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Hierarchical modeling

• Hierarchical modeling is 
placing constraints on 
objects organized in a tree 
like structure

• Examples can be: 
– A planet system
– A robot arm

• The latter is quite common in 
graphics: it is constituted by 
objects connected end to 
end to form a multibody 
jointed chain

• These are called articulated 
figures

• They stem from robotics
• Robotics literature speaks 

with a different terminology:
– Manipulator: the sequence 

of objects connected by 
joints

– Links: the rigid objects 
making the chain

– Effector: the free end of the 
chain

– Frame: local coordinate 
system associated to each 
link



Hierarchical modeling

• In graphics, most of the 
links are revolute joints: 
here one link rotates 
around a fixed point of the 
other link

• The other interesting joint 
for graphics is the 
prismatic joint, where one 
link translates relative to 
the other

• Joints restrain the degree 
of freedom (DOF) of the 
links

• Joints with more than one 
degree of freedom are 
called complex

• Typically, when a joint has 
n>1 DOF it is modeled as 
a set of n one degree of 
freedom joints 



Hierarchical modeling

• Humans and animals can be 
modeled as hierarchical 
linkages

• These are represented as a 
tree structure of nodes 
connected by arcs

• The highest node of this 
structure is called the root 
node, and is the node that 
has position WRT the global 
coordinate system

• All other nodes have their 
position only as relative to 
the root node

• A node that has no child is 
called a leaf node

• Each node contains the info 
necessary to define the 
position of the corresponding 
part

• Two types of transformations 
are associated with an arc 
leading to a node:
– Rotation and translation of 

the object to its position of 
attachment to the father link

– Information responsible for 
the joint articulation 



Hierarchical modeling

• How does this work?
• The idea is simple, store at 

each node 
– Info on the node geometry
– The transformation (its rotation) 

with respect to the father node 
in the tree

• To obtain the position of the i-th 
node in the chain, one has to 
simply multiply the 
transformations to obtain the 
position of the current arc to be 
displayed

• The root node of course 
contains info of its absolute 
position and orientation in the 
global coord. system 

• To obtain the position of K2 in 
WCS, one will then have to 
multiply T0T1T2 

T0: transformation to 
       rotate K0 in WCS

T1: transformation to 
       rotate K1 WRT K0

    = rotation by q1

T2: transformation to 
       rotate K2 WRT K1

   = rotation by q2

q1

q2



Forward kinematics

• Traversing the tree of the 
nodes produces the correct 
picture of the object

• Traversal is done depth first 
until a leaf is met

• Once the corresponding arc 
is evaluated, the tree is 
backtracked up until the first 
unexplored node is met

• This is repeated until there 
are no nodes left inexplored

• A stack of transforms is kept
• When tree is traversed 

downwards, the 
corresponding trans-
formation is added to the 
stack

• Moving up pops the 
transformation from the 
stack

• Current node position is 
generated through 
multiplying the current stack 
transforms 



Forward kinematics

• To animate the whole, the 
rotation parameters are 
manipulated and the 
corresponding transforms 
are actualized

• A complete set of rotations 
on the whole arcs is called a 
pose

• A pose is obviously a vector 
of rotations

• Moving an object by 
positioning all its single arcs 
manually is called forward 
kinematics

• This is not so user-friendly
• Instead of specifying the 

whole links, the animator  
might want to specify the 
end position of the effector

• The computer computes 
then the position of the other 
links

• This is called inverse 
kinematics



Denavit-Hartenberg Notation

• Used in robotics
• Frames are described 

relative to an adiacent frame 
by 4 parameters describing 
position and orientation of a 
child frame WRT parent 
frame

• Let us take a simple 
configuration like in this 
drawing, where the link 
rotates only in one direction

• ai: link length

• Qi+1: joint angle, i.e. rotation 
around z axis with the last 
link direction as 0 angle 



Denavit-Hartenberg Notation

• If the joint is non planar, then 
one adds additional 
paramenters 

• For general case, the x axis of 
the i-th joint is defined as the ^ 
segment  to the z-axes of the 
i-th and (i+1)-th frames

• The link twist parameter ai is the 
rotation of the i+1th frame‘s z 
axis around the ^ relative to the 
z axis of the i-th frame

• The link offset di+1 specifies the 
distance along the z axis 
(rotated by ai) if the (i+1)-th 
frame from the i-th x axis

Name Symbol

Link offset di Distance xi-1 xi along zi

Joint angle qi Angle xi-1 xi about zi

Link length ai Distance zi zi+1 along xi

Link twist ai Angle zi zi+1 about xi

ai

ai

qi+1

di+1



Inverse kinematics

• The user gives the position of 
the end effector and the 
computer computes the joint 
angles

• One can have zero, one or 
multiple solutions
– No solution: overconstrained 

problem
– Multiple solutions: 

underconstrained problem
– Reachable workspace: volume 

that end effector can reach
– Dextrous workspace: volume 

that end effector can reach in 
any orientation

• Computing the solution to the 
problem can at times be tricky

• If the mechanism is simple 
enough, then the solution can 
be computed analytically

• Given an initial and a final pose 
vector, the solution can be 
computed by interpolating the 
values of the pose vector

• If the solution cannot be 
computed analytically, then 
there is a method based on the 
jacobian to compute 
incrementally a solution



Inverse kinematics

• Consider the figure: the 2nd 
arm rotates aroond the end 
of the 1st arm.

• It is clear that all positions 
between |L1-L2| and |L1+L2| 
can be reached by the arm.

• Set the origin like in the 
drawing

• In inverse kinematics, the 
user gives the (X,Y) position 
of the end effector

• Obviously there are only 
solutions if
 |L1-L2|≤√X2+Y2≤|L1+L2| 

q1

q2L1

L2

O x

y



Inverse kinematics

• cosqT=X/(X2+Y2)½

ÞqT=acos(X/(X2+Y2)½)

• Because of the cosine rule we 
have also that
  cos(q1-qT)=
  (L1

2+X2+Y2-L2
2)/2L1√X2+Y2

and
  cos(p- q2)=

   (L1
2+ L2

2-(X2+Y2) ½)/2L1L2

from which  we have
   q1=acos((L1

2+X2+Y2-L2
2)

              /2L1(X2+Y2) ½+ qT

and
q2=acos((L1

2+ L2
2-(X2+Y2))/2L1L2)

q1

p-q2

L1
L2

O x

y
(X,Y)

qT

• Note that two solutions are 
possible, simmetric with 
respect to the line joining the 
origin and (X,Y)



Inverse kinematics

• In general, for the quite simple armatures used in robotics it is 
possible to implement such analytic solutions 

• Unfortunately this works only for simple cases
• For more complicated armatures, the number of possible 

solutions there may be infinite solutions for a given effector 
location, and computations become so difficult to do that 
iterative numeric solution must be used



Using the Jacobian

• When the solution is not 
analytically computable, 
incremental methods 
converging to the solution 
are used

• To do this, the matrix of the 
partial derivatives has to be 
computed

• This is called the Jacobian

• Suppose you have six 
independent variables and 
you have a six unknowns 
that are functions of these 
variables
  y1=f1(x1,x2,x3,x4,x5,x6)
  y2=f2(x1,x2,x3,x4,x5,x6)
  y3=f3(x1,x2,x3,x4,x5,x6)
  y4=f4(x1,x2,x3,x4,x5,x6)
  y5=f5(x1,x2,x3,x4,x5,x6)
  y6=f6(x1,x2,x3,x4,x5,x6)
or, in vector notation, 
  Y=F(X)



Using the Jacobian

• What happens when the 
input variables change?

The equations can be written in 
differential form:
dyi=¶fi/¶x1 dx1+¶fi/¶x2 dx2

     +¶fi/¶x3 dx3+¶fi/¶x4 dx4 
     +¶fi/¶x5 dx5+¶fi/¶x6 dx6

or, in vector form 
     dY=¶F/¶X dX

• Given n equations in n 
variables, the matrix 

is called the Jacobian matrix 
of the system

• The Jacobian can be seen 
as a mapping of the 
velocities of X to velocities of 
Y
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Using the Jacobian

• The Jacobian matrix is a 
linear function of the xi 
variables

• When time moves on to the 
next instant, X has changed 
and so has the Jacobian

• When the jacobian is applied to 
a linked appendage, the xi 
variables are the angles of the 
joints and the yi variables are 
end effector positions

where V is the vector of linear 
and rotational changes and 
represents the desired change 
in the end effector

• The desired change will be 
based on the difference 
between the current 
position/orientation to the 
desired goal configuration

XXJY  )(=

JJ )(JV =



Using the Jacobian

• Such velocities are vectors in 3 
space, so each has x,y,z 
components

•     is a vector of joint angle 
velocities which is the unkowns

• The Jacobian matrix J relates 
the two and is a function of the 
current pose

• Each term of the Jacobian 
relates the change of a specific 
joint to a specific change in the 
end effector

• The rotational change in the end 
effector is the velocity of the 
joint angle around its axis of 
revolution at the joint currently 
considered

• V=[vx,vy,vz,wx,wy,wz]T

J
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Using the Jacobian

• How are the angular and 
linear velocities computed?

• One finds the difference 
between the end effector‘s 
current position and desired 
position

• The problem is to find out 
the best linear combination 
of velocities induced by the 
various joints that would 
achieve the desired 
velocities of the end effector

• The Jacobian is formed (by 
posing the problem in angle 
form)

• Once the Jacobian is 
formed, it has to be inverted 
in order to solve the problem

• If the Jacobian is square, 
then
– From

we have  
– If J-1 does not exist, the 

system is called singular

JJV =
J=

- VJ 1



Using the Jacobian

• If the Jacobian is non square 
then if the manipulator is 
redundant it is still possible 
to find solutions to the 
problem

• This is done by using the 
pseudoinverse matrix 
  J+=(JTJ)-1JT=JT(JJT)-1

• The pseudoinverse maps 
desired velocities of the end 
effector to the required 
velocities at the joint angle

• after making the following 
substitutions
     J+V=q
     JT(JJT)-1V=q
     b=(JJT)-1V
     (JJT)b=V
     JTb=q°                                   

(*)
• And LU decomposition can be 

used to solve this eq. for b
• Remember that the Jacobian 

varies at every instant
• This means that if a too big step 

is taken in angle space, the end 
effector might travel to the 
wrong place

(*) due to the clumsiness of the program I am using here, I 
have decided to indicate derivative vectors as q° instead than 
with a dot on top, which allows me to avoid an eq. editor



Using the Jacobian

• The pseudoinverse minimizes joint 
angle rates, but this might at times 
result in „innatural“ movements

• To better control the kinematic 
model, a control expression can be 
added to the pseudo inverse 
Jacobian solution

• The control expression is used to 
solve for certain control angle rates 
having certain attributes, and adds 
nothing to the desired end effector

•      q° =(J+J-I)z 
     V=J q° 
     V=J (J+J-I)z
     V=(JJ+J-J)z   
     V=(J-J)z
     V=0z 
     V=0        (*)

• To bias the angle towards a specific 
solution, desired angle gains a are 
added to the equations, and the 
equation is solved like before. 

• In fact, for a=0 one has the same 
pseudoinverse solution



Using the Jacobian 

• Simple Euler integration can be used at this point to update the 
joint angles

• At the next step, since the Jacobian has changed, the 
computations have to be redone and a new step is taken

• This is repeated until the end effector desired position is 
reached



Summary: articulated bodies 

• Very useful for enforcing certain relationships among elements 
of an animation

• Allows animator to concentrate on effector forgetting the rest of 
the body

• Damn hard to do, to date not real in real time
• Adding control expressions can be tricky
• No physics considered. Only kinematics
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