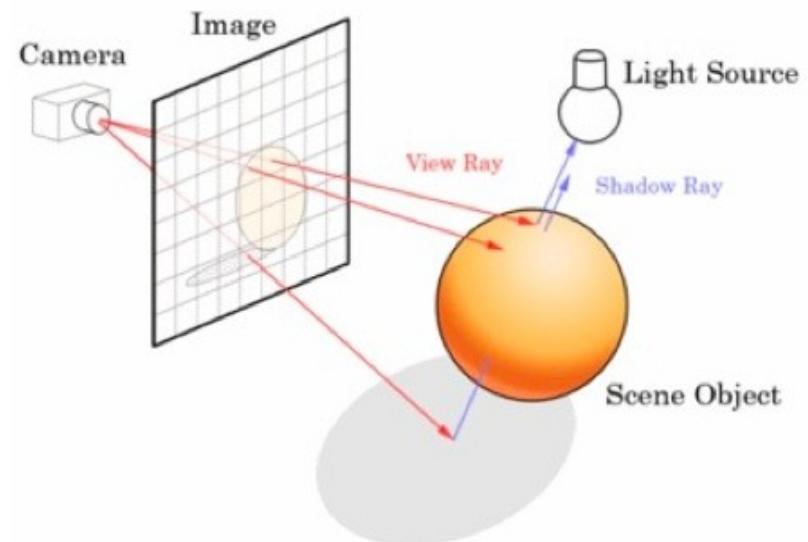
What have we done

- Until now, we have done the following:
 - Projection,
 - compute hidden surfaces,
 - Add shading,
 - Add shadows
- This we have done starting from the objects in space.



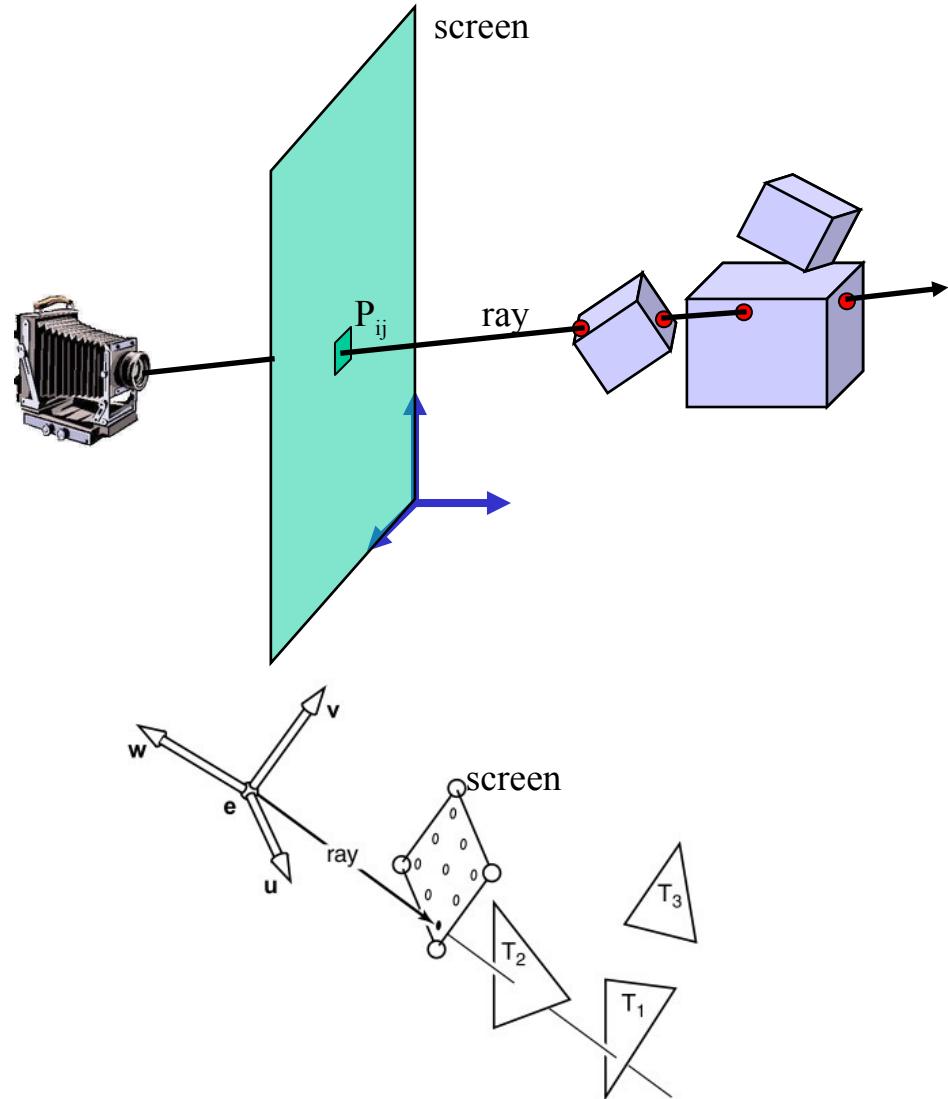
What have we done

- Until now, we have done the following:
 - Projection,
 - compute hidden surfaces,
 - Add shading,
 - Add shadows
- This we have done starting from the objects in space.
- Why not think at rendering from the point of view of pixels?



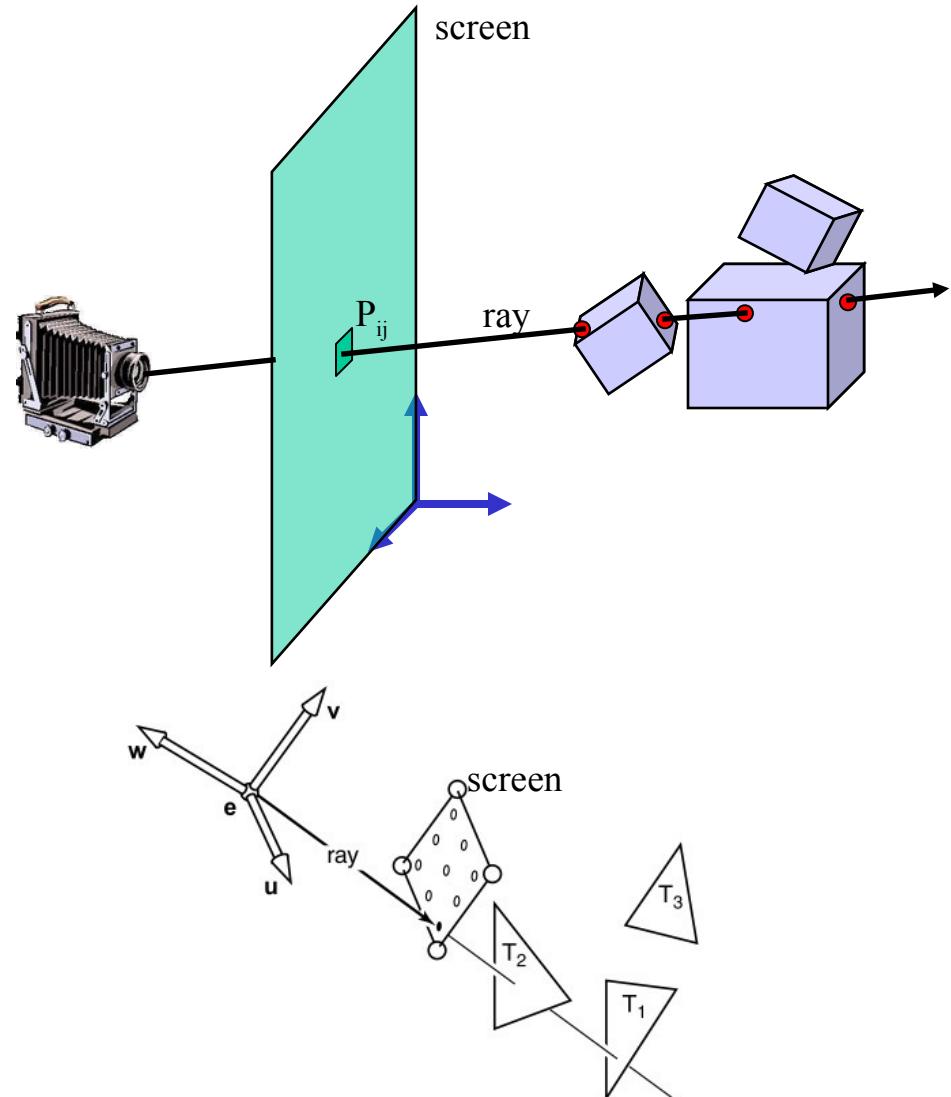
Ray tracing

- Let us start thinking:
 - My viewpoint is behind the image plane
 - The image plane is made of pixels
 - What if I shoot a straight line (ray) from the viewpoint through a pixel center into my 3D scene?
 - My ray would intercept objects...



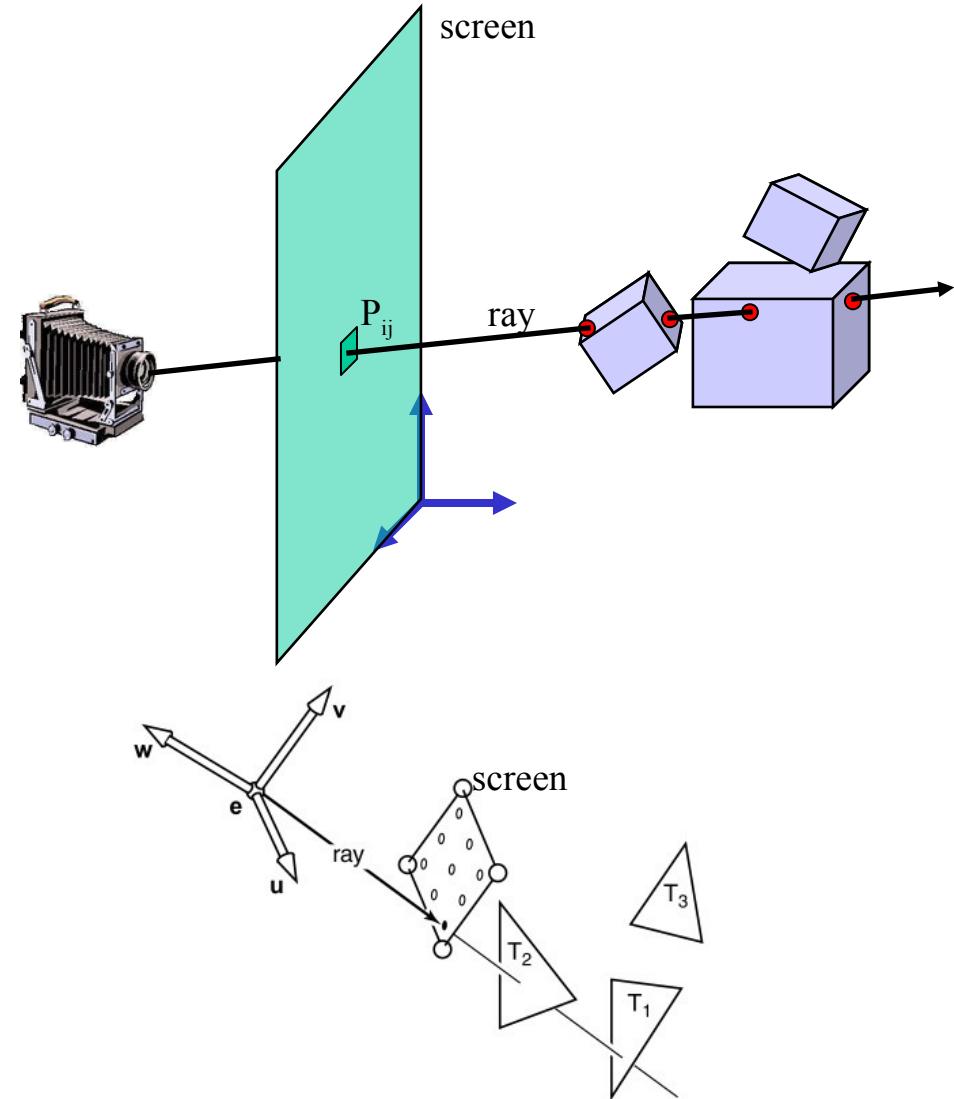
Ray tracing

- Let us start thinking:
 - My viewpoint is behind the image plane
 - The image plane is made of pixels
 - What if I shoot a straight line (ray) from the viewpoint through a pixel center into my 3D scene?
 - My ray would meet objects...
- ... And accumulate light, depending of which objects (polygons) are intercepted...
- And depending on their light reflection properties (including transparency)



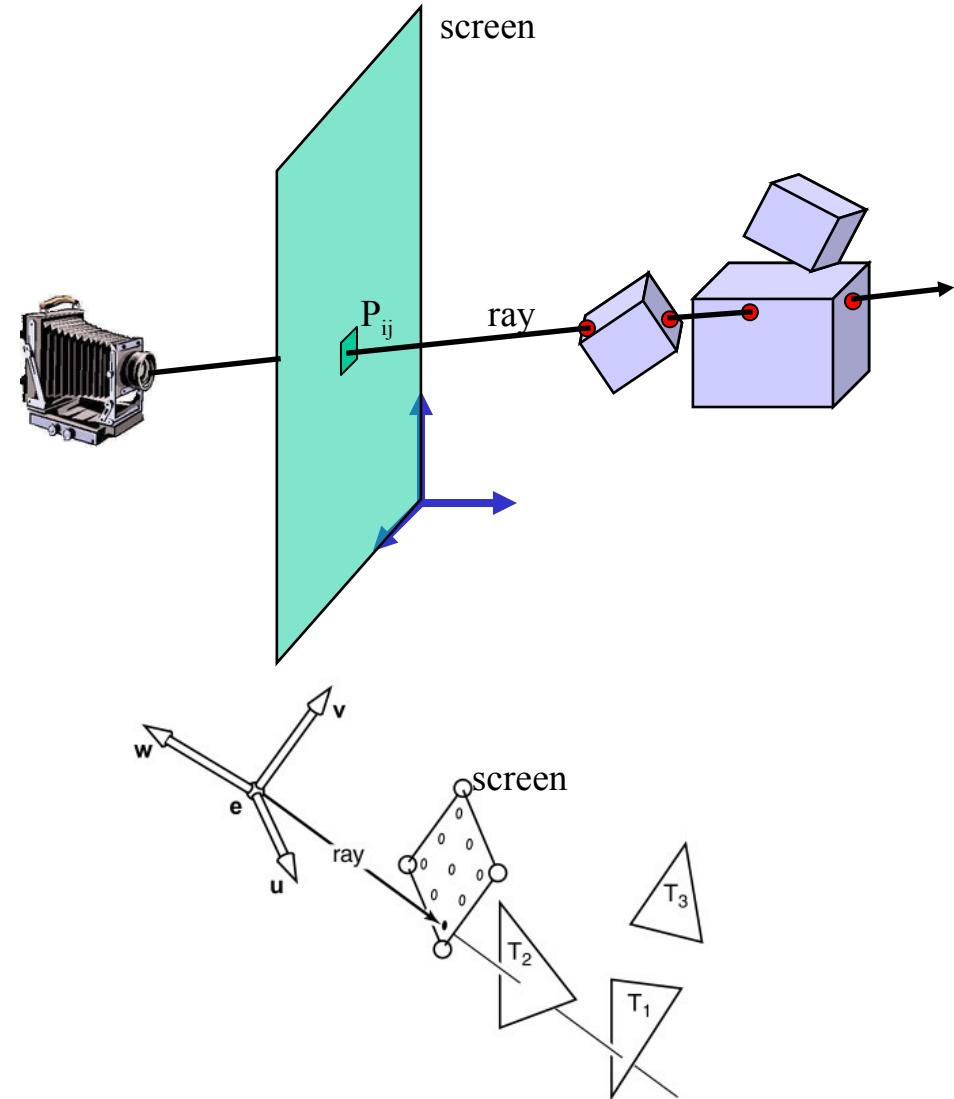
Ray casting

- We cast a ray through the viewpoint and the pixel centers of the screen
- We intersect it with the polygons of the scene
- We sort the polygons intersected by the ray according to their depth
- We paint the pixel with the color of the closest polygon!



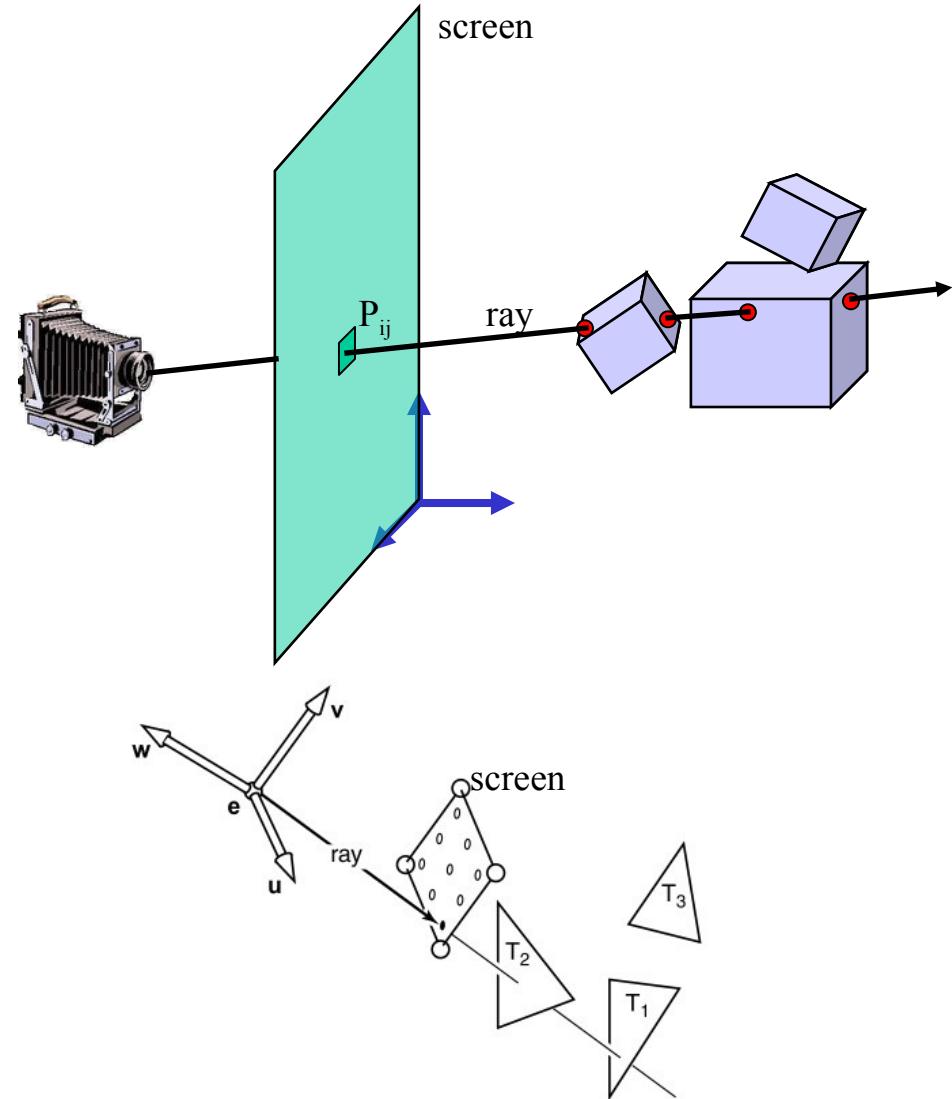
Ray casting

- We cast a ray through the viewpoint and the pixel centers of the screen
- We intersect it with the polygons of the scene
- We sort the polygons intersected by the ray according to their depth
- We paint the pixel with the color of the closest polygon...
- ... obtaining HIDDEN SURFACE for free!

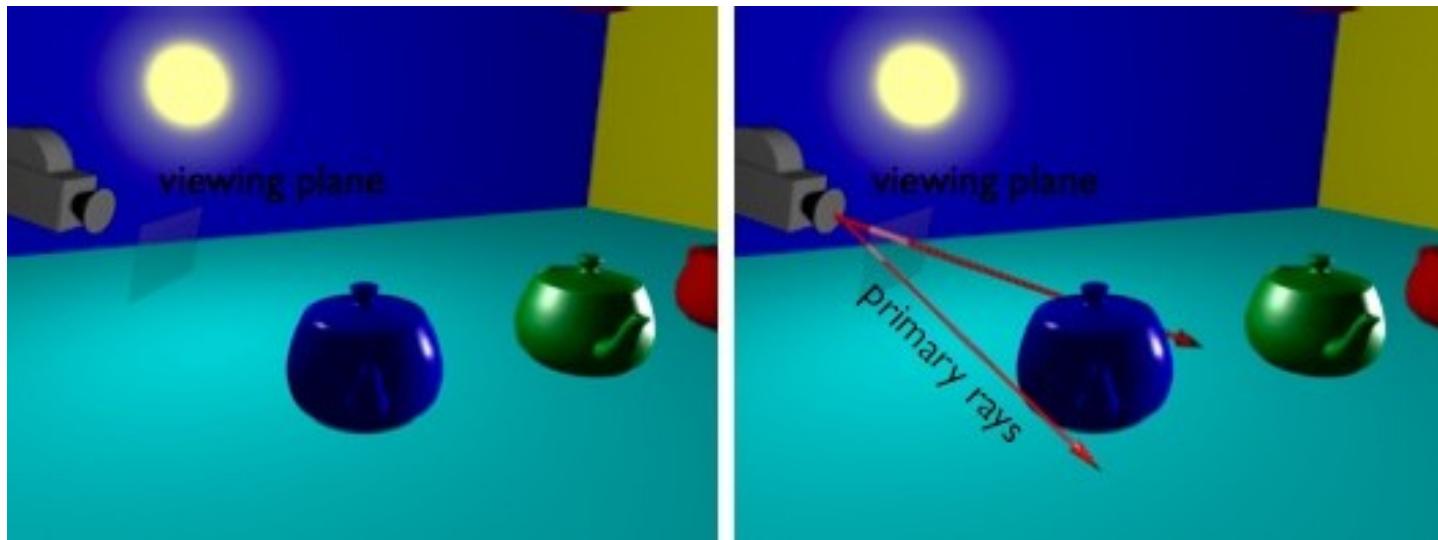


Ray casting

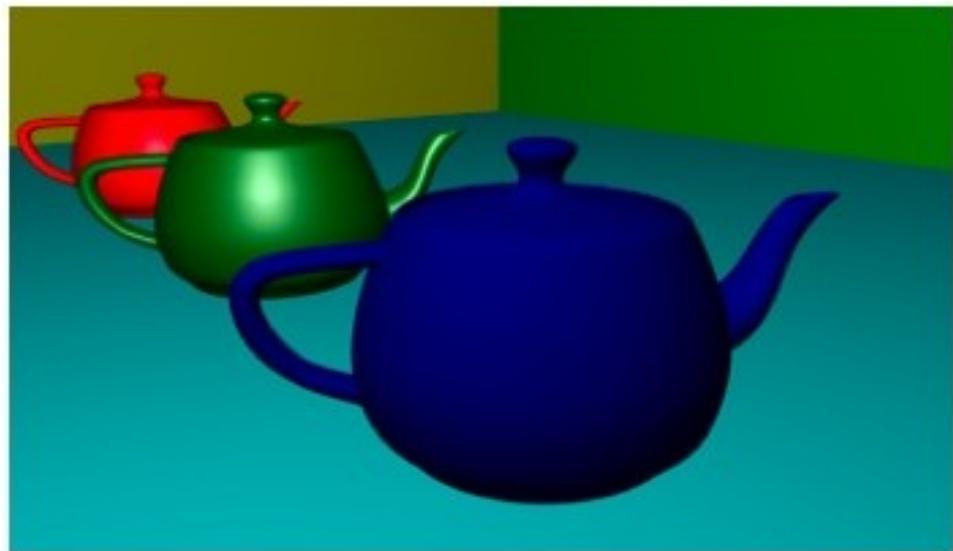
- We cast a ray through the viewpoint and the pixel centers of the screen
- We intersect if with the polygons of the scene
- We sort the polygons intercepted by the ray according to their depth
- We paint the pixel with the color of the closest polygon...
- ...if transparent, we *accumulate* along the ray the light reflection properties of the polys met..
- ...obtaining TRANSPARENCY!



Ray casting



- The rays passing through the screen are called *primary rays*.
- And the method *raycasting* [Appel68]



Ray casting: intersections

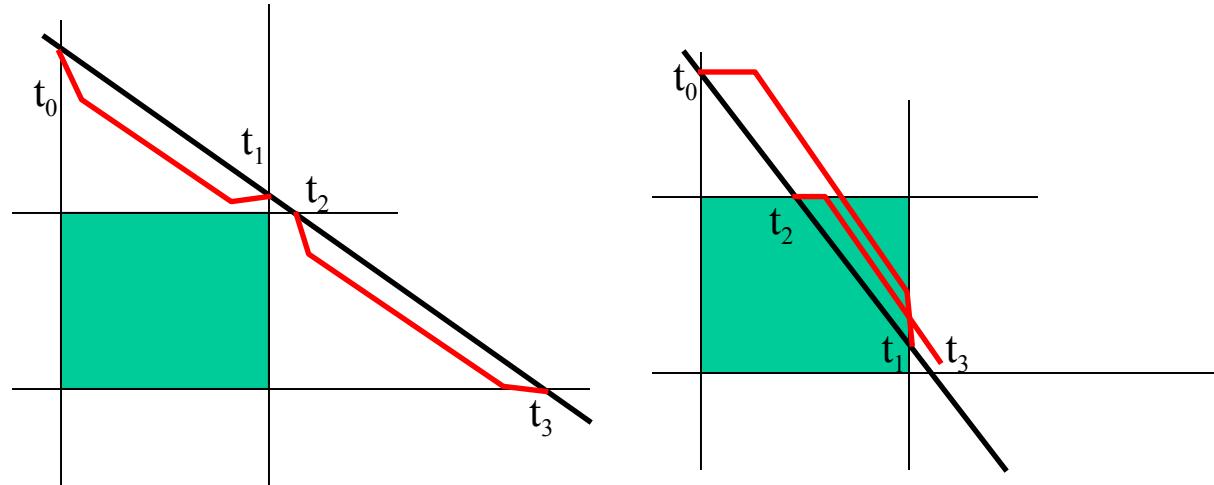
- Equation of line through
 - Viewpoint $V=(x_v, y_v, z_v)$
 - Pixel $P_{ij}=(x_{ij}, y_{ij}, z_{ij})$:

$$r := \begin{cases} x = x_V + t(x_{ij} - x_V) \\ y = y_V + t(y_{ij} - y_V) \\ z = z_V + t(z_{ij} - z_V) \end{cases}$$

- Sphere: substitute into sphere equation and solve system
 - Eq. of sphere with centre (x_c, y_c, z_c) and radius r :
$$(x-x_c)^2 + (y-y_c)^2 + (z-z_c)^2 = r^2$$
 - resulting eq. in t has to be checked for existence of solution

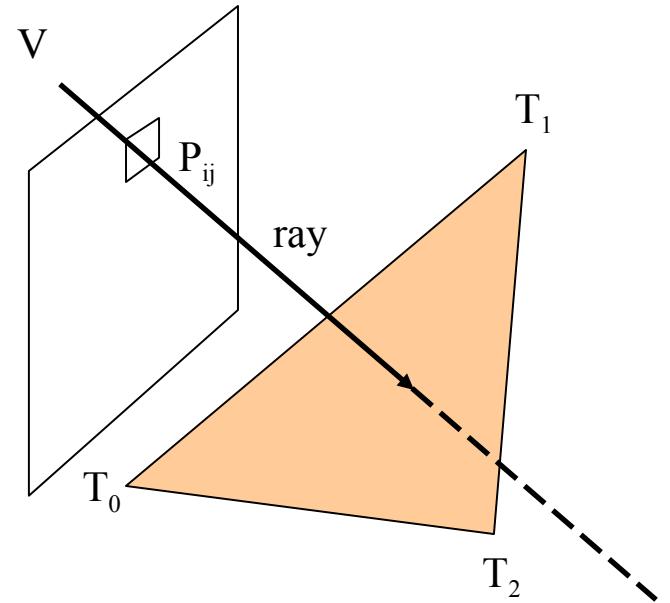
Ray Casting: Intersections

- Boxes (parallel to axes),
delimited by planes parallel to axes ($x=i$)
 - Compute intersections with all parallel planes (x,y,z dir.)
 - resolve WRT parameter t
 - analyze intervals and check if they overlap



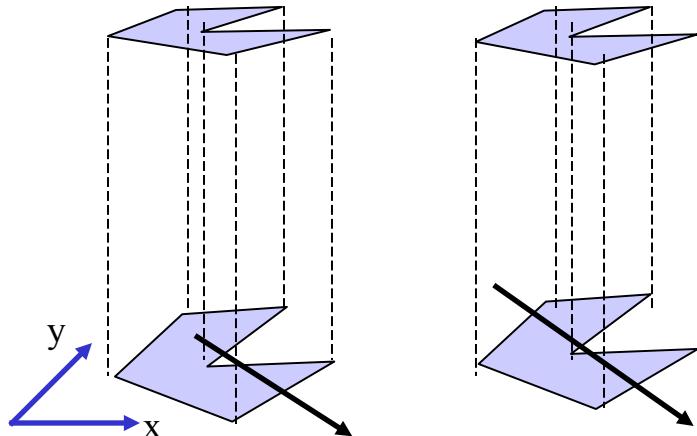
Ray casting: Intersections

- Triangle:
 - My ray passes through the viewpoint and the pixel, so a point P on the ray can be expressed as $P = V + (P_{ij} - V)t$.
 - The triangle points can be viewed in barycentric coordinates, so a point T on the triangle would be
$$T = T_0 + \beta(T_1 - T_0) + \gamma(T_2 - T_0)$$
 - By setting equal such equations I compute the intersection point:
$$V + (P_{ij} - V)t = T_0 + \beta(T_1 - T_0) + \gamma(T_2 - T_0)$$
 - These are 3 equations in 3 unknowns t, β , γ .



Ray casting: Intersections

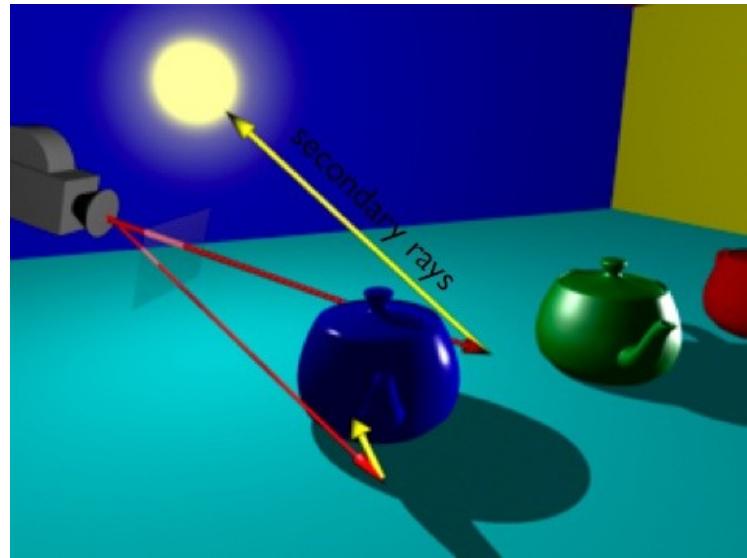
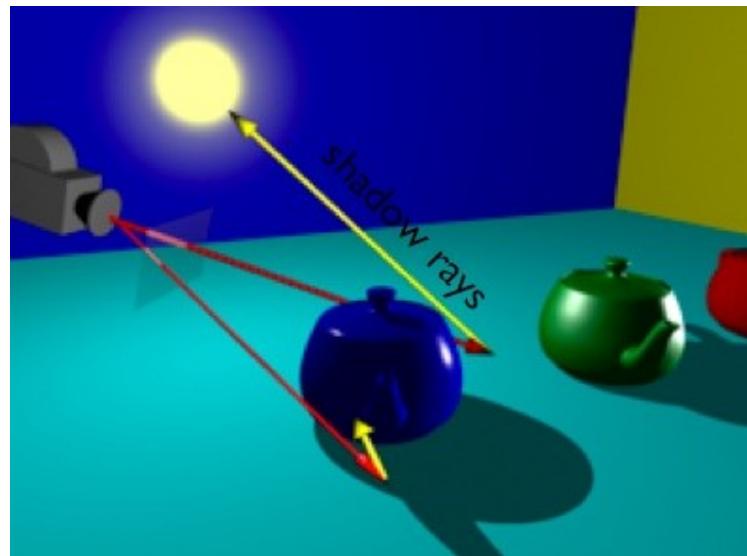
- Polygon:
Project on one major plane
(check for special cases)
- Use 2D point in polygon:
 - Send ray towards polygon
 - check number of intersections (even or odd)
- Quadrics:
Use their equations and solve against parameter t



$$\begin{bmatrix} x & y & z & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = 0$$

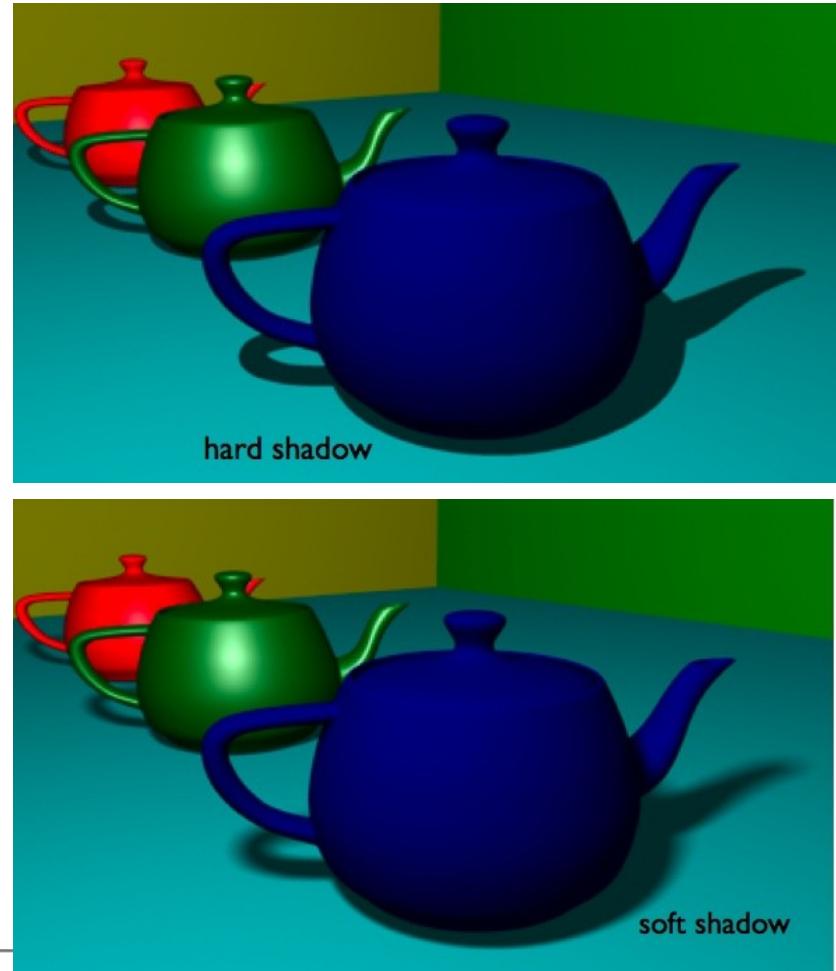
Ray tracing

- But now I can add other effects!
 - If I hit with a ray a surface i can lookup if the part being drawn is in shade
 - By shooting a ray from the impact point to the light source I can check if there are objects inbetween, this getting shadows.
 - *Shadows* are almost for free!
 - The rays to the light source are secondary rays
 - They are called shadow rays



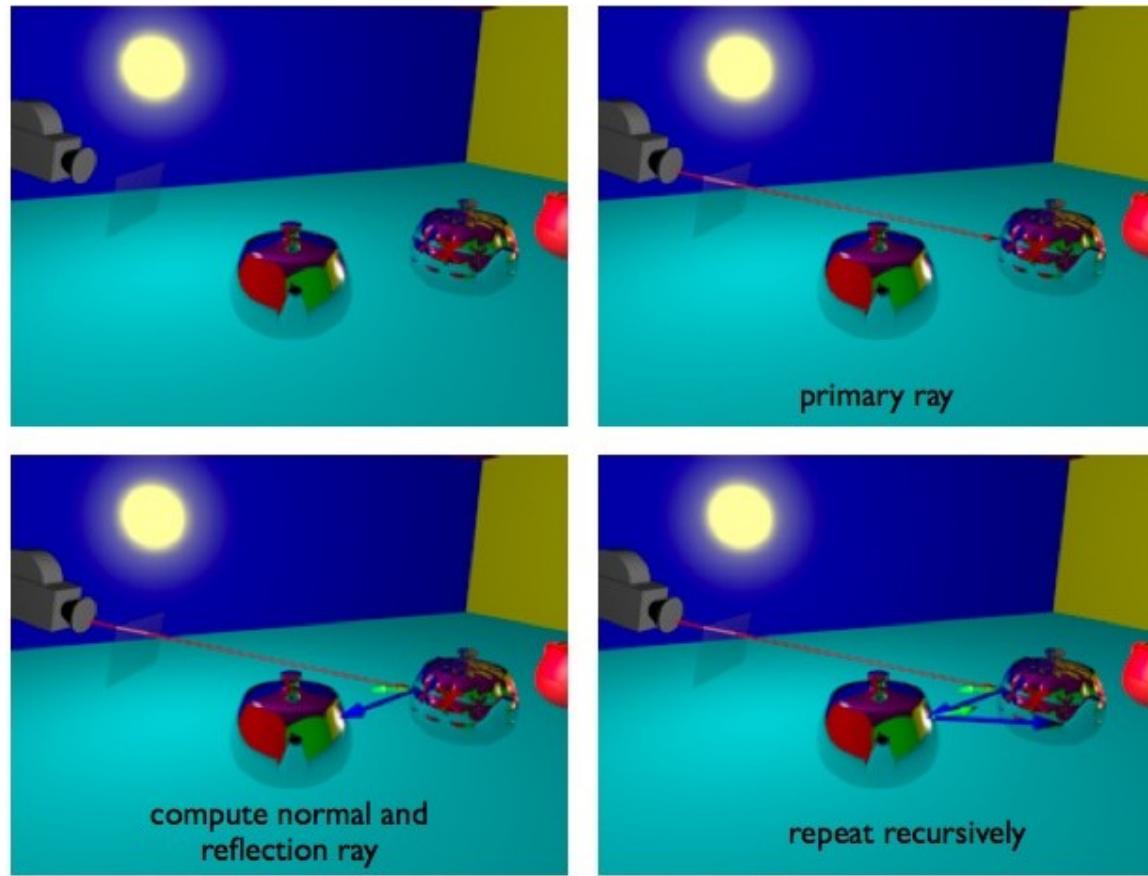
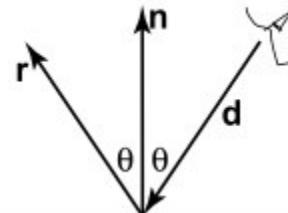
Ray tracing

- Shadows can be done in a hard manner or a soft manner (soft shadows)
- In case of area light sources, one interpolates linearly between total occlusion and no occlusion

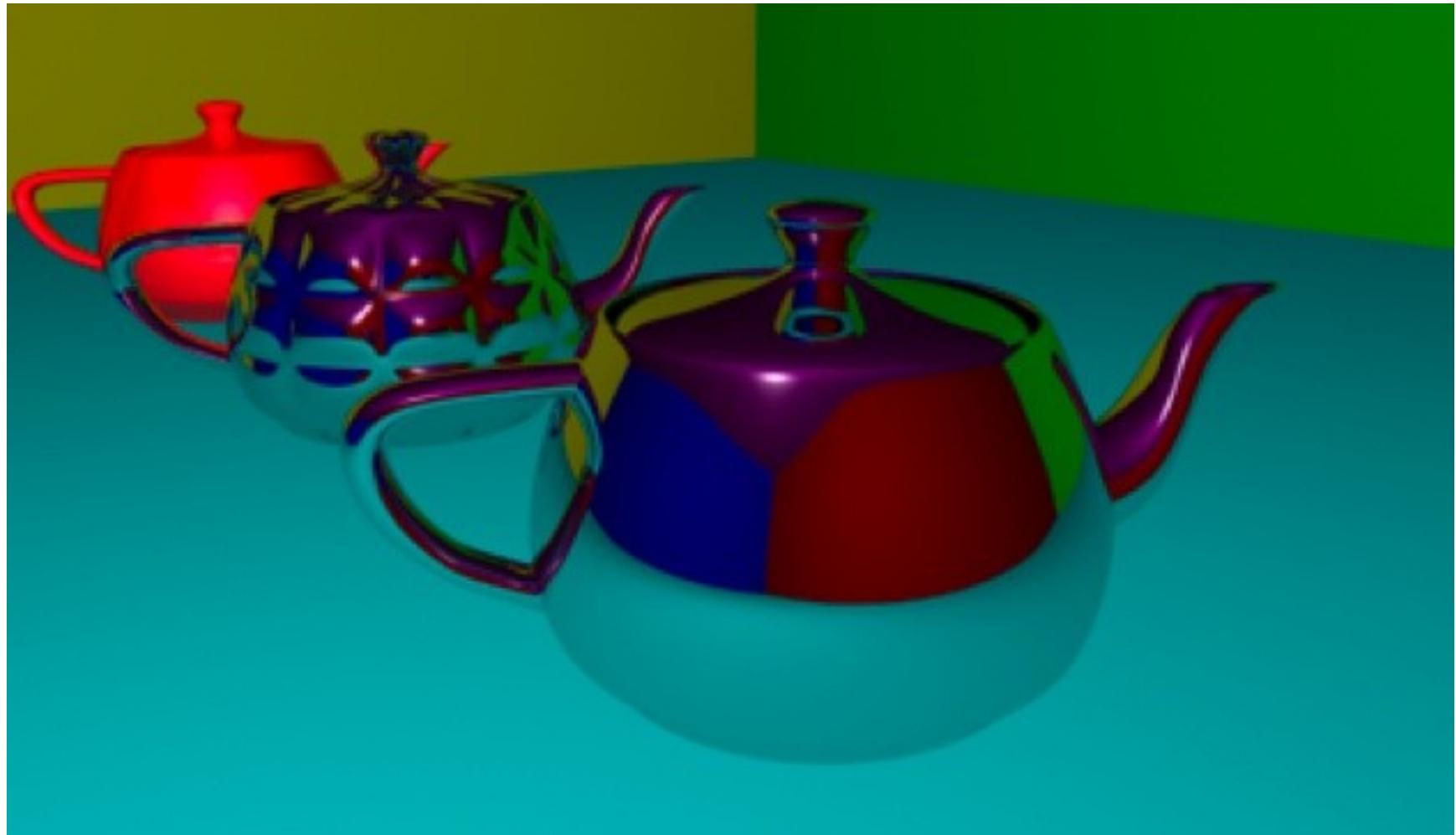


Recursive raytracing: reflections

- When a polygon is hit, reflections can be computed by sending a secondary ray in the environment and computing its “reflected light contribution” to the color of the pixel.
- Optics laws are used
- By accumulating recursively, one can simulate multiple reflections

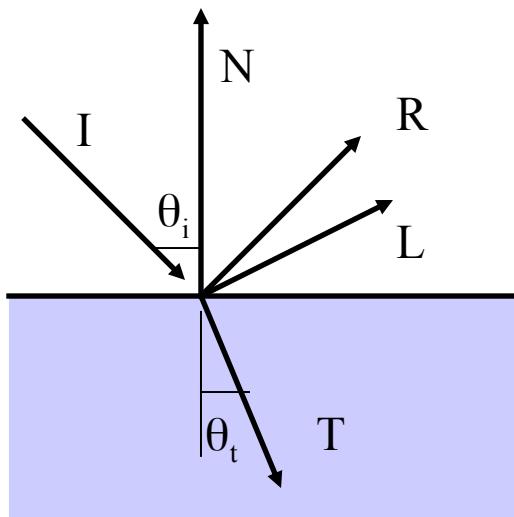
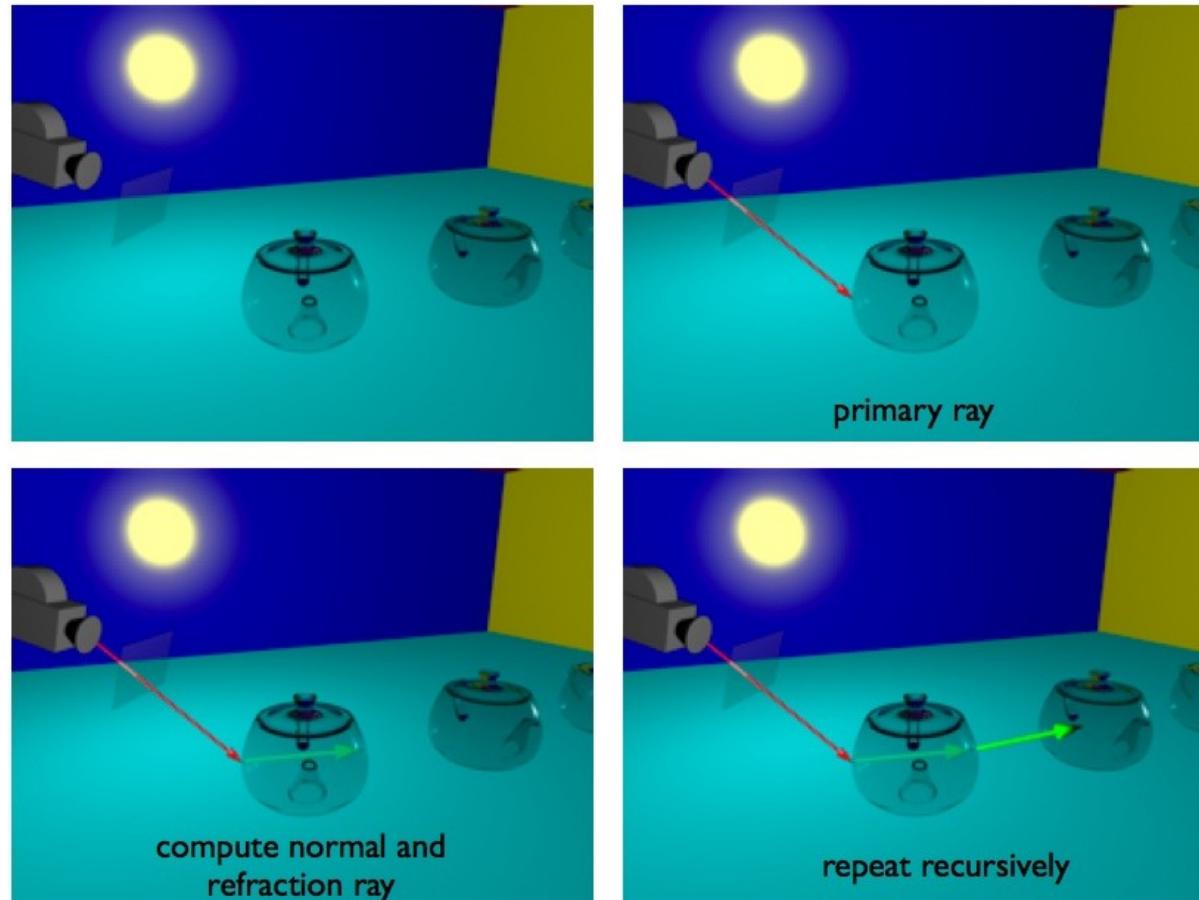


Recursive raytracing: reflections



Recursive raytracing: refractions

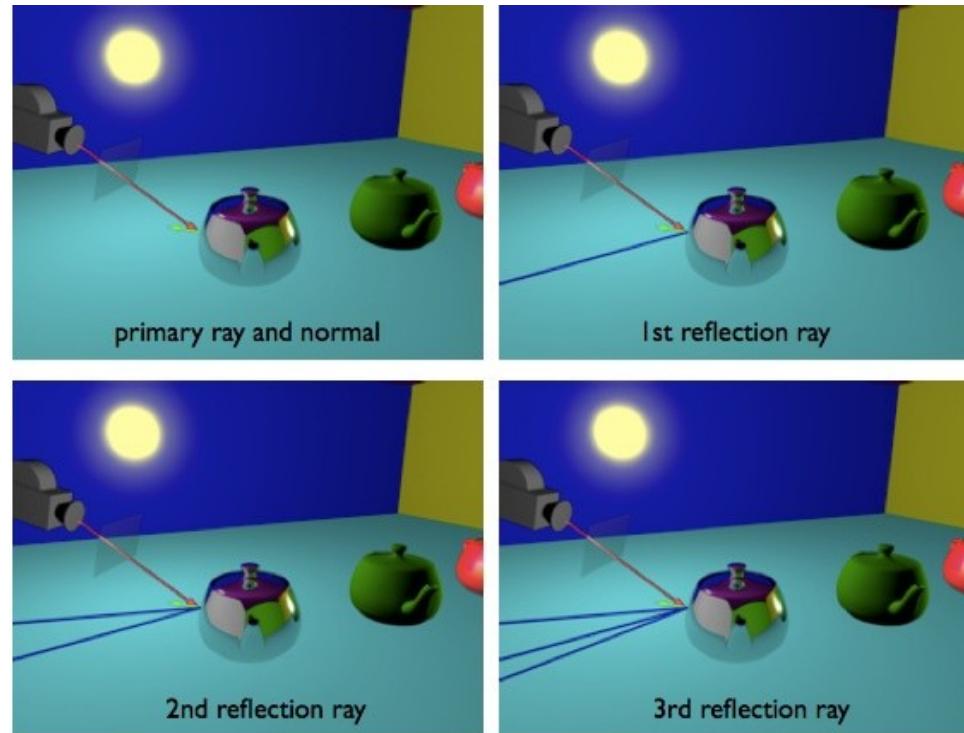
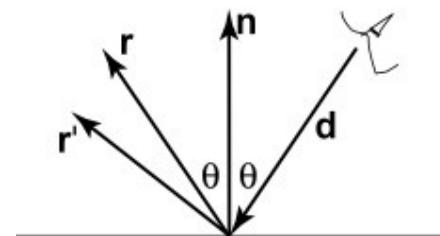
- Similarly, one can compute a refraction ray according to Snell's refraction law $\frac{\sin \vartheta_i}{\sin \vartheta_t} = \frac{\eta_{t\lambda}}{\eta_{i\lambda}}$



Recursive raytracing: refractions

Stochastic raytracing

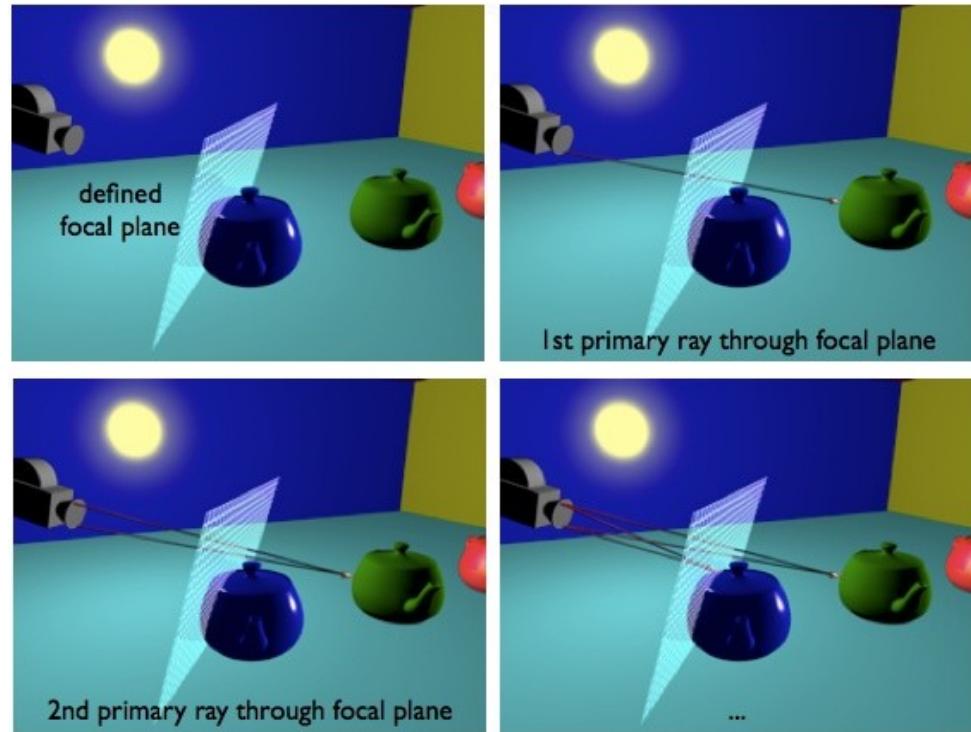
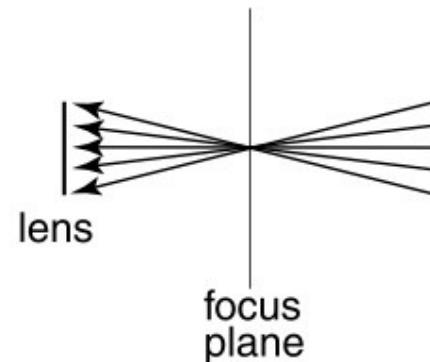
- In stochastic raytracing, more random rays are chosen in a direction interval around the main reflection
- This allows with one method:
 - glossy reflections
 - soft shadows
 - antialiasing
- Also called Montecarlo raytracing



Stochastic raytracing

Stochastic raytracing

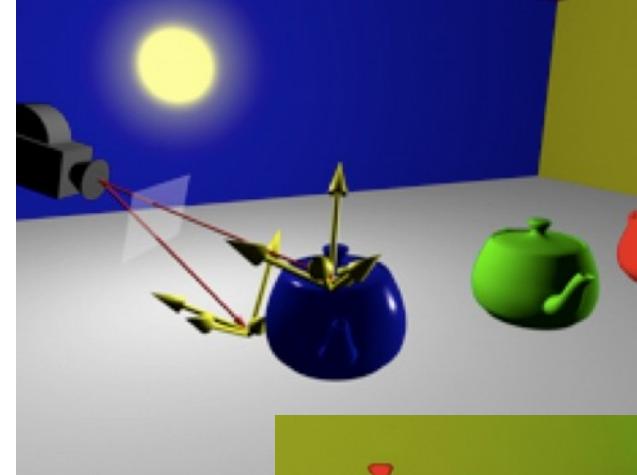
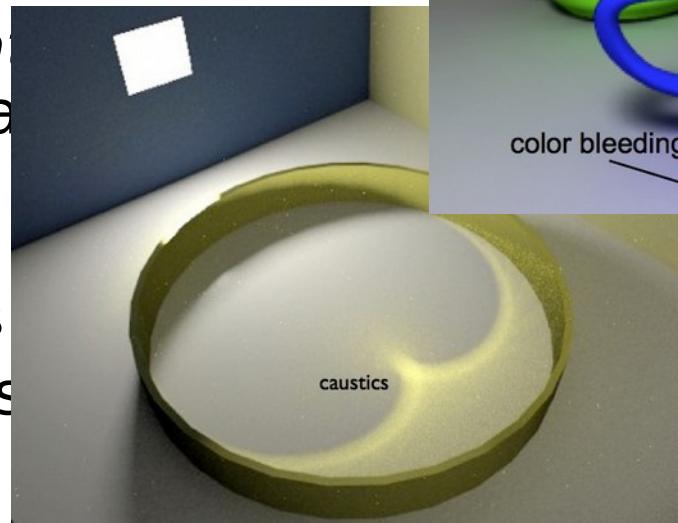
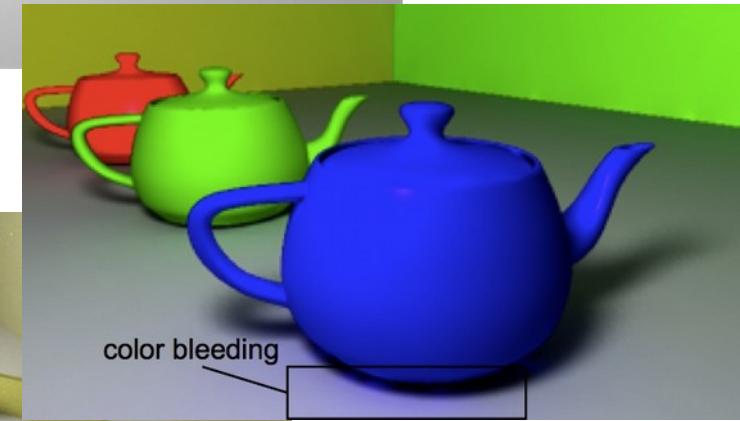
- Stochastic raytracing can also be used to simulate the depth of field of cameras
 - Achieved by introducing a focus plane
 - The focus plane for rays blurs the image on the image plane
 - Send stochastic rays to it to simulate blur



Stochastic raytracing

Path tracing

- On glossy surfaces one can generate random rays too (*path tracing*) in order to simulate diffuse reflections
 - Colour bleeding
 - Caustics
- In *bidirectional path tracing* multiple rays are shot
 - from the eye
 - From light sources
- *Photon mapping* is similar

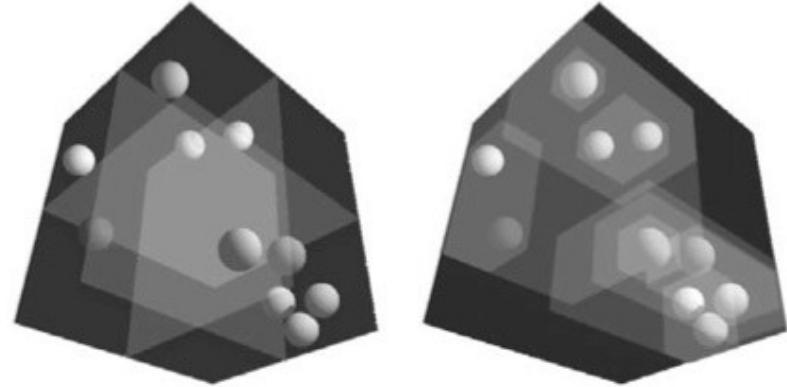
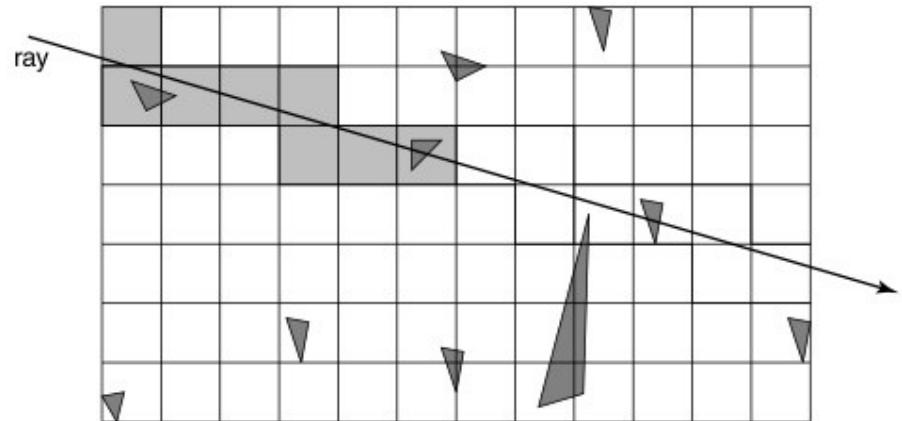


Raytracing efficiency

- Raytracing is not very efficient when it comes to simulating caustics and bleeding.
- Every ray has to be intersected with all scene polygons
 - At each intersection, multiple rays are generated
 - This leads to a huge number of rays structured in a tree
 - Such a tree has to be generated for each pixel of the screen
- Recursive generation also implies a stop criterion is needed for the generation of rays
- When do I stop?
 - rays do not hit any objects
 - maximal tree depth is reached (two mirrors)
 - Ray contribution is negligible (ray damping) (ex. 5%)

Raytracing speedups

- Note that each ray has to be intersected with the whole polygons in the environment
- There are speedups to avoid computing loads of intersections
 - Bounding volumes: complex objects are wrapped in simple volumes (hulls) and intersection ray-object is done first on hull, only if hit is available real intersection is done
 - Hierarchical bounding volumes: bounding volumes are done hierarchically (clusters of objects)
 - Octrees can be used to do intersections, or space can be partitioned in volume units



Conclusion

- Interactive rates (>15fps) for raytracing are being achieved by
 - Implementing in clusters, and distributing rays to processors
 - Doing it on graphics cards, albeit only for raycasting
- Raytracing does model well reflections and refractions, however it is still an incomplete instrument (no colour bleeding from surfaces)
- Raytracing is suitable for parallel machines, and computer clusters (highly parallelizable)
- Often, raytraced pictures are overloaded with Christmas balls and mirrors (questionable aesthetics)
- Take your time to take a look at radiance page on <http://www.education.siggraph.org> under coursware or <http://radsite.lbl.gov/radiance/framew.html>

Examples

Courtesy Martin Moeck, Siemens Lighting, 1994

Examples

Courtesy R. Mc Farland, S. ROuter, U. of Indiana

Examples

© 1994 by Greg Ward, Saba Rofchaei

Kajiya's Rendering Equation

$$I(x, x') = g(x, x') \left[\epsilon(x, x') + \int_S p(x, x', x'') I(x', x'') dx'' \right]$$

- James T. Kajiya, Siggraph '86
- x, x', x'' : Points in the environment
- $I(x, x')$: Light Intensity from x' to x

Kajiya's Rendering Equation

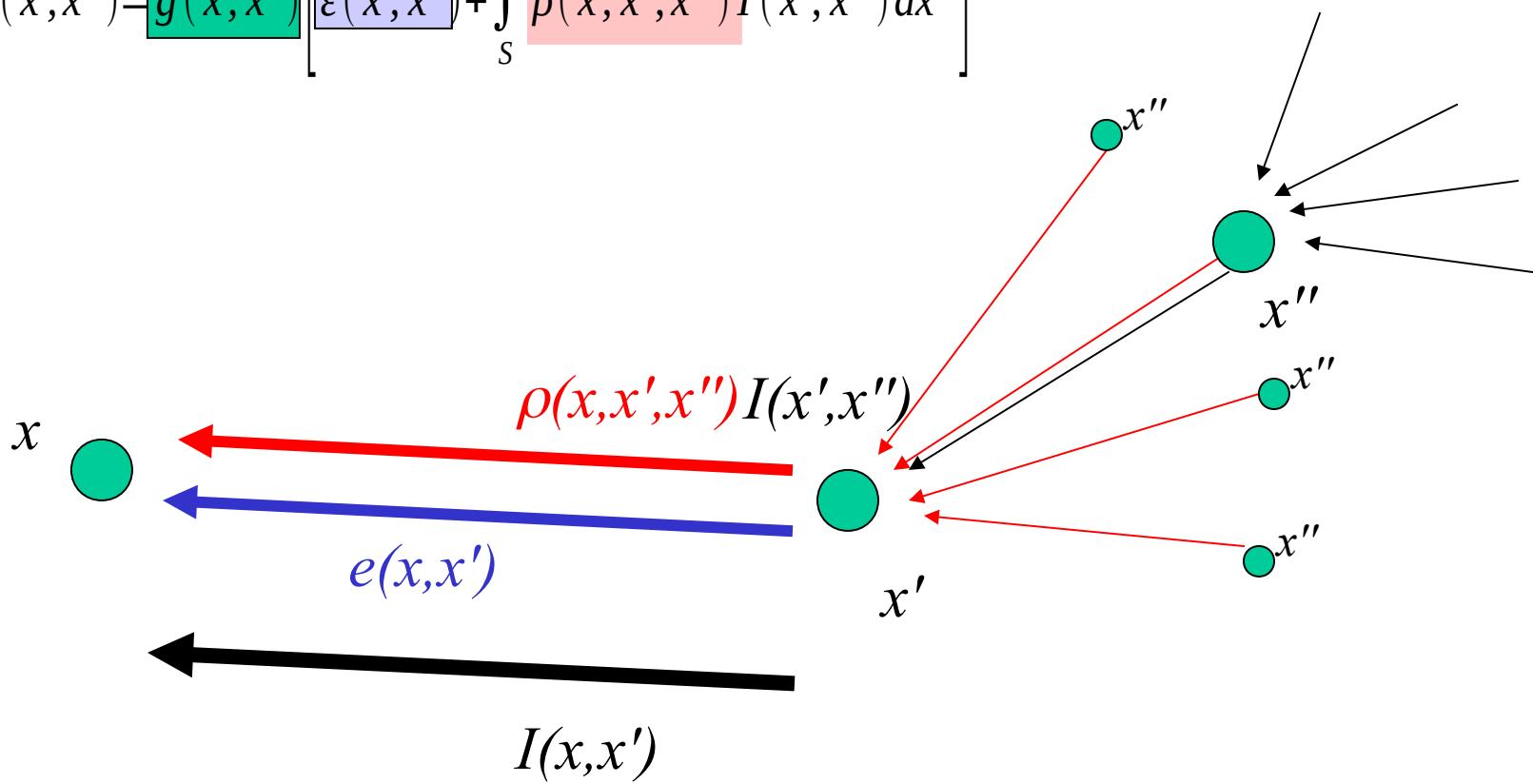
$$I(x, x') = g(x, x') \left[\varepsilon(x, x') + \int_S \rho(x, x', x'') I(x', x'') dx'' \right]$$

Where

- $g(x, x')$: Visibility term (geometry factor)
 - $g(x, x') = 0$ if x, x' mutually invisible else $g = 1/d(x, x')^2$
- $\varepsilon(x, x')$: Light emitted directly from x' to x
- $\rho(x, x', x'')$: Reflection coefficient
 - Intensity arriving in x , that has been originated at x'' , and reflected through x'
- The integral is made on all surfaces in the environment

Kajiya's Rendering Equation

$$I(x, x') = g(x, x') \left[\epsilon(x, x') + \int_S \rho(x, x', x'') I(x', x'') dx'' \right]$$



Kajiya's Rendering Equation

- Notes:

- $g(x, x') * \varepsilon(x, x')$ codes visibility information.
If x =Viewpoint it is hidden surface computations
- The rendering equation is computationally very complex, the integral extends to all surfaces in the environment
- In „partecipating media“, such as foggy environments, the integral is done on all points of the volume considered
- All Illumination Methods are in some ways solutions to the Kajiya's equation

$$I(x, x') = g(x, x') \left[\varepsilon(x, x') + \int_S \rho(x, x', x'') I(x', x'') dx'' \right]$$

End

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++