
Computer Animation 
6-Kinematics

SS 18

Prof. Dr. Charles A. Wüthrich, 

Fakultät Medien, Medieninformatik

Bauhaus-Universität Weimar

caw AT medien.uni-weimar.de



Hierarchical modeling

• Hierarchical modeling is 
placing constraints on 
objects organized in a tree 
like structure

• Examples can be: 
– A planet system
– A robot arm

• The latter is quite common in 
graphics: it is constituted by 
objects connected end to 
end to form a multibody 
jointed chain

• These are called articulated 
figures

• They stem from robotics
• Robotics literature speaks 

with a different terminology:
– Manipulator: the sequence 

of objects connected by 
joints

– Links: the rigid objects 
making the chain

– Effector: the free end of the 
chain

– Frame: local coordinate 
system associated to each 
link



Hierarchical modeling

• In graphics, most of the 
links are revolute joints: 
here one link rotates 
around a fixed point of the 
other link

• The other interesting joint 
for graphics is the 
prismatic joint, where one 
link translates relative to 
the other

• Joints restrain the degree 
of freedom (DOF) of the 
links

• Joints with more than one 
degree of freedom are 
called complex

• Typically, when a joint has 
n>1 DOF it is modeled as 
a set of n one degree of 
freedom joints 



Hierarchical modeling

• Humans and animals can be 
modeled as hierarchical 
linkages

• These are represented as a 
tree structure of nodes 
connected by arcs

• The highest node of this 
structure is called the root 
node, and is the node that 
has position WRT the global 
coordinate system

• All other nodes have their 
position only as relative to 
the root node

• A node that has no child is 
called a leaf node

• Each node contains the info 
necessary to define the 
position of the corresponding 
part

• Two types of transformations 
are associated with an arc 
leading to a node:
– Rotation and translation of 

the object to its position of 
attachment to the father link

– Information responsible for 
the joint articulation 



Hierarchical modeling

• How does this work?
• The idea is simple, store at 

each node 
– Info on the node geometry
– The transformation (its rotation) 

with respect to the father node 
in the tree

• To obtain the position of the i-th 
node in the chain, one has to 
simply multiply the 
transformations to obtain the 
position of the current arc to be 
displayed

• The root node of course 
contains info of its absolute 
position and orientation in the 
global coord. system 

• To obtain the position of K2 in 
WCS, one will then have to 
multiply T0T1T2 

T0: transformation to 
       rotate K0 in WCS

T1: transformation to 
       rotate K1 WRT K0

    = rotation by q1

T2: transformation to 
       rotate K2 WRT K1

   = rotation by q2

q1

q2



Forward kinematics

• Traversing the tree of the 
nodes produces the correct 
picture of the object

• Traversal is done depth first 
until a leaf is met

• Once the corresponding arc 
is evaluated, the tree is 
backtracked up until the first 
unexplored node is met

• This is repeated until there 
are no nodes left inexplored

• A stack of transforms is kept
• When tree is traversed 

downwards, the 
corresponding trans-
formation is added to the 
stack

• Moving up pops the 
transformation from the 
stack

• Current node position is 
generated through 
multiplying the current stack 
transforms 



Forward kinematics

• To animate the whole, the 
rotation parameters are 
manipulated and the 
corresponding transforms 
are actualized

• A complete set of rotations 
on the whole arcs is called a 
pose

• A pose is obviously a vector 
of rotations

• Moving an object by 
positioning all its single arcs 
manually is called forward 
kinematics

• This is not so user-friendly
• Instead of specifying the 

whole links, the animator  
might want to specify the 
end position of the effector

• The computer computes 
then the position of the other 
links

• This is called inverse 
kinematics



Denavit-Hartenberg Notation

• Used in robotics
• Frames are described 

relative to an adiacent frame 
by 4 parameters describing 
position and orientation of a 
child frame WRT parent 
frame

• Let us take a simple 
configuration like in this 
drawing, where the link 
rotates only in one direction

• ai: link length

• Qi+1: joint angle, i.e. rotation 
around z axis with the last 
link direction as 0 angle 



Denavit-Hartenberg Notation

• If the joint is non planar, then 
one adds additional 
paramenters 

• For general case, the x axis of 
the i-th joint is defined as the ^ 
segment  to the z-axes of the 
i-th and (i+1)-th frames

• The link twist parameter ai is the 
rotation of the i+1th frame‘s z 
axis around the ^ relative to the 
z axis of the i-th frame

• The link offset di+1 specifies the 
distance along the z axis 
(rotated by ai) if the (i+1)-th 
frame from the i-th x axis

Name Symbol

Link offset di Distance xi-1 xi along zi

Joint angle qi Angle xi-1 xi about zi

Link length ai Distance zi zi+1 along xi

Link twist ai Angle zi zi+1 about xi

ai

ai

qi+1

di+1



Inverse kinematics

• The user gives the position of 
the end effector and the 
computer computes the joint 
angles

• One can have zero, one or 
multiple solutions
– No solution: overconstrained 

problem
– Multiple solutions: 

underconstrained problem
– Reachable workspace: volume 

that end effector can reach
– Dextrous workspace: volume 

that end effector can reach in 
any orientation

• Computing the solution to the 
problem can at times be tricky

• If the mechanism is simple 
enough, then the solution can 
be computed analytically

• Given an initial and a final pose 
vector, the solution can be 
computed by interpolating the 
values of the pose vector

• If the solution cannot be 
computed analytically, then 
there is a method based on the 
jacobian to compute 
incrementally a solution



Inverse kinematics

• Consider the figure: the 2nd 
arm rotates aroond the end 
of the 1st arm.

• It is clear that all positions 
between |L1-L2| and |L1+L2| 
can be reached by the arm.

• Set the origin like in the 
drawing

• In inverse kinematics, the 
user gives the (X,Y) position 
of the end effector

• Obviously there are only 
solutions if
 |L1-L2|≤√X2+Y2≤|L1+L2| 

q1

q2L1

L2

O x

y



Inverse kinematics

• cosqT=X/(X2+Y2)½

ÞqT=acos(X/(X2+Y2)½)

• Because of the cosine rule we 
have also that
  cos(q1-qT)=
  (L1

2+X2+Y2-L2
2)/2L1√X2+Y2

and
  cos(p- q2)=

   (L1
2+ L2

2-(X2+Y2) ½)/2L1L2

from which  we have
   q1=acos((L1

2+X2+Y2-L2
2)

              /2L1(X2+Y2) ½+ qT

and
q2=acos((L1

2+ L2
2-(X2+Y2))/2L1L2)

q1

p-q2

L1
L2

O x

y
(X,Y)

qT

• Note that two solutions are 
possible, simmetric with 
respect to the line joining the 
origin and (X,Y)



Inverse kinematics

• In general, for the quite simple armatures used in robotics it is 
possible to implement such analytic solutions 

• Unfortunately this works only for simple cases
• For more complicated armatures, the number of possible 

solutions there may be infinite solutions for a given effector 
location, and computations become so difficult to do that 
iterative numeric solution must be used



Using the Jacobian

• When the solution is not 
analytically computable, 
incremental methods 
converging to the solution 
are used

• To do this, the matrix of the 
partial derivatives has to be 
computed

• This is called the Jacobian

• Suppose you have six 
independent variables and 
you have a six unknowns 
that are functions of these 
variables
  y1=f1(x1,x2,x3,x4,x5,x6)
  y2=f2(x1,x2,x3,x4,x5,x6)
  y3=f3(x1,x2,x3,x4,x5,x6)
  y4=f4(x1,x2,x3,x4,x5,x6)
  y5=f5(x1,x2,x3,x4,x5,x6)
  y6=f6(x1,x2,x3,x4,x5,x6)
or, in vector notation, 
  Y=F(X)



Using the Jacobian

• What happens when the 
input variables change?

The equations can be written in 
differential form:
dyi=¶fi/¶x1 dx1+¶fi/¶x2 dx2

     +¶fi/¶x3 dx3+¶fi/¶x4 dx4 
     +¶fi/¶x5 dx5+¶fi/¶x6 dx6

or, in vector form 
     dY=¶F/¶X dX

• Given n equations in n 
variables, the matrix 

is called the Jacobian matrix 
of the system

• The Jacobian can be seen 
as a mapping of the 
velocities of X to velocities of 
Y

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

=

n

nnn

n

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

J









21

1

2

2

2

1

2

1

2

1

1

1



Using the Jacobian

• The Jacobian matrix is a 
linear function of the xi 
variables

• When time moves on to the 
next instant, X has changed 
and so has the Jacobian

• When the jacobian is applied to 
a linked appendage, the xi 
variables are the angles of the 
joints and the yi variables are 
end effector positions

where V is the vector of linear 
and rotational changes and 
represents the desired change 
in the end effector

• The desired change will be 
based on the difference 
between the current 
position/orientation to the 
desired goal configuration

XXJY  )(=

JJ )(JV =



Using the Jacobian

• Such velocities are vectors in 3 
space, so each has x,y,z 
components

•     is a vector of joint angle 
velocities which is the unkowns

• The Jacobian matrix J relates 
the two and is a function of the 
current pose

• Each term of the Jacobian 
relates the change of a specific 
joint to a specific change in the 
end effector

• The rotational change in the end 
effector is the velocity of the 
joint angle around its axis of 
revolution at the joint currently 
considered

• V=[vx,vy,vz,wx,wy,wz]T

J

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

=

n

zzz

n

yyy

n

xxx

vvv

vvv

J

J

w

J

w

J

w

JJJ

JJJ









21

21

21

[ ]nJJJJ  ,...,, 21=



Using the Jacobian

• How are the angular and 
linear velocities computed?

• One finds the difference 
between the end effector‘s 
current position and desired 
position

• The problem is to find out 
the best linear combination 
of velocities induced by the 
various joints that would 
achieve the desired 
velocities of the end effector

• The Jacobian is formed (by 
posing the problem in angle 
form)

• Once the Jacobian is 
formed, it has to be inverted 
in order to solve the problem

• If the Jacobian is square, 
then
– From

we have  
– If J-1 does not exist, the 

system is called singular

JJV =
J=

- VJ 1



Using the Jacobian

• If the Jacobian is non square 
then if the manipulator is 
redundant it is still possible 
to find solutions to the 
problem

• This is done by using the 
pseudoinverse matrix 
  J+=(JTJ)-1JT=JT(JJT)-1

• The pseudoinverse maps 
desired velocities of the end 
effector to the required 
velocities at the joint angle

• after making the following 
substitutions
     J+V=q
     JT(JJT)-1V=q
     b=(JJT)-1V
     (JJT)b=V
     JTb=q°                                   

(*)
• And LU decomposition can be 

used to solve this eq. for b
• Remember that the Jacobian 

varies at every instant
• This means that if a too big step 

is taken in angle space, the end 
effector might travel to the 
wrong place

(*) due to the clumsiness of the program I am using here, I 
have decided to indicate derivative vectors as q° instead than 
with a dot on top, which allows me to avoid an eq. editor



Using the Jacobian

• The pseudoinverse minimizes joint 
angle rates, but this might at times 
result in „innatural“ movements

• To better control the kinematic 
model, a control expression can be 
added to the pseudo inverse 
Jacobian solution

• The control expression is used to 
solve for certain control angle rates 
having certain attributes, and adds 
nothing to the desired end effector

•      q° =(J+J-I)z 
     V=J q° 
     V=J (J+J-I)z
     V=(JJ+J-J)z   
     V=(J-J)z
     V=0z 
     V=0        (*)

• To bias the angle towards a specific 
solution, desired angle gains a are 
added to the equations, and the 
equation is solved like before. 

• In fact, for a=0 one has the same 
pseudoinverse solution



Using the Jacobian 

• Simple Euler integration can be used at this point to update the 
joint angles

• At the next step, since the Jacobian has changed, the 
computations have to be redone and a new step is taken

• This is repeated until the end effector desired position is 
reached



Summary: articulated bodies 

• Very useful for enforcing certain relationships among elements 
of an animation

• Allows animator to concentrate on effector forgetting the rest of 
the body

• Damn hard to do, to date not real in real time
• Adding control expressions can be tricky
• No physics considered. Only kinematics



Charles A. Wüthrich

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++ 

End

C
op

yr
ig

ht
 (

c)
 1

98
8 

IL
M

 


	Slide 1
	Hierarchical modeling
	Hierarchical modeling
	Hierarchical modeling
	Hierarchical modeling
	Forward kinematics
	Forward kinematics
	Denavit-Hartenberg Notation
	Denavit-Hartenberg Notation
	Inverse kinematics
	Inverse kinematics
	Inverse kinematics
	Inverse kinematics
	Using the Jacobian
	Using the Jacobian
	Using the Jacobian
	Using the Jacobian
	Using the Jacobian
	Using the Jacobian
	Using the Jacobian
	Using the Jacobian
	Summary: articulated bodies
	Slide 23

