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Global lHlumination Models

* Light reflected by a surface
Is dependent
- on the surface itself,
- the direct light sources, and

light which fl db \/
- light which is reflected by /\

the other surfaces on the

environment towards the
current surface \
(Reflections)

* Note that in local models
the third component is
modeled through ambient
light

* Kajiya introduced an
equation describing this
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Local vs. Global illumination

/

* Until now, we have only
computed light
behaviour as local
illumination, except

- Shadows
- Environment mapping
* Obviously, the behaviour

of light is much richer,
and it includes

- Reflections
- Refractions

- More complex effects
(fog, colour bleeding...)
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Complex illumination examples

Bauhaus-Universitit Weimar
Fakultit Medien




Complex illumination examples
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Complex illumination examples
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What have we done

Q
* Until now, we have done o - 5
the following: g % Pl ]
- Projection, 'L_.fj | S B
- compute hidden P [

surfaces,
- Add shading,
- Add shadows

* This we have done

. . Image
starting from the objects Camera / 8[.';;&11 Source

in space. eS

d

/

Scene Object
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What have we done

* Until now, we have done
the following:
- Projection,
- compute hidden
surfaces,
- Add shading,

- Add shadows

* This we have done
starting from the objects
in space.

* Why not think at
rendering from the point
of view of pixels?

- Focal
—* Paint 0"

Image
Camera .
: 6{.“{}11 Source

d

/

Scene Object
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Ray tracing

* Let us start thinking: /
- My viewpoint is behind

- The image plane is

made of pixels

the image plane
Pij ray‘@—-.

- What if | shoot a straight {{iliii%
line (ray) from the S
viewpoint through a
pixel center into my 3D
scene?

- My ray would intercept
objects... L
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e Let us start thinking: /
My viewpoint is behind the

Ray tracing

image plane
The image plane is made of
pixels

Screen

What if | shoot a straight VAt &
line (ray) from the viewpoint <=2
through a pixel center into

my 3D scene?

My ray would meet
objects...

... And accumulate light, w
depending of which objects P
(polygons) are intercepted...

And depending on their light
reflection properties
(including transparency)

=€y
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Ray casting

* We cast a ray through /
the viewpoint and the
pixel centers of the
screen
* We intersect if with the Py faL@—'

polygons of the scene

* We sort the polygons
intercepted by the ray
according to their depth

* We paint the pixel with
the color of the closest v

polygon! N
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Ray casting

* We cast a ray through
the viewpoint and the /
pixel centers of the
screen
* We intersect if with the P, ray‘@—-
polygons of the scene

* We sort the polygons
intercepted by the ray
according to their depth

* We paint the pixel with
the color of the closest L

polygon... w

* ... obtaining HIDDEN “
SURFACE for free!
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Ray casting

sScreen
* We cast a ray through the
viewpoint and the pixel

* We intersect if with the

polygons of the scene

* We sort the polygons
intercepted by the ray

centers of the screen
P; ray‘@—o

according to their depth

* We paint the pixel with the
color of the closest

polygon...

* ...if transparent, we w
accumulate along the ray o
the light reflection
properties of the polys met..

e ...obtaining TRANSPARENCY!
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Ray casting

* The rays passing
through the screen
are called primary
rays.

* And the method
raycasting
[Appel68]
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Ray casting: intersections

* Equation of line through * Sphere: substitute into
- Viewpoint V=(x,,Y.,z,) sphere equation and
- Pixel Py=(x;,YiZi): solve system

- EQ. of sphere with centre
(Xc,Ye,2zc) and radius r:

(X-Xc)2+(y-Yc)2-(z-2c)2=r2

fX:XV'I't(Xi-_ Xv) - resulting eq. in t has to
| J be checked for existance
r.= y_yV+t(yij_yV) of solution
z=1z,+t(z,~2,)

\
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Ray Casting: Intersections

* Boxes (parallel to axes),
delimited by planes parallel to axes (x=i)
- Compute intersections with all parallel planes (x,y,z)
dir.
- resolve WRT parameter t
- analyze intervals and check if they overlap

N
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Ray casting: Intersections

* Triangle:
- My ray passes through the
viewpoint and the pixel, so
a point P on the ray can be
expressed as P=V+(P;-V)t.

- The triangle points can be
viewed in baricentric
coordinates, so a point T on
the triangle would be

T=To+B(T1-To)+y(T,-To) T, N

- By setting equal such T
equations | compute the ?
intersection point:

V+(Pi-V)t=To+p(T1-To) +y(T>,-
To)

ray

- These are 3 equations in 3
unknowns t, , .
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Ray casting: Intersections

* Polygon: * Quadrics:
Project on one major plane Use their equations and
(check for special cases) solve against parameter
* Use 2D point in polygon: t

- Send ray towards polygon

- check number of
intersections (even or odd)

d, d, a3 dy

d.. d.. d., d

[x y z 1} 21 22 23 24

<= e d3; d3p A3z Ay
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Ray tracing

* But now | can add other
effects!

- If | hit with a ray a surface
i can lookup if the part
being drawn is in shade

- By shooting a ray from the
impact point to the light
source | can check if there
are objects inbetween, this
getting shadows.

- Shadows are almost for
free!

- The rays to the light
source are secondary rays

- They are called shadow
rays
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Ray tracing

* Shadows can be done in
a hard manner or a soft
manner (soft shadows)

* In case of area light
sources, one interpolates
linearly between total
occlusion and no
occlusion

£ area
chlight

. i

B O

light

intensity on ground plane
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Recursive raytracing: reflections

* When a polygon is
hit, reflections can

be computed by
sending a

secondary ray in
the environment

and computing ist
“reflected light
contribution” to the
color of the pixel.

* Optics laws are
used

* By accumulatng
recursively, one
can simulate i

multiple reflections ! /
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Recursive raytracing: reflections
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Recursive raytracing: refractions

* Similarly, one can
compute a
refraction ray
according to
Snell’s refraction
law sinU, My

sind, n,

N | -

I
0.
\ L
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Recursive raytracing: refractions
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Stochastic raytracing

* |n stochastic
raytracing, more
random rays are
chosen in a direction
Interval around the
main reflection

* This allows with one
method:
- glossy reflections
- soft shadows
- antialiasing

* Also called
Montecarlo raytracing
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Stochastic raytracing
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Stochastic raytracing

* Stochastic raytracing
can also be used to
simulate the depth
of field of cameras

- Achieved by
introducing a focus
plane

- The focus plane for
rays blurs the image
on the image plane

- Send stochastic rays

to it to simulate blur ‘% %

lens

focus
plane
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Stochastic raytracing
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Path tracinc

* On glossy surfaces
one cah generate
random rays too (path
tracing) in order to
simulate diffuse
reflections
- Colour bleeding
- Caustics

* |In bidirectional pa
tracing multiple ra
are shot
- from the eye
- From light sources

* Photon mapping is
similar
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Raytracing efficiency

* Raytracing is not very efficient * When do | stop?
when.it comes to s'imulating - rays do not hit any objects
caustics and bleeding. _ maximal tree depth is

* Every ray has to be reached (two mirrors)
intersected with all scene - Raylconglributioréis |
n neglegible (ray damping)
polygons (ex. 5%)

- At each intesection,
multiple rays are generated

- This leads to a huge number
of rays structured in a tree

- Such a tree has to be
generated for each pixel of
the screen

* Recursive generation also
implies a stop criterion is
needed for the generation of
rays
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Raytracing speedups

* Note that each ray has to be
intersected with the whole
polygons in the environment

* There are speedups to avoid
computing loads of
intersections

- Bounding volumes: complex
objects are wrapped in
simple volumes (hulls) and
intersection ray-object is
done first on hull, only if hit
is available real intersection V
is done ray ] >

- Hierarchical bounding —
volumes: bounding volumes P
are done hierarchically "““ER‘\
(clusters of objects) s oy

- Octrees can be used to do
intersections, or space can Y
be partitioned in volume 7 Y
units '

=]
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Conclusion

* Interactive rates (>15fps) for raytracing are being
achieved by

- Implementing in clusters, and distributing rays to
Processors

- Doing it on graphics cards, albeit only for raycasting

* Raytracing does model well reflections and refractions,
however it is still an incomplete instrument (no colour
bleeding from surfaces)

* Raytracing is suitable for parallel machines, and
computer clusters (highly parallelizable)

* Often, raytraced pictures are overloaded with Christmas
balls and mirrors (questionable aesthetics)

* Take your time to take a look at radiance page on
http://www.education.siggraph.org under coursware or
http://radsite.lbl.gov/radiance/framew.html|
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Examples

Courtesy Martin Moeck, Siemens Lighting, 1994
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Examples

Courtesy R. Mc Farland, S. ROuten, U. of Indiana
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Examples

© 1994 by Greg Ward, Saba Rofchaei
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Kajiyas Rendering Equation

I(x,x'):g(x,x')

e(x,x')+f plx,x,x")I(x"x")dx"
S

* James T. Kajiya, Siggraph '86

* X, X', x" : Points in the environment
* I(x,x') : Light Intensity from x' to x
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Kajiyas Rendering Equation

1 -gleNd

e(x,x’' +ﬂ plx,x",x")I(x' x")dx"
s

Where
* g(x,x') : Visibility term (geometry factor)

- g(x,x')=0 if x,x' mutually invisible else g= 1/d(x,x')2
*  ¢g(x,x') : Light emitted directly from x' to x

* o(x,x',x") :Reflection coefficient

- Intensity arriving in x, that has been originated at x'', and
reflected through x'

* The integral is made on all surfaces in the environment
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Kajiyas Rendering Equation

e(x,x' +£p(x X', x")I(x',x")dx"

o0 D

N 00, x’ x’QI(x x’Q
.
e(x x') x’
m
I(x,x')
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Kajiyas Rendering Equation

* Notes:

- g(x,x')*e(x,x') codes visibility information.
If x=Viewpoint it is hidden surface computations

- The rendering equation is computationally very
complex, the integral extends to all surfaces in the

environment
- In ,partecipating

media“, such as foggy

environments, the integral is done on all points of
the volume considered

- All lllumination Methods are in some ways solutions

to the Kajiya's eq
I(x,x '):g(x,x')

gation

e(x,x')+f p(x,x',x")I(x',x")dx"
S
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End

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++
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