Computer Graphics:
7-Polygon Rasterization,

Clipping

Prof. Dr. Charles A. Wuthrich,
Fakultat Medien, Medieninformatik
Bauhaus-Universitat Weimar

caw AT medien.uni-weimar.de

Bauhaus-Universitdt Weimar

Fakultit Medien



Filling polygons (and drawing them)

* In general, except if we are dealing with wireframes, we
would want to draw a filled polygon on our screen.

* The advantage is clear: the polygon acquires thickness
and can be use to render surfaces

* The simplest way one would do that is to draw the polygon
border and then fill the region delimited by the polygon

* In fact, this is the start point for the real algorithm, the
scanline algorithm

* The scanline algorithm combines the advantages of filling
algorithms and of line tracing at the borders in a complex
but very fast way

* As input one takes an ordered list of points representing
the polygon

Bauhaus-Universitdt Weimar

Fakultit Medien



Scanline algorithm

* The basic idea is very simple:

- A polygon can be filled one

scanline at a time, from top

to bottom

- Order therefore polygon

corners according to their 4

highest y coordinate /

- Order each horizonal line /

according to the x coordinate

of the edge intersections

- Fill between pairs of edges,

stop drawing until the next

edge, and then restart filling

again till the next one N

- once finished the edges at

current line, restart at nexty

value

- Of course, one can also draw

upwards

Bauhaus-Universitit Weimar
Fakultit Medien



Scanline algorithm

* Notice that the number of
edges remains constant
between starting and ending
points in the horizontal bands.

* Notice also that segments
have only a limited contiguous
range where they are active

* Notice that while proceeding
downwards, borders can use a
mirrored DDA to be drawn

* |n this way, one can draw line
borders and fill between them,
after having ordered the
border intersections with the
current line WRT current
coordinate

4 )Y

\\\{/

M

A4

Bauhaus-Universitdt Weimar

Fakultit Medien




Scanline algorithm

Polygon drawing starts at the
bottom.

Out of the edges list the ones with
lowest starting point are chosen.

These will remain part of the
.active edge” list until their end is
met

When they end, they are removed
and replaced by new starting
edges

This until there is no edge left
among the active edge

At each value of the y variable,
the edge rasterization is
computed, and edges are ordered
by growing x

Colour is then filled between
sorted pairs of edge
rasterizations.

4 )Y

\\\{/

M

A4

Bauhaus-Universitdt Weimar

Fakultit Medien




Triangle rasterization

* Modern graphics cards
accept only triangles at the

rasterization step

* Polygons with more edges

are simply triangularized

* Obviously, the

rasterization of a triangle

IS much easier

* This because a triangle is

convex, and therefore a

horizontal line has just the

left and the right hand

borders

* Filling is then done

between the left side and

the right side

Bauhaus-Universitdt Weimar

Fakultit Medien



Clipping: motivation

* Often in 2D we have
drawings that are bigger
than a screen

* To save drawing complexity,
it is good to be able to cut
the drawings so that only

X&
screen objects are drawn
* Also, one needs to protect
other (invisible) regions
while working on a complex
drawing
* The question is how is this

done

* Problem: Given a segment
in the plane, clip it to a
rectangular segment

Bauhaus-Universitdt Weimar

Fakultit Medien



Line clipping

* Let B be the screen, and
let P,P, be the endpoints

of the segment to be P,
drawn . p

e There are four possible P, \
cases available:

a) Whole line is visible
P,,P.EB

b) Line is partially visible

P,&EB, P,&eB, P,P, P,

intersects screen borders & P,
c) Line partially visible

P., P,¢B, but PP, N,

intersects screen borders

d) Line not visible
Plr P2$B

Bauhaus-Universitdt Weimar

Fakultit Medien



Line clipping Algorithm

IF (P,,P,EB) /* a */
DrawLine (P, P,)

ELSE IF /* b */ P,
(((P,€B)AND NOT (P,EB)) OR

( (P,€B)AND NOT (P,EB)))

compute I=(P;P,Nborders)
TF (P,IB)

Drawline (I, P;)
ELSE
DrawLine (I, P,)
ELSE /* c,d */
compute I,,I,=
(P,P,N borders)
IF I,,I, exist

Drawline (I,,I,)

END

Bauhaus-Universitdt Weimar

Fakultit Medien



Examples: Cohen-Sutherland algo.

Code
Bit
Bit
Bit

Bit

Use Db

ELS

- C

- r
Note:

points according to
characteristics:

0=1 1f xXp<xXni, €lse
1=1 1f Xp>Xp.x else

2=1 if y<Vy.. else

o O O O

3=1 if yp>ymx €lse

itwise operations:

code (P,;) AND code (P,)!= 0

trivial case, line not

on screen

code (P;) OR code (P,) == 0

trivial case, line
on screen
E

ompute line-borders intersection
(one at time) and set their code as
above

edo clipping with shortened line

before new intersection, at least
one endpoint is outside WRT the
border you clipped against, thus
one subseg is trivially out (all
left or right or up or down of
screen)

code=1001

code=0001

code=0101

code=0010
code=0000
/ b 1
//:P1 :Pl :PZ
code=0100 code=0110

Bauhaus-Universitdt Weimar

F

akultit Medien



Algorithm Examples

Bauhaus-Universitdt Weimar

Fakultit Medien



Algorithm examples

P,P,: P,=0001, P,=1000
P, AND P,= 0000
P, OR P,=1001
Subdivide against left,
Pick P,, find P,

new line P,P,

pP,P,: P,=1000, P,=1000
P, AND P,: 1000 outside!
Draw nothing

0:9,: 9,=0100, Q,=0000
Q. AND Q,:0000
Q; OR Q,: 0100
Subdivide, Pick Q,, find OQ;
new line Q,0;
Q,05: Q,=0000, Q5=0000
Q, AND Q;: 0000
Q; OR Q5: 0000 inside!
Draw Qs0Q,
050, 3=OlOO

RiR,: R;=0100, R,=0010

R, AND R,= 0000

R, OR R,= 0110

Subdivide, Pick R;, find R,
new line RiR,

R,=0100, R,=0000

R, AND R,= 0000

R, OR R,= 0100

Subdivide, Pick R,, find Rs
new line R3R,

R;=0000 R,=0000

R, AND R,=0000

draw RsR,

Bauhaus-Universitdt Weimar

Fakultit Medien



Clipping polygons

* The task is similar, but it is more complicated to achieve
* Polygon clipping may result into disjunct polys

Bauhaus-Universitdt Weimar

Fakultit Medien



Sutherland Hodgeman Algorithm

* Clearly, drawing polygons is Xmin XMAX
a more complicated issue | |

* |dea: one could follow the i / L

polygon border, and switch ymax
to following the border
when the polygon leaves
the screen until it re-enters
it

ymin
* This means creating a new - i o
polygon, which is trimmed |
to the screen
* While following an edge, P, > P,
four cases are possible: L_—" T
PZ PZ

Bauhaus-Universitdt Weimar

Fakultit Medien



Sutherland-Hodgeman Algorithm

* The algorithm works considering FOR all screen borders DO:
polygons as lists of edges FOR all lines in polygons

* Inputis a list L of polygon edges po:

*  Output wil be a new list L” of FOR all points P in L DO
polygon edges Compute intersection I

of line with current

* The polygon is clipped against ALL

. border
screen borders one at a time

IF (case 1):
Do Nothing
IF (case 2):
Add (I,Succ(P))to L~

IF (case 3):
Add (I) to L~
P Pz P _AEZ IF (case 4):
J——"————" A Add (succ(P)) to L~
END
END
END
P2 P2
Il__ﬂ_,——"' ‘RL—“'————'

Bauhaus-Universitdt Weimar

Fakultit Medien



Example

Bauhaus-Universitdt Weimar

Fakultit Medien



Example

* Left border * Top Border
Input: {V,,V,,V;,V, .V} Input: {I,,V,,V;,V, .1}
Olltpllt: {119V29V3 9V4 aiz} OUtPUt: {11913914 9V39V4 912}

Xmin Xxmax
I

Bauhaus-Universitdt Weimar

Fakultit Medien



Clipping in 3D

* Remember the near and
far clipping planes of the
view frustum?

* How do I clip a polygon
against them?

Viewpoint

Bauhaus-Universitdt Weimar

Fakultit Medien



Clipping in 3D

* Remember the near and
far clipping planes of the
view frustum?

* How do I clip a polygon
against them?

* As a matter of fact, it is

not so different!

* The problem can be
reduced to the same as
in 2D, with a few Viewpoint
differences

Bauhaus-Universitdt Weimar

Fakultit Medien



Clipping in 3D

Let us consider a the far
plane and a polygon

Substitute the coordinates of
the vertices of the triangle
into the plane equation:

- Front: <0
- Back: >0
- Plane: =0

So we can follow the vertices
exactly like in Cohen-
Sutherland to clip against the
plane

A similar method can be
applied for an arbitrary plane

For the frustum planes one
can do clipping one plane at
a time, like in 2D (except
they are 6 now)

<0

>0

Bauhaus-Universitdt Weimar

Fakultit Medien



End

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

Bauhaus-Universitit Weimar
Fakultit Medien




	Computer Graphics: 7-Polygon Rasterization, Clipping
	Filling polygons (and drawing them)
	Scanline algorithm
	Slide 4
	Slide 5
	Triangle rasterization
	Clipping: motivation
	Line clipping
	Line clipping Algorithm
	Examples: Cohen-Sutherland algo.
	Algorithm Examples
	Algorithm examples
	Clipping polygons
	Sutherland Hodgeman Algorithm
	Sutherland-Hodgeman Algorithm
	Example
	Slide 17
	Clipping in 3D
	Slide 19
	Slide 20
	PowerPoint Presentation

