Computer Animation Natural Phenomena SS 18

Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik Bauhaus-Universität Weimar caw AT medien.uni-weimar.de

Introduction

- One of the most challenging parts of animation systems is trying to model nature
- Many techniques and special mathematics is needed to do so
- Since nature is complex, it is often very time consuming to simulate nature
- Typical simulations include plants, water, clouds

Plants

- Plants possess an extraordinary complexity
- Lots of work was done on modeling the static representation of plants (Prusinkiewicz & Lindenmayer)
- Their observation was that plants develop according to a recursive branching structure
- If one understands how recursive branching works, one can model its growing process
- On the book there is one page explaining the underlying botanical concepts

L-systems

- Plants are simulated through L-systems
- L-Systems are parallel rewriting systems
- Simplest class of L-systems: D0L-system
 - D: deterministic
 - 0: productions are context free
- A D0L-system is a set of production rules $\alpha_i \longrightarrow \beta_i$, where
 - α_i : predecessor symbol
 - β_i : sequence of symbols
- In deterministic L-systems, $\alpha_{\rm i}$ occur only once on the left hand side of the rules

- An initial string, the axiom, is given
- All symbols in the string that have production rules are applied to the current string at each step
 - This means replacing all symbols with a production rule
 - If there is no production rule for a symbol $\alpha_{\rm i}$, the production $\alpha_{\rm i} \longrightarrow \alpha_{\rm i}$ is applied
- Applying all production rules generates a new string
- This is done recursively until no production rules can be applied

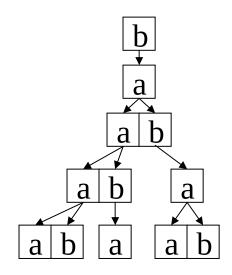
Example

- Let the alphabet consist of the letters a,b
- Suppose we have two production rules:
 - $-A \longrightarrow ab$
 - $-B \longrightarrow a$
- And suppose that the axiom is b
- Then we obtain that we can generate the following strings

b a ab aba abaab

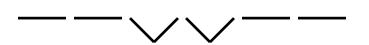
...

Or, more figuratively:



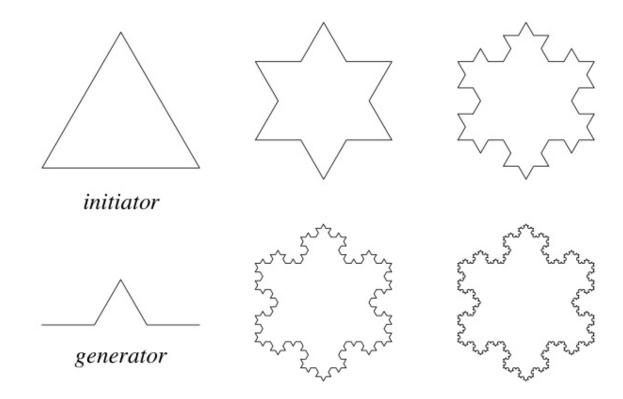
Interpreting L-systems

- The strings produced by L-systems are just strings
- To produce images from them one must interpret those strings geometrically
- There are two common ways of doing this
- Geometric replacement: each symbol of a string is replaced by a geometric element
 - Example: replace symbol X with a straight line and symbol Y with a
 V shape so that the top of the V sligns with the end of the straight
 line
 - Example: XXYYXX



The Koch curve

- The Koch curve is one of the most famous Lindenmayer generated systems.
- Fractal curve!



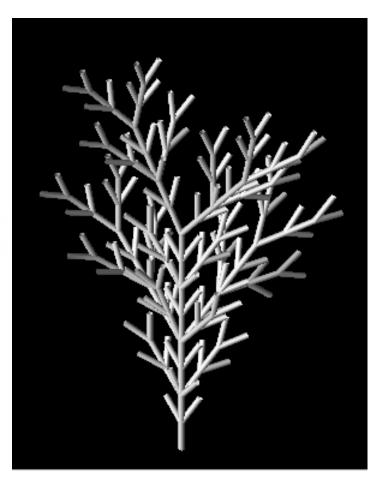
Interpreting L-systems

- Use turtle graphics: the symbols of the string are interpreted as drawing commands given to a simple cursor called turtle
- The state of a turtle at a given time is expressed as a triple (x,y,α) where x,y give the coordinate of the turtle in the plane, and α gives the direction of it is pointing to with respect to a given reference direction

- Two more parameters defined by the user are also used:
 - *d*: linear step size
 - δ : rotational step size
- Given the reference direction, the initial state of the turtle (x_o, y_o, α_o) , and the parameters d and δ the user can generate the turtle interpretation of the string containing some symbols of the alphabet

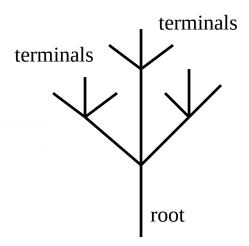
L-systems

- Even more useful: if the symbols are interpreted as cells, or parts of a plant, the generation process of an L-system can simulate the growing of a plant
- The interpretation would be: substitute last year's leaf buds with a small piece of branch
- Or,, a branch will be replaced by three branches centered in the direction of the previous branch and having an angle between them of 22 degrees"
- Through this, the growing process of a plant can be simulated



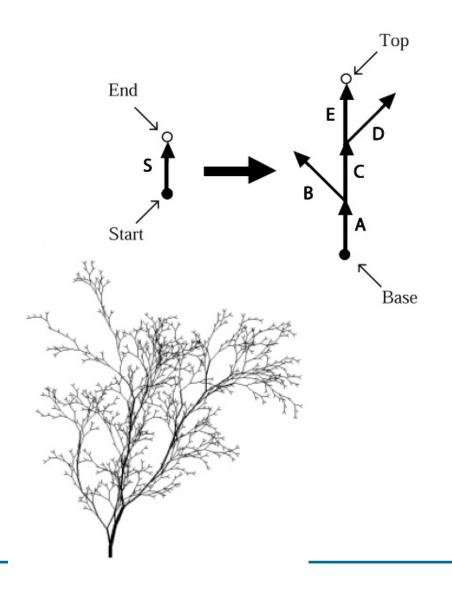
Rooted trees

- Lindenmayer systems (or Lsystems) such as the ones seen before are great to model branching structures, such as trees
- Among branching structures, rooted trees are used to model trees
- A rooted tree is a collection of edges which are labeled and directed
- A rooted tree has one particular edge: the root.
- All edges are similar to branch segments on a tree:
 - they connect to a father segments, and
 - either have themselves children segments, in which case they are called *intermediate* segments
 - Or have no children and are called terminal segments or apex

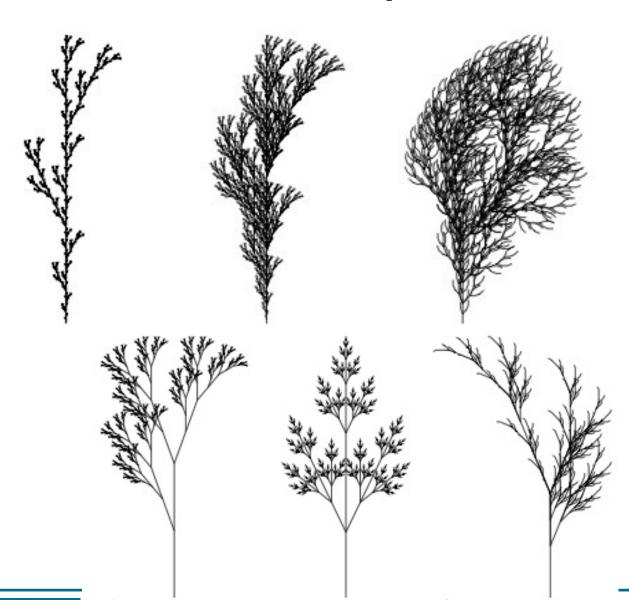


Axial trees

- Among rooted trees there are axial trees:
 - For each intermediate node, at most one of its children is distinguished
 - The other children are called side or lateral segments
- An axis is a sequence of incident segments such that
 - It originates at the root or at a lateral branch
 - It ends with an apex
 - It is made of consecutive segments
- An axis, with its descendants is called a *branch*.
- On trees, productions "look" much more complicated, but they are not: simple substitutions
- If productions are context free, we speak of a tree D0L-system



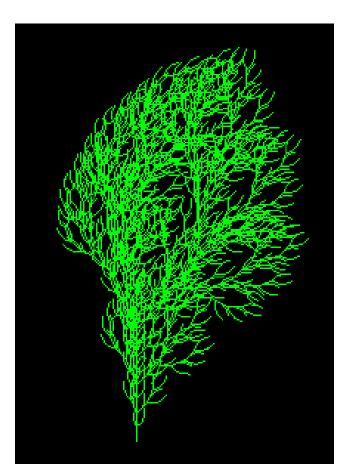
Some examples



Courtesy *Hung-Wen Chen*, Cornell University

Bracketed L-systems

- In bracketed L-systems, brackets are used to mark the beginning and end of additional offshoots of the main branch
- Production rules are context free but non deterministic, i.e. there are more than one production rule per symbol
- Which one is chosen? It can either be chosen at random or follow certain rules, which can be derived for example by "simulated temperature of that year"
- Let's get into more detail



- Context free L-systems are are deterministic:
 - given the same seed, they reproduce always the same tree
- Is this realistic?
 - Not much

- Context free L-systems are are deterministic:
 - given the same seed, they reproduce always the same tree
- Is this realistic?
 - Not much
 - If nature would handle like this, we would have all trees looking the same.
 - This is why scientists have added a small but relevant modification to L-systems.....

- Context free L-systems are are deterministic:
 - given the same seed, they reproduce always the same tree
- Is this realistic?
 - Not much
 - If nature would handle like this, we would have all trees looking the same.
 - This is why scientists have added a small but relevant modification to L-systems.....
 - ...by adding randomness to the transition function!

- And how do I add randomness to the transition function?
- Remember, an L-system $L=<\Sigma,\alpha,\Pi>$ was a triplet of
 - An alphabet Σ .
 - An axiom $\alpha \in \Sigma^*$.
 - A set of production (or rewriting) rules $\Pi: \Sigma \to \Sigma^*$.
- Instead of fixed rewriting rules, we need to add a probability function

P:
$$\Pi \rightarrow [0,1]$$

that associates to the production rules a probability of being chosen.

 For a given symbol A of the alphabet we will have therefore a list of production rules

$$A \rightarrow \alpha_0$$
 (prob. p_0)
 $A \rightarrow \alpha_1$ (prob. p_1)

. . . .

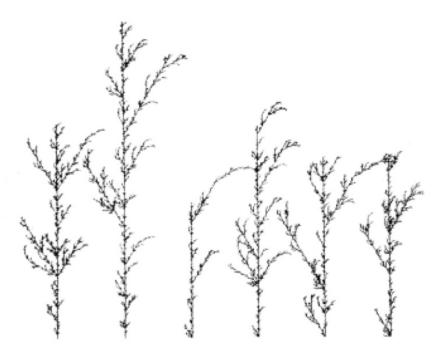
 $A \rightarrow \alpha_h$ (prob. p_h), whereby the sum of these probabilities equal 1.

• Example:

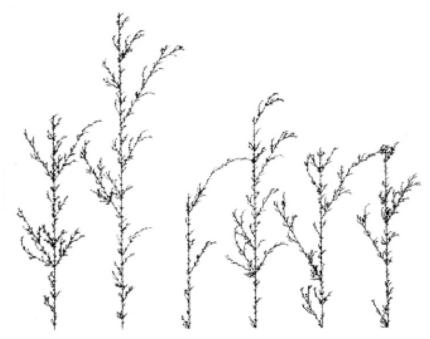
$$A \rightarrow ABA$$
 (prob. 25%)
 $A \rightarrow ABAA$ (prob. 75%)

- Any time we have to apply a production rule to the letter of the alphabet, we draw a random number in [0,1].
- If it is smaller than 0.25 we choose the 1st production, otherwise the 2nd.
- The new productions are called stochastic productions

- This way from the same axiom one can derive different branching shapes...
- ...and more realistic pictures



- This way from the same axiom one can derive different branching shapes...
- ...and more realistic pictures

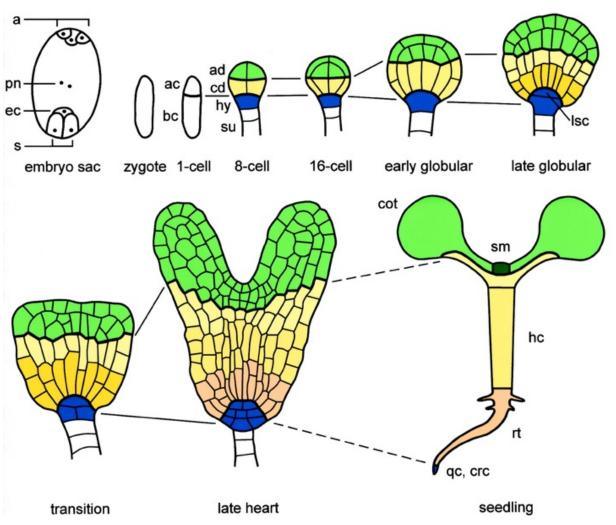


 It looks good, but does not model what nature does!

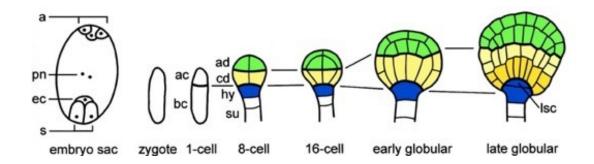
A further example

- Let us get back to the example of the last time....
- For a long time, botanists have been trying to describe and understand how plants develop
- For a long time, the plant called arabidopsis thaliana has been used as a good observation object for plant growth
- There are plenty of observations of how this plant develops from a cell

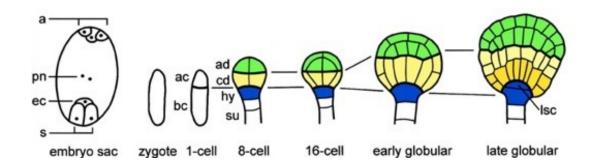
A further example



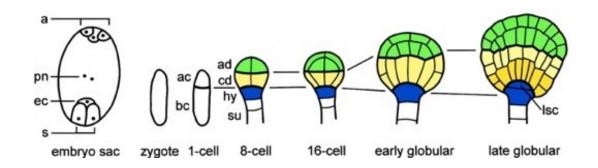
First phase of growth *arabidopsis thaliana*



What can one learn from this picture?



- What can one learn from this picture?
 - Cells differentiate in time
 - Start growing in different ways
 - depending on their position
 - and on their surroundings
 - Unfortunately our cell development model is too rigid: a cell develops always in the same way.
 - If the production rules in Π are such that the left hand side is a single element, the Lindenmayer system is called a *D0L-system*, or *context free Lindenmayer* system
 - BUT one can learn from this!

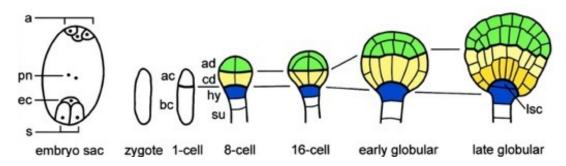


Remember: we had for D0L-systems that the productions were

$$\Pi: \Sigma \to \Sigma^*$$

$$a_i \rightarrow \alpha_i$$

- Who says that at the left hand side of the productions we need to have a single element?
- Can't it be that depending on what the symbol to which we apply the production has around we can have two different production rules applied?
- If a_i is preceded by a certain string, and followed by a certain other string, we apply one production rule.
- If instead it is preceded and followed by other strings we apply another rule.



In this case we have that the productions are still defined similarly

$$\Pi: \Sigma \longrightarrow \Sigma^*$$

but they associate to a

$$\alpha_r a_i \alpha_s \rightarrow \alpha_i$$

in case that a_i is preceded by α_r and followed by α_s , while if it is preceded and followed by two different strings α_p and α_q , with

 $\alpha_{\rm p} \! \neq \! \alpha_{\rm r}$ and $\alpha_{\rm q} \! \neq \! \alpha_{\rm s}$, then a different production rule is applied:

$$\alpha_{p}a_{i}\alpha_{q} \rightarrow \alpha_{m}$$

with $a_m \neq a_i$.

- This means that AABC gets transformed into AADC, but CCBA into CCEA
- L-systems such that they use such production rules are called *D2L-systems*, whereby the 2L indicates that both sides of the letter to be substituted influence the production to be applied.
- If instead the production rule is influenced only by one side, they are called *D1L-systems*.
- D1L- and D2L-sytems are said to be context sensitive systems.

- Let us recap the definition:
- A *D2L-system* is a triplet L= $\langle \Sigma, \alpha, \Pi \rangle$, where
 - $^ \Sigma$ is an alphabet, Σ^* is the set of the juxtaposition of letters of Σ .
 - $-\alpha \in \Sigma^*$ is an axiom
 - The context sensitive set of production rules applied to letters of the alphabet is

$$\Pi: \quad \Sigma \longrightarrow \quad \Sigma^*$$

$$\alpha_r a_i \alpha_s \rightarrow \alpha_j$$

$$\alpha_p a_i \alpha_q \rightarrow \alpha_m$$

- Context sensitive L-systems model better nature, since you can make the production rules dependent on the context you immerse your L-system into.
- For example, trees in a forest develop new branches only at the tip, so as to maximize light captured...

- Context sensitive L-systems model better nature, since you can make the production rules dependent on the context you immerse your L-system into.
- ...or external forces, such as wind, force trees to develop opposite of the direction of prevailing wind...

- Context sensitive L-systems model better nature, since you can make the production rules dependent on the context you immerse your L-system into.
- ..or trees moving away from the façade of a house to collect more light.

- Context sensitive L-systems model better nature, since you can make the production rules dependent on the context you immerse your L-system into.
- ..or trees moving away from the façade of a house to collect more light.
- All these factors can be incorporated into the production rules to model nature.

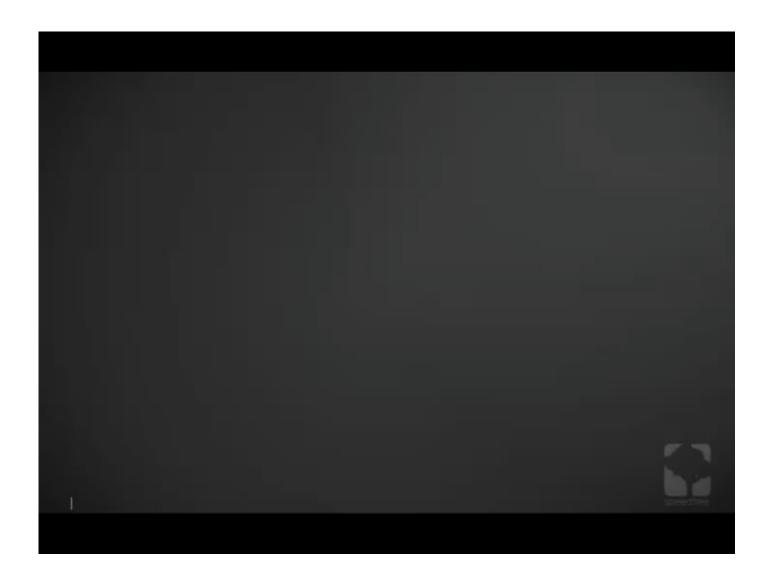
Parametric and timed L-systems

- In parametric L-systems, symbols can have one or more parameters associated to them
- These parameters can be set and modified by the productions of the Lsystem
- Additionally, optional conditional terms can be associated with the productions
- All this to simulate differences in the change through time in a plant

Parametric and timed L-systems

- Timed L-systems add two things
 - A global time variable helping control the evolution of a string And a local age value τ_i assoc. with each letter μ_i .
 - The production $(\mu_0, \beta_0) \rightarrow ((\mu_1, \alpha_1), ..., (\mu_n, \alpha_n))$ indicates that μ_0 has a terminal age of β_0 .
 - Each symbol has one and only one terminal age
 - When a new symbol is generated, it is initialized at age 0 and exist until it reaches
 - After its lifespan ends, the symbol will become something else and "mutate"

Let's look at where we are!



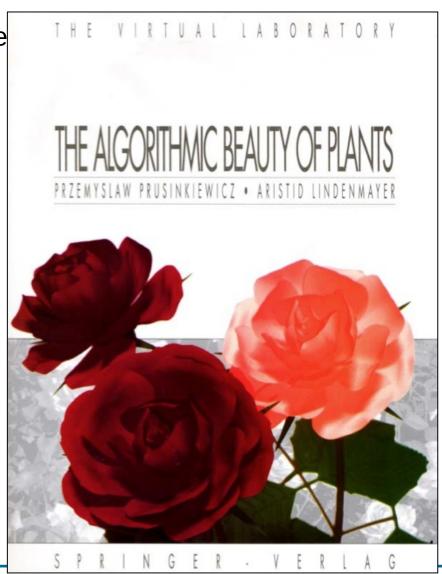
Forests

- Do the trees of a forest have to look similar to each other?
- What about forest borders?
- How do I render the forest?
- Close view?
- Far view?
- Wind?



More information

Read the literature, if you are interested!



Water

- Water is challenging: its appearance and motion take various forms
- Modeling water can be done by adding a bump map on a plane surface
- Alternatively, one can use a rolling height field, to which ripples are added later in a postprocessing step
- When doing ocean waves, water is assumed not to get transported, although waves do travel either like sinus or cicloidally
- If water has to be transported (=flow) this adds a lot of computational complexity

Small waves

- Simple way: big blue polygon
- Add normal perturbation with sinuisoidal function and you have small waves
- Usually you would start sinuisoidal perturbation from a single point called source point
- Sinus perturbation has, however crests of the same amplitude. This is not so realistic, and waves can be perturbated through smaller radial waves to achieve non self-similarity
- Similarly, one can superimpose more different sinuisoidal waves to achieve an interesting complex surface
- All these methods give a first decent approximation, but not always very realistic

Wave functioning

- A better way of doing water is to incorporate physical laws
- There is a variety of types of waves:
 - Tidal waves
 - Waves created by the wind
- In general, at a distance s of the sourcepoint we have that

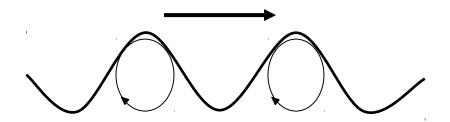
$$f(s,t) = A\cos\left(\frac{2\pi(s-(Ct))}{L}\right)$$

- Where
 - A maximum amplitude
 - C speed of propagation
 - L wavelength
 (it holds C=L/T, with T time for
 one wave cycle to pass a given
 point (freq.))
 - t time
- Waves move differently from the water itself. A water particle would almost move circularly:
 - Follow wave crest, sink down and move backwards, then come up again

Wave functioning

- Small waves (with little steepmness) work almost like sinus curves
- The bigger they get, the more they look like a sharply crested peak, i.e. They approach the shape of a cycloid (point on wheel)
- When a wave approaches the shoreline, at an angle, the nearest part to the coastline slows down

- While its speed C and wavelength L reduce near the coast, its period stays the same and amplitude remains the same or increases.
- But because the speed of the water particles remains the same, the wave tends to break as it approaches the shore
- Litterally, particles are "thrown forward" beyond the front of the wave



Gaseous Phenomena

- Gas is quite complicated to do
- But occurs often (smoke, fire, clouds)
- Fluid dynamics long studied, and applies to both gas and liquids
 - Uncompressible --> Liquid
 - Compressible --> Gas
- There are different types of movement in fluids
 - Steady state flow: velocity and acceleration at any point in space are constant
 - Vortices: circular swirls of material,
 - depend on space and not on time in steady state flow
 - In time varying flow, particles carrying non zerovortex strength travel through the environment and "push" other particles. This can be simulated by using a distance-based force

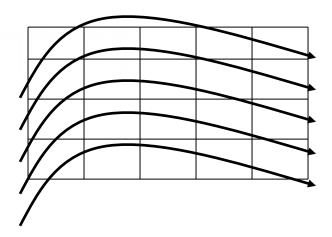
Gaseous phenomena

- There are 3 main approaches to modeling gas:
 - Grid-based methods (Eulerian formulation)
 - Particle-based methods (Lagrangian formulation)
 - Hybrid methods

Grid-based method

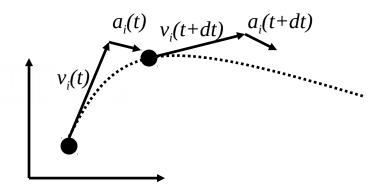
- Decomposes space into grid cells
- Density of gas in a cell is updated from time to time step
- The density of gas in a cell is used to determine the visibility and illumination for rendering
- Attributes of gas in a cell can be used to track the gas travelling across the cells
- Flow out of a cell is computed based on cell velocity, size and density
- External forces (wind or obstacles) are used to accelerate particles in a cell

 Major disadvantage: grid is fixed, so you have to know before what grid to lay over the whole simulated environment



Particle-based method

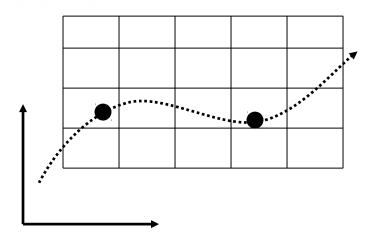
- Here, particles (or globs of gas) are tracked in space
- Often this is done like a particle system
- One can render either invividual particles, or as spheres of gas of a given density
- Technique similar to rigid body dynamics
- Disadvantage: loads of particles are needed to simulate a dense expansive gas
- Particles have masses, and external forces are easy to incorporate by updating the particle acceleration



Hybrid method

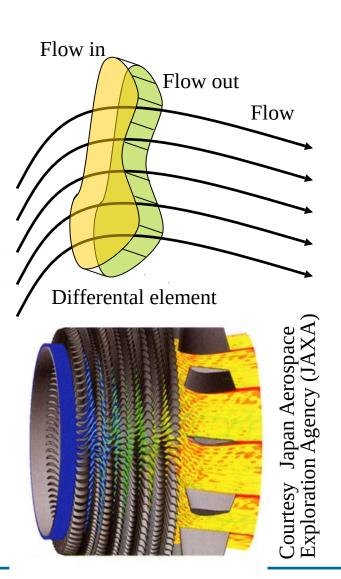
- In hybrid methods, particles are tracked in a spacial grid
- They are passed from cell to cell as they traverse the space
- Rendering parameters of the cells are determined by counting the particles in a cell at a certain time point and looking at the particle type

 Particles are used to carry and distribute attributes through the grid, and the grid is used for computing the rendering



Computational fluid dynamics

- CFD solves the physical equations directly
- Equations are derived from the Navier-Stokes equations
- Standard approach is based in a grid: set up differential equations based on conservation of momentum, mass and energy in and out of differential elements
- Quite complicated



Clouds

- The biggest problem with clouds is that we are so familiar with them, i.e. we know well realistic looking ones
- Made of ice crystals or water droplets suspended on air (depending on temperature).
- Formed when air rises, and humidity condensates at lower temperatures
- Many many shapes: cirrus, stratocumulus, cumulus

Clouds

- Clouds have differet detail at different scales
- Clouds form in a turbulent chaotic way and this shows in their structure
- Illumination charateristics are not easy, and vary because the ice and water droplets absorb, scatter and reflect light
- There are two illumination model types for clouds:
 - low albedo
 - High albedo

Courtesy Daniel Bramer, UIUC

Cloud illumination

- Low albedo: assumes that secondary scattering effects are neglegible
- High albedo: computes secondary order and high order scattering effects
- Optically thick clouds like cumuli need high albedo models
- Self shadowing and cloud shadowing on landscape have also to be considered

Cloud illumination: surface methods

- Early models used either by using Fourier synthesis to control the transparency of large hollow ellypsoids
- Others used randomized overlapping spheres to genrate the shape
- A solid cloud texture is combined with transparency to control the transparency of the spheres
- Transparency near the edges is increased to avoid seeing the shape of the spheres
- Such surface models are not so realistic, because the surfaces are hollow

Cloud illumination: volume methods

- More accurate models have to be used in order to capture the 3D structure of a cloud [Kajiya, Stam and Fiume, Foster and Metaxas, Neyret]
- Meyret did a model based of a convective cloud model using bubbling and convection preocesses
- However, it uses large particles (surfaces) to model the cloud structure
- One can use particle systems, but a very large number of particles is needed

- Other approaches use volumerendered implicit functions, sometimes combining them with particle systems approaches
- Implicit functions rendering can be used on the large scale, to define the global structure of a cloud, and combined with simpler procedural techniques to produce the detail
- To add a "bit" to complexity, clouds also need to be animated since they change in time

Fire

- Fire is even more difficult:
 - it has the same complexity of gas and clouds
 - but has very violent internal processes producing light and motion
- Recently, good advances were made
- At the "exactness" limit of the models, CFD can be used to produce fire and simulate its internal development, but it is difficult to control
- Studies on simulating the development and spreading of fire began to appear, but are usually not concerned with the internal processes within fire.

Fire: particle systems

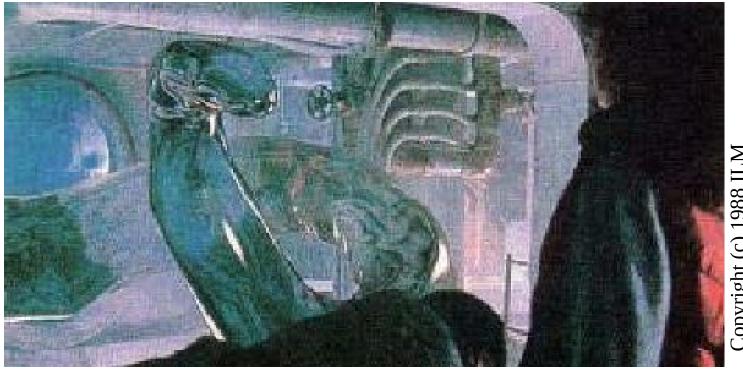
- Computer generated fire has been used in movies since a long time, exactly since Star Wars II
- In this film, an expanding wall of fire spread out from a single impact point
- The model uses a two-level hierarchy of particles
 - First level at impact point to simulate initial ignition
 - Second level: concentric rings of particles, timed to progress concentrically to form a wall of fire and of explosions

- Each of these rings is made of a number of particle systems positioned on the ring and overlapping with neighbors so as to form a continuous ring.
- The individual particle systems are modelled to look like explosions
- Particles are oriented to fly up and away from the planet surface
- The initial position of a particle is randomly chosen from the circular base of the particle systems
- Initial ejection direction is forced into a certain cone

Fire: other approaches

- Two dimensional animated texture maps have been used to simulate a gas flame
- This works however only in one direction
- Others (Stam and Fiume) presented advection-diffusion equations to evolve both density and temperature fields
- The users control the simulation by specifying the wind field

End



Copyright (c) 1988 ILM

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++