Computer Animation 6-Kinematics SS 18

Prof. Dr. Charles A. Wüthrich,
Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de

Hierarchical modeling

- Hierarchical modeling is placing constraints on objects organized in a tree like structure
- Examples can be:
- A planet system
- A robot arm
- The latter is quite common in graphics: it is constituted by objects connected end to end to form a multibody jointed chain
- These are called articulated figures
- They stem from robotics
- Robotics literature speaks with a different terminology:
- Manipulator: the sequence of objects connected by joints
- Links: the rigid objects making the chain
- Effector: the free end of the chain
- Frame: local coordinate system associated to each link

Hierarchical modeling

- In graphics, most of the links are revolute joints: here one link rotates around a fixed point of the other link
- The other interesting joint for graphics is the prismatic joint, where one link translates relative to the other
- Joints restrain the degree of freedom (DOF) of the links
- Joints with more than one degree of freedom are called complex
- Typically, when a joint has $n>1$ DOF it is modeled as a set of n one degree of freedom joints

Hierarchical modeling

- Humans and animals can be modeled as hierarchical linkages
- These are represented as a tree structure of nodes connected by arcs
- The highest node of this structure is called the root node, and is the node that has position WRT the global coordinate system
- All other nodes have their position only as relative to the root node
- A node that has no child is called a leaf node
- Each node contains the info necessary to define the position of the corresponding part
- Two types of transformations are associated with an arc leading to a node:
- Rotation and translation of the object to its position of attachment to the father link
- Information responsible for the joint articulation

Hierarchical modeling

- How does this work?
- The idea is simple, store at each node
- Info on the node geometry
- The transformation (its rotation) with respect to the father node in the tree
- To obtain the position of the i-th node in the chain, one has to simply multiply the transformations to obtain the position of the current arc to be displayed
- The root node of course contains info of its absolute position and orientation in the global coord. system
T_{0} : transformation to
rotate K_{0} in WCS
T_{1} : transformation to rotate K_{1} WRT K ${ }_{0}$ $=$ rotation by θ_{1}
T_{2} : transformation to rotate K_{2} WRT K ${ }_{1}$ $=$ rotation by θ_{2}
- To obtain the position of K_{2} in WCS, one will then have to multiply $\mathrm{T}_{0} \mathrm{~T}_{1} \mathrm{~T}_{2}$

Forward kinematics

- Traversing the tree of the nodes produces the correct picture of the object
- Traversal is done depth first until a leaf is met
- Once the corresponding arc is evaluated, the tree is backtracked up until the first unexplored node is met
- This is repeated until there are no nodes left inexplored
- A stack of transforms is kept
- When tree is traversed downwards, the corresponding transformation is added to the stack
- Moving up pops the transformation from the stack
- Current node position is generated through multiplying the current stack transforms

Forward kinematics

- To animate the whole, the rotation parameters are manipulated and the corresponding transforms are actualized
- A complete set of rotations on the whole arcs is called a pose
- A pose is obviously a vector of rotations
- Moving an object by positioning all its single arcs manually is called forward kinematics
- This is not so user-friendly
- Instead of specifying the whole links, the animator might want to specify the end position of the effector
- The computer computes then the position of the other links
- This is called inverse kinematics

Denavit-Hartenberg Notation

- Used in robotics
- Frames are described relative to an adiacent frame by 4 parameters describing position and orientation of a child frame WRT parent frame
- Let us take a simple configuration like in this drawing, where the link rotates only in one directior

Denavit-Hartenberg Notation

- If the joint is non planar, then one adds additional paramenters
- For general case, the x axis of the i-th joint is defined as the \perp segment to the z-axes of the i-th and (i+1)-th frames
- The link twist parameter α_{i} is the

Name	Symbol	
Link offset	d_{i}	Distance $\mathrm{x}_{\mathrm{i}-1} \mathrm{x}_{\mathrm{i}}$ along z_{i}
Joint angle	θ_{i}	Angle $\mathrm{x}_{\mathrm{i}-1} \mathrm{x}_{\mathrm{i}}$ about z_{i}
Link length	a_{i}	Distance $\mathrm{z}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}+1}$ along x_{i}
Link twist	α_{i}	Angle $\mathrm{z}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}+1}$ about x_{i}

- The link offset d_{i+1} specifies the distance along the z axis (rotated by α_{i}) if the ($i+1$)-th frame from the i-th x axis

Inverse kinematics

- The user gives the position of the end effector and the computer computes the joint angles
- One can have zero, one or multiple solutions
- No solution: overconstrained problem
- Multiple solutions: underconstrained problem
- Reachable workspace: volume that end effector can reach
- Dextrous workspace: volume that end effector can reach in any orientation
- Computing the solution to the problem can at times be tricky
- If the mechanism is simple enough, then the solution can be computed analytically
- Given an initial and a final pose vector, the solution can be computed by interpolating the values of the pose vector
- If the solution cannot be computed analytically, then there is a method based on the jacobian to compute incrementally a solution

Inverse kinematics

- Consider the figure: the $2^{\text {nd }}$ arm rotates aroond the end of the $1^{\text {st }}$ arm.
- It is clear that all positions between $\left|L_{1}-L_{2}\right|$ and $\left|L_{1}+L_{2}\right|$ can be reached by the arm.
- Set the origin like in the drawing
- In inverse kinematics, the user gives the (X, Y) position of the end effector
- Obviously there are only solutions if

$$
\left|\mathrm{L}_{1}-\mathrm{L}_{2}\right| \leq \sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}} \leq\left|\mathrm{L}_{1}+\mathrm{L}_{2}\right|
$$

Inverse kinematics

- $\cos \theta_{\mathrm{T}}=\mathrm{X} /\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}$
$\Rightarrow \theta_{\mathrm{T}}=\operatorname{acos}\left(\mathrm{X} /\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}\right)$
- Because of the cosine rule we have also that

$$
\begin{aligned}
& \cos \left(\theta_{1}-\theta_{\mathrm{T}}\right)= \\
& \left(\mathrm{L}_{1}^{2}+\mathrm{X}^{2}+\mathrm{Y}^{2}-\mathrm{L}_{2}^{2}\right) / 2 \mathrm{~L}_{1} \sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}} \\
& \text { and } \\
& \cos \left(\pi-\theta_{2}\right)= \\
& \left(\mathrm{L}_{1}{ }^{2}+\mathrm{L}_{2}^{2}-\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}\right) / 2 \mathrm{~L}_{1} \mathrm{~L}_{2}
\end{aligned}
$$

from which we have

$$
\begin{gathered}
\theta_{1}=\operatorname{acos}\left(\left(L_{1}^{2}+X^{2}+Y^{2}-L_{2}^{2}\right)\right. \\
12 L_{1}\left(X^{2}+Y^{2}\right)^{1 / 2}+\theta_{T}
\end{gathered}
$$

and
$\theta_{2}=\operatorname{acos}\left(\left(\mathrm{L}_{1}{ }^{2}+\mathrm{L}_{2}{ }^{2}-\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)\right) / 2 \mathrm{~L}_{1} \mathrm{~L}_{2}\right)$

- Note that two solutions are possible, simmetric with respect to the line joining the origin and (X, Y)

Inverse kinematics

- In general, for the quite simple armatures used in robotics it is possible to implement such analytic solutions
- Unfortunately this works only for simple cases
- For more complicated armatures, the number of possible solutions there may be infinite solutions for a given effector location, and computations become so difficult to do that iterative numeric solution must be used

Using the Jacobian

- When the solution is not analytically computable, incremental methods converging to the solution are used
- To do this, the matrix of the partial derivatives has to be computed
- This is called the Jacobian
- Suppose you have six independent variables and you have a six unknowns that are functions of these variables

$$
\begin{aligned}
& y_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& y_{2}=f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& y_{3}=f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& y_{4}=f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& y_{5}=f_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& y_{6}=f_{6}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& \text { or, in vector notation, } \\
& \underline{Y}=\underline{F}(\underline{X})
\end{aligned}
$$

Using the Jacobian

- What happens when the input variables change?
The equations can be written in differential form: $\mathrm{dy}_{\mathrm{i}}=\partial f_{i} / \partial \mathrm{x}_{1} \mathrm{dx}_{1}+\partial f_{i} / \partial \mathrm{x}_{2} \mathrm{dx}_{2}$ $+\partial f_{i} / \partial \mathrm{x}_{3} \mathrm{dx}_{3}+\partial f_{i} / \partial \mathrm{x}_{4} \mathrm{dx}_{4}$ $+\partial f_{i} / \partial x_{5} d x_{5}+\partial f_{i} / \partial x_{6} \mathrm{dx}_{6}$
or, in vector form
$\mathrm{d} \underline{Y}=\partial \underline{F} / \partial \underline{X} d \underline{X}$
- Given n equations in n variables, the matrix

$$
J=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
$$

is called the Jacobian matrix of the system

- The Jacobian can be seen as a mapping of the velocities of \underline{X} to velocities of Y

Using the Jacobian

- The Jacobian matrix is a linear function of the x_{i} variables
- When time moves on to the next instant, X has changed and so has the Jacobian

$$
\dot{Y}=J(X) \dot{X}
$$

- When the jacobian is applied to a linked appendage, the x_{i} variables are the angles of the joints and the y_{i} variables are end effector positions

$$
V=J(\vartheta) \dot{\vartheta}
$$

where V is the vector of linear and rotational changes and represents the desired change in the end effector

- The desired change will be based on the difference between the current position/orientation to the desired goal configuration

Using the Jacobian

- Such velocities are vectors in 3 space, so each has x, y, z components
- ϑ is a vector of joint angle velocities which is the unkowns
- The Jacobian matrix J relates the two and is a function of the current pose
- Each term of the Jacobian relates the change of a specific joint to a specific change in the end effector
- The rotational change in the end effector is the velocity of the joint angle around its axis of revolution at the joint currently considered
- $\mathrm{V}=\left[\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}, \omega_{\mathrm{x}}, \omega_{\mathrm{y}}, \omega_{\mathrm{z}}\right]^{\top}$

$$
\begin{gathered}
\dot{9}=\left\lfloor\dot{\xi}_{1}, \dot{\vartheta}_{2}, \ldots, \dot{\vartheta}_{n}\right\rfloor \\
J=\left[\begin{array}{cccc}
\frac{\partial v_{x}}{\partial \vartheta_{1}} & \frac{\partial v_{x}}{\partial \vartheta_{2}} & \cdots & \frac{\partial v_{x}}{\partial \vartheta_{n}} \\
\frac{\partial v_{y}}{\partial \vartheta_{1}} & \frac{\partial v_{y}}{\partial \vartheta_{2}} & \cdots & \frac{\partial v_{y}}{\partial \vartheta_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \omega_{z}}{\partial \vartheta_{1}} & \frac{\partial \omega_{z}}{\partial \vartheta_{2}} & \cdots & \frac{\partial \omega_{z}}{\partial \vartheta_{n}}
\end{array}\right]
\end{gathered}
$$

Using the Jacobian

- How are the angular and linear velocities computed?
- One finds the difference between the end effector's current position and desired position
- The problem is to find out the best linear combination of velocities induced by the various joints that would achieve the desired velocities of the end effector
- The Jacobian is formed (by posing the problem in angle form)
- Once the Jacobian is formed, it has to be inverted in order to solve the problem
- If the Jacobian is square, then
$-\underset{\text { we have }}{ } \quad$ From $=\int 9, \dot{9}$
- If J^{-1} does not exist, the system is called singular

Using the Jacobian

- If the Jacobian is non square then if the manipulator is redundant it is still possible to find solutions to the problem
- This is done by using the pseudoinverse matrix $\mathrm{J}^{+}=\left(\mathrm{J}^{\top} \mathrm{J}\right)^{-1} \mathrm{~J}^{\top}=\mathrm{J}^{\top}\left(\mathrm{JJ}^{\top}\right)^{-1}$
- The pseudoinverse maps desired velocities of the end effector to the required velocities at the joint angle
- after making the following substitutions
$\mathrm{J}+\mathrm{V}=\theta$
$\mathrm{J}^{\mathrm{T}}(\mathrm{JJT})^{-1} \mathrm{~V}=\theta$
$\beta=(\mathrm{JJT})^{-1} \mathrm{~V}$
($\left.\mathrm{JJ} \mathrm{J}^{\mathrm{T}}\right) \beta=\mathrm{V}$
$\mathrm{J}^{\top} \beta=\theta^{\circ}$
(*)
- And LU decomposition can be used to solve this eq. for β
- Remember that the Jacobian varies at every instant
- This means that if a too big step is taken in angle space, the end effector might travel to the wrong place
(*) due to the clumsiness of the program I am using here, I have decided to indicate derivative vectors as θ° instead than with a dot on top, which allows me to avoid an eq. editor

Using the Jacobian

- The pseudoinverse minimizes joint angle rates, but this might at times result in „innatural" movements
- To better control the kinematic model, a control expression can be added to the pseudo inverse Jacobian solution
- The control expression is used to solve for certain control angle rates having certain attributes, and adds nothing to the desired end effector
- $\quad \theta^{\circ}=\left(\mathrm{J}^{+} \mathrm{J}-\mathrm{I}\right) \mathrm{z}$
$V=J \theta^{\circ}$
$V=J\left(J^{+} J-I\right) z$
$\mathrm{V}=(\mathrm{JJ}+\mathrm{J}-\mathrm{J}) \mathrm{z}$
$\mathrm{V}=(\mathrm{J}-\mathrm{J}) \mathrm{z}$
$\mathrm{V}=0 \mathrm{z}$
$\mathrm{V}=0$
(*)
- To bias the angle towards a specific solution, desired angle gains α are added to the equations, and the equation is solved like before.
- In fact, for $\alpha=0$ one has the same pseudoinverse solution

Using the Jacobian

- Simple Euler integration can be used at this point to update the joint angles
- At the next step, since the Jacobian has changed, the computations have to be redone and a new step is taken
- This is repeated until the end effector desired position is reached

Summary: articulated bodies

- Very useful for enforcing certain relationships among elements of an animation
- Allows animator to concentrate on effector forgetting the rest of the body
- Damn hard to do, to date not real in real time
- Adding control expressions can be tricky
- No physics considered. Only kinematics

End

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

