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 Global Illumination Models

• Light reflected by a surface 
is dependent
– on the surface itself, 
– the direct light sources, and 
– light which is reflected by 

the other surfaces on the 
environment towards the 
current surface 
(Reflections)

• Note that in local models 
the third component is 
modeled through ambient 
light

• Kajiya introduced an 
equation describing this



Local vs. Global illumination

• Until now, we have only 
computed light 
behaviour as local 
illumination, except
– Shadows
– Environment mapping

• Obviously, the behaviour 
of light is much richer, 
and it includes
– Reflections
– Refractions
– More complex effects 

(fog, colour bleeding...) 



Complex illumination examples
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What have we done

• Until now, we have done 
the following:
– Projection, 
– compute hidden 

surfaces,
– Add shading,
– Add shadows

• This we have done 
starting from the objects 
in space.



What have we done

• Until now, we have done 
the following:
– Projection, 
– compute hidden 

surfaces,
– Add shading,
– Add shadows

• This we have done 
starting from the objects 
in space.

• Why not think at 
rendering from the point 
of view of pixels? 



Ray tracing

• Let us start thinking:
– My viewpoint is behind 

the image plane
– The image plane is 

made of pixels
– What if I shoot a straight 

line (ray) from the 
viewpoint through a 
pixel center into my 3D 
scene?

– My ray would intercept 
objects...
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Ray tracing

Pij ray
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screen

• Let us start thinking:
– My viewpoint is behind the 

image plane
– The image plane is made of 

pixels
– What if I shoot a straight 

line (ray) from the viewpoint 
through a pixel center into 
my 3D scene?

– My ray would meet 
objects...

– ... And accumulate light, 
depending of which objects 
(polygons) are intercepted...

– And depending on their light 
reflection properties 
(including transparency)



Ray casting

• We cast a ray through 
the viewpoint and the 
pixel centers of the 
screen

• We intersect if with the 
polygons of the scene

• We sort the polygons 
intercepted by the ray 
according to their depth

• We paint the pixel with 
the color of the closest 
polygon! 
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Ray casting

• We cast a ray through 
the viewpoint and the 
pixel centers of the 
screen

• We intersect if with the 
polygons of the scene

• We sort the polygons 
intercepted by the ray 
according to their depth

• We paint the pixel with 
the color of the closest 
polygon...

• ... obtaining HIDDEN 
SURFACE for free!
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Ray casting

• We cast a ray through the 
viewpoint and the pixel 
centers of the screen

• We intersect if with the 
polygons of the scene

• We sort the polygons 
intercepted by the ray 
according to their depth

• We paint the pixel with the 
color of the closest 
polygon...

• ...if transparent, we 
accumulate along the ray 
the light reflection 
properties of the polys met..

• ...obtaining TRANSPARENCY!
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Ray casting

• The rays passing 
through the screen 
are called primary 
rays.

• And the method 
raycasting 
[Appel68]



Ray casting: intersections

• Equation of line through
– Viewpoint V=(xv,yv,zv)

– Pixel Pij=(xij,yij,zij):

• Sphere: substitute into 
sphere equation and 
solve system
– Eq. of sphere with centre 

(xC,yC,zC) and radius r:
(x-xC)2+(y-yC)2-(z-zC)2=r2

– resulting eq. in t has to 
be checked for existance 
of solution r :={

x=xV+t ( x ij− xV )

y= yV+t ( y ij− yV )

z= zV+t ( zij−zV )



Ray Casting: Intersections

• Boxes (parallel to axes),
delimited by planes parallel to axes (x=i)
– Compute intersections with all parallel planes (x,y,z) 

dir.
– resolve WRT parameter t
– analyze intervals and check if they overlap
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Ray casting: Intersections

• Triangle:
– My ray passes through the 

viewpoint and the pixel, so 
a point P on the ray can be 
expressed as P=V+(Pij-V)t.

– The triangle points can be 
viewed in baricentric 
coordinates, so a point T on 
the triangle would be 
        T=T0+(T1-T0)+(T2-T0)

– By setting equal such 
equations I compute the 
intersection point:
 V+(Pij-V)t=T0+(T1-T0)+(T2-
T0)

– These are 3 equations in 3 
unknowns t, 

ray
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Ray casting: Intersections

• Polygon:
Project on one major plane 
(check for special cases)

• Use 2D point in polygon:
– Send ray towards polygon
– check number of 

intersections (even or odd) 

• Quadrics: 
Use their equations and 
solve against parameter 
t

x

y

[ x y z 1 ] [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

]=0



Ray tracing

• But now I can add other 
effects!
– If I hit with a ray a surface 

i can lookup if the part 
being drawn is in shade

– By shooting a ray from the 
impact point to the light 
source I can check if there 
are objects inbetween, this 
getting shadows.

– Shadows are almost for 
free!

– The rays to the light 
source are secondary rays

– They are called shadow 
rays    



Ray tracing

• Shadows can be done in 
a hard manner or a soft 
manner (soft shadows)

• In case of area light 
sources, one interpolates 
linearly between total 
occlusion and no 
occlusion   



Recursive raytracing: reflections

• When a polygon is 
hit, reflections can 
be computed by 
sending a 
secondary ray in 
the environment 
and computing ist 
“reflected light 
contribution” to the 
color of the pixel.

• Optics laws are 
used

• By accumulatng 
recursively, one 
can simulate 
multiple reflections



Recursive raytracing: reflections



Recursive raytracing: refractions

• Similarly, one can 
compute a 
refraction ray 
according to 
Snell’s refraction 
law sin ϑ i

sin ϑ t
=
η tλ
η iλ
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Recursive raytracing: refractions



Stochastic raytracing

• In stochastic 
raytracing, more 
random rays are 
chosen in a direction 
interval around the 
main reflection

• This allows with one 
method:
– glossy reflections
– soft shadows
– antialiasing

• Also called 
Montecarlo raytracing



Stochastic raytracing



Stochastic raytracing

• Stochastic raytracing 
can also be used to 
simulate the depth 
of field of cameras
– Achieved by 

introducing a focus 
plane

– The focus plane for 
rays blurs the image 
on the image plane

– Send stochastic rays 
to it to simulate blur



Stochastic raytracing

Depth of field



Path tracing 

• On glossy surfaces 
one can generate 
random rays too (path 
tracing) in order to 
simulate diffuse 
reflections
– Colour bleeding
– Caustics

• In bidirectional path 
tracing multiple rays 
are shot 
– from the eye
– From light sources

• Photon mapping is 
similar



Raytracing efficiency

• Raytracing is not very efficient 
when it comes to simulating 
caustics and bleeding.

• Every ray has to be 
intersected with all scene 
polygons
– At each intesection, 

multiple rays are generated
– This leads to a huge number 

of rays structured in a tree
– Such a tree has to be 

generated for each pixel of 
the screen

• Recursive generation also 
implies a stop criterion is 
needed for the generation of 
rays

• When do I stop?
– rays do not hit any objects
– maximal tree depth is 

reached (two mirrors)
– Ray contribution is 

neglegible (ray damping) 
(ex. 5%)



Raytracing speedups

• Note that each ray has to be 
intersected with the whole 
polygons in the environment 

• There are speedups to avoid 
computing loads of 
intersections
– Bounding volumes: complex 

objects are wrapped in 
simple volumes (hulls) and 
intersection ray-object is 
done first on hull, only if hit 
is available real intersection 
is done

– Hierarchical bounding 
volumes: bounding volumes 
are done hierarchically 
(clusters of objects)

– Octrees can be used to do 
intersections, or space can 
be partitioned in volume 
units



Conclusion

• Interactive rates (>15fps) for raytracing are being 
achieved by
– Implementing in clusters, and distributing rays to 

processors
– Doing it on graphics cards, albeit only for raycasting

• Raytracing does model well reflections and refractions, 
however it is still an incomplete instrument (no colour 
bleeding from surfaces)

• Raytracing is suitable for parallel machines, and 
computer clusters (highly parallelizable)

• Often, raytraced pictures are overloaded with Christmas 
balls and mirrors (questionable aesthetics)

• Take your time to take a look at radiance page on 
http://www.education.siggraph.org under coursware or
http://radsite.lbl.gov/radiance/framew.html
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Kajiyas Rendering Equation

• James T. Kajiya, Siggraph '86

• x, x', x'' : Points in the environment
• I(x,x') : Light Intensity from x' to x

I ( x , x ' )=g ( x , x ' ) [ε ( x , x ' )+∫
S

p( x , x ', x '') I ( x ', x '' )dx '']



Where
•  g(x,x') : Visibility term (geometry factor)

– g(x,x')=0 if x,x' mutually invisible else g= 1/d(x,x')2

•  (x,x') : Light emitted directly from x' to x
•  (x,x',x'') : Reflection coefficient

– Intensity arriving in x, that has been originated at x''‚ and 
reflected through x' 

• The integral is made on all surfaces in the environment

I ( x , x ' )=g ( x , x ' ) [ε ( x , x ' )+∫
S

ρ( x , x ', x '') I ( x ', x '')dx '']

Kajiyas Rendering Equation



Kajiyas Rendering Equation

x
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I ( x , x ' )=g ( x , x ' ) [ε ( x , x ' )+∫
S

ρ( x , x ', x '') I ( x ', x '')dx '']

I(x',x'') x''

x''



 Kajiyas Rendering Equation

• Notes:
– g(x,x')*(x,x') codes visibility information. 

If x=Viewpoint it is hidden surface computations
– The rendering equation is computationally very 

complex, the integral extends to all surfaces in the 
environment

– In „partecipating media“, such as foggy 
environments, the integral is done on all points of 
the volume considered

– All Illumination Methods are in some ways solutions 
to the Kajiya's equation 

I ( x , x ' )=g ( x , x ' ) [ε ( x , x ' )+∫
S

ρ( x , x ', x '') I ( x ', x '')dx '']



+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++ 

End
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