
Computer Graphics:
7-Polygon Rasterization,

Clipping

Prof. Dr. Charles A. Wüthrich,

Fakultät Medien, Medieninformatik

Bauhaus-Universität Weimar

caw AT medien.uni-weimar.de

Filling polygons (and drawing them)

• In general, except if we are dealing with wireframes, we
would want to draw a filled polygon on our screen.

• The advantage is clear: the polygon acquires thickness
and can be use to render surfaces

• The simplest way one would do that is to draw the polygon
border and then fill the region delimited by the polygon

• In fact, this is the start point for the real algorithm, the
scanline algorithm

• The scanline algorithm combines the advantages of filling
algorithms and of line tracing at the borders in a complex
but very fast way

• As input one takes an ordered list of points representing
the polygon

Scanline algorithm

• The basic idea is very simple:
– A polygon can be filled one

scanline at a time, from top
to bottom

– Order therefore polygon
corners according to their
highest y coordinate

– Order each horizonal line
according to the x coordinate
of the edge intersections

– Fill between pairs of edges,
stop drawing until the next
edge, and then restart filling
again till the next one

– once finished the edges at
current line, restart at next y
value

– Of course, one can also draw
upwards

Scanline algorithm

• Notice that the number of
edges remains constant
between starting and ending
points in the horizontal bands.

• Notice also that segments
have only a limited contiguous
range where they are active

• Notice that while proceeding
downwards, borders can use a
mirrored DDA to be drawn

• In this way, one can draw line
borders and fill between them,
after having ordered the
border intersections with the
current line WRT current
coordinate

Scanline algorithm

• Polygon drawing starts at the
bottom.

• Out of the edges list the ones with
lowest starting point are chosen.

• These will remain part of the
„active edge“ list until their end is
met

• When they end, they are removed
and replaced by new starting
edges

• This until there is no edge left
among the active edge

• At each value of the y variable,
the edge rasterization is
computed, and edges are ordered
by growing x

• Colour is then filled between
sorted pairs of edge
rasterizations.

Triangle rasterization

• Modern graphics cards
accept only triangles at the
rasterization step

• Polygons with more edges
are simply triangularized

• Obviously, the
rasterization of a triangle
is much easier

• This because a triangle is
convex, and therefore a
horizontal line has just the
left and the right hand
borders

• Filling is then done
between the left side and
the right side

Clipping: motivation

• Often in 2D we have
drawings that are bigger
than a screen

• To save drawing complexity,
it is good to be able to cut
the drawings so that only
screen objects are drawn

• Also, one needs to protect
other (invisible) regions
while working on a complex
drawing

• The question is how is this
done

• Problem: Given a segment
in the plane, clip it to a
rectangular segment

Line clipping

• Let B be the screen, and
let P1P2 be the endpoints
of the segment to be
drawn

• There are four possible
cases available:
a) Whole line is visible

P1,P2∈B

b) Line is partially visible
P1∈B, P2∈B, P1P2
intersects screen borders

c) Line partially visible
P1, P2∉B, but P1P2
intersects screen borders

d) Line not visible
 P1, P2∉B

P1

P2

P2

P2

P2

P1

P1

P1

a

b

c

d

Line clipping Algorithm

IF (P1,P2∈B) /* a */

 DrawLine(P1,P2)

ELSE IF /* b */

 (((P1∈B)AND NOT(P2∈B)) OR

 ((P2∈B)AND NOT(P1∈B)))

 compute I=(P1P2∩borders)

 IF(P1ÎB)

 Drawline(I,P1)

 ELSE

 DrawLine(I,P2)

ELSE /* c,d */

 compute I1,I2=

 (P1P2∩ borders)

 IF I1,I2 exist

 Drawline (I1,I2)

END

P1

P2

P2

P2

P2

P1

P1

P1

a

b

c

d

Examples: Cohen-Sutherland algo.

Code points according to
characteristics:

 Bit 0=1 if xP<xmin else 0

 Bit 1=1 if xP>xmax else 0

 Bit 2=1 if yP<ymin else 0

 Bit 3=1 if yP>ymax else 0

Use bitwise operations:

 code(P1) AND code(P2)!= 0

 trivial case, line not

 on screen

 code(P1) OR code(P2) == 0

 trivial case, line

 on screen

 ELSE

 - compute line-borders intersection
(one at time) and set their code as
above

 - redo clipping with shortened line

Note: before new intersection, at least
one endpoint is outside WRT the
border you clipped against, thus
one subseg is trivially out (all
left or right or up or down of
screen)

P1
P2

P2

P2

P1

P1

code=1001 code=1000

P2P1

code=1010

code=0001 code=0010

code=0110code=0100code=0101

1 2 3

4

code=0000

5
6

7 8 9

Algorithm Examples

P1

P2

Q2 R2

R1

Q1

1001

1000

P2

0001

01000101

1 2 3

4
00005 6

7 8 9

1010

0010

0110

R4R3Q3

P3

P4

Algorithm examples

P1P2: P1=0001, P2=1000
 P1 AND P2= 0000
 P1 OR P2=1001
 Subdivide against left,
 Pick P2, find P4

new line P2P4

P2P4: P2=1000, P4=1000
 P2 AND P4: 1000 outside!
 Draw nothing

Q1Q2: Q1=0100, Q2=0000
 Q1 AND Q2:0000
 Q1 OR Q2: 0100
 Subdivide, Pick Q2, find Q3

new line Q2Q3

Q2Q3: Q2=0000, Q3=0000
 Q2 AND Q3: 0000
 Q1 OR Q3: 0000 inside!
 Draw Q3Q2

Q3Q2: Q3=0100

~

R1R2: R1=0100, R2=0010
 R1 AND R2= 0000
 R1 OR R2= 0110
 Subdivide, Pick R1, find R4

new line R1R4

 R1=0100, R4=0000
 R1 AND R4= 0000
 R1 OR R4= 0100
 Subdivide, Pick R4, find R3

new line R3R4

 R3=0000 R4=0000
 R3 AND R4=0000
 draw R3R4

P1

P2

Q2 R2

R1

Q1

1001

1000

P2

0001

01000101

1 2 3

4
00005 6

7 8 9

1010

0010

0110

R4R3Q3

P3

P4

Clipping polygons

• The task is similar, but it is more complicated to achieve
• Polygon clipping may result into disjunct polys

xmin xmax

ymax

ymin

xmin xmax

ymax

ymin

Sutherland Hodgeman Algorithm

• Clearly, drawing polygons is
a more complicated issue

• Idea: one could follow the
polygon border, and switch
to following the border
when the polygon leaves
the screen until it re-enters
it

• This means creating a new
polygon, which is trimmed
to the screen

• While following an edge,
four cases are possible:

ymin

xmin xmax

ymax

P1

P2
P1

P2

P1

P2
P1

P2
P1

1

2

3

4

Sutherland-Hodgeman Algorithm

• The algorithm works considering
polygons as lists of edges

• Input is a list L of polygon edges
• Output wil be a new list L´ of

polygon edges
• The polygon is clipped against ALL

screen borders one at a time

FOR all screen borders DO:

 FOR all lines in polygons

 DO:

 FOR all points P in L DO

 Compute intersection I

 of line with current

 border

 IF (case 1):

 Do Nothing

 IF (case 2):

 Add (I,Succ(P))to L´

 IF (case 3):

 Add (I) to L´

 IF (case 4):

 Add (succ(P)) to L´

 END

 END

END

P1

P2
P1

P2

P1

P2
P1

P2
P1

1

2

3

4

Example

ymin

xmin xmaxV2

V3

V4V5

V1 I1

I2

Example

ymin

xmin xmaxV2

V3

V4V5

V1 I1

I2

• Left border
Input: {V1,V2,V3 ,V4 ,V5}
Output: {I1,V2,V3 ,V4 ,Í2}

• Top Border
Input: {I1,V2,V3 ,V4 ,I2}
Output: {I1,I3,I4 ,V3,V4 ,I2}

ymin

xmin xmaxV2

V3

V4V5

V1 I1

I2

I3 I4

Clipping in 3D

• Remember the near and
far clipping planes of the
view frustum?

• How do I clip a polygon
against them?

Viewpoint

Clipping in 3D

• Remember the near and
far clipping planes of the
view frustum?

• How do I clip a polygon
against them?

• As a matter of fact, it is
not so different!

• The problem can be
reduced to the same as
in 2D, with a few
differences

Viewpoint

Clipping in 3D

• Let us consider a the far
plane and a polygon

• Substitute the coordinates of
the vertices of the triangle
into the plane equation:
– Front: <0
– Back: >0
– Plane: =0

• So we can follow the vertices
exactly like in Cohen-
Sutherland to clip against the
plane

• A similar method can be
applied for an arbitrary plane

• For the frustum planes one
can do clipping one plane at
a time, like in 2D (except
they are 6 now)

<0

>0

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

	Computer Graphics: 7-Polygon Rasterization, Clipping
	Filling polygons (and drawing them)
	Scanline algorithm
	Slide 4
	Slide 5
	Triangle rasterization
	Clipping: motivation
	Line clipping
	Line clipping Algorithm
	Examples: Cohen-Sutherland algo.
	Algorithm Examples
	Algorithm examples
	Clipping polygons
	Sutherland Hodgeman Algorithm
	Sutherland-Hodgeman Algorithm
	Example
	Slide 17
	Clipping in 3D
	Slide 19
	Slide 20
	PowerPoint Presentation

