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Introduction

• One of the most challenging parts of animation systems is trying 
to model nature

• Many techniques and special mathematics is needed to do so
• Since nature is complex, it is often very time consuming to 

simulate nature
• Typical simulations include plants, water, clouds



Plants

• Plants possess an extraordinary complexity
• Lots of work was done on modeling the static representation of 

plants (Prusinkiewicz & Lindenmayer)
• Their observation was that plants develop according to a 

recursive branching structure
• If one understands how recursive branching works, one can 

model its growing process
• On the book there is one page explaining the underlying 

botanical concepts



L-systems

• Plants are simulated through 
L-systems

• L-Systems are parallel rewriting 
systems

• Simplest class of L-systems: 
D0L-system 
– D: deterministic
– 0: productions are context free

• A D0L-system is a set of 
production rules ai⟶bi, where 
–  ai: predecessor symbol
–  bi: sequence of symbols

• In deterministic L-systems, ai 
occur only once on the left hand 
side of the rules

• An initial string, the axiom, is given 
• All symbols in the string that have 

production rules are applied to the 
current string at each step
– This means replacing all symbols 

with a production rule
– If there is no production rule for a 

symbol ai, the production ai  ⟶ ai is 
applied

• Applying all production rules 
generates a new string

• This is done recursively until no 
production rules can be applied



Example

• Let the alphabet consist of the 
letters a,b

• Suppose we have two 
production rules:
– A ⟶ ab
– B ⟶ a

• And suppose that the axiom is b
• Then we obtain that we can 

generate the following strings

• b
a
ab
aba
abaab
....

• Or, more figuratively:

b

a

a b

aa b

a b a ba



Interpreting L-systems

• The strings produced by L-systems are just strings
• To produce images from them one must interpret those strings 

geometrically
• There are two common ways of doing this
• Geometric replacement: each symbol of a string is replaced by 

a geometric element
– Example: replace symbol X with a straight line and symbol Y with a 

V shape so that the top of the V sligns with the end of the straight 
line

– Example:  XXYYXX



The Koch curve

• The Koch curve is one of the most famous Lindenmayer 
generated systems.

• Fractal curve!



Interpreting L-systems

• Use turtle graphics: the 
symbols of the string are 
interpreted as drawing 
commands given to a simple 
cursor called turtle

• The state of a turtle at a 
given time is expressed as a 
triple (x,y,a) where x,y give 
the coordinate of the turtle in 
the plane, and a gives the 
direction of it is pointing to 
with respect to a given 
reference direction

• Two more parameters 
defined by the user are also 
used: 
–  d: linear step size
–  d: rotational step size

• Given the reference 
direction, the initial state of 
the turtle (x0,y0,a0), and the 
parameters d and d the user 
can generate the turtle 
interpretation of the string 
containing some symbols of 
the alphabet



L-systems

• Even more useful: if the 
symbols are interpreted as cells, 
or parts of a plant, the 
generation process of an 
L-system can simulate the 
growing of a plant

• The interpretation would be: 
substitute last year‘s leaf buds 
with a small piece of branch

• Or,, a branch will be replaced by 
three branches centered in the 
direction of the previous branch 
and having an angle between 
them of 22 degrees“

• Through this, the growing 
process of a plant can be 
simulated
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Rooted trees

• Lindenmayer systems (or L-
systems) such as the ones seen 
before are great to model branching 
structures, such as trees

• Among branching structures, rooted 
trees are used to model trees

• A rooted tree is a collection of edges 
which are labeled and directed

• A rooted tree has one particular 
edge: the root.

• All edges are similar to branch 
segments on a tree: 
– they connect to a father segments, 

and
• either have themselves children 

segments, in which case they are 
called intermediate segments

• Or have no children and are called 
terminal segments or apex

root

terminals

terminals



Axial trees

• Among rooted trees there are axial 
trees:
– For each intermediate node, at most 

one of its children is distinguished
– The other children are called side or 

lateral segments
• An axis is a sequence of incident 

segments such that 
– It originates at the root or at a lateral 

branch
– It ends with an apex
– It is made of consecutive segments

• An axis, with its descendants is 
called a branch.

• On trees, productions “look” much 
more complicated, but they are not: 
simple substitutions

• If productions are context free, we 
          speak of a tree D0L-system



Some examples



 Bracketed L-systems

• In bracketed L-systems, 
brackets are used to mark the 
beginning and end of additional 
offshoots of the main branch

• Production rules are context 
free but non deterministic, i.e. 
there are more than one 
production rule per symbol

• Which one is chosen? It can 
either be chosen at random or 
follow certain rules, which can 
be derived for example by 
„simulated temperature of that 
year“

• Let’s get into more detail
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Stochastic L-systems

• Context free L-systems are are deterministic: 
– given the same seed, they reproduce always the same tree 

• Is this realistic?
– Not much



Stochastic L-systems

• Context free L-systems are are deterministic: 
– given the same seed, they reproduce always the same tree 

• Is this realistic?
– Not much
– If nature would handle like this, we would have all trees 

looking the same.
– This is why scientists have added a small but relevant 

modification to L-systems….. 



Stochastic L-systems

• Context free L-systems are are deterministic: 
– given the same seed, they reproduce always the same tree 

• Is this realistic?
– Not much
– If nature would handle like this, we would have all trees 

looking the same.
– This is why scientists have added a small but relevant 

modification to L-systems…..
– …by adding randomness to the transition function!  



Stochastic L-systems

• And how do I add 
randomness to the transition 
function?

• Remember, an L-system 
L=<,a,> was a triplet of
– An alphabet 
– An axiom a∈*.
– A set of production (or 

rewriting) rules : →*.
• Instead of fixed rewriting 

rules, we need to add a 
probability function 
                P:  →[0,1]
that associates to the 
production rules a probability 
of being chosen.

• For a given symbol A of the 
alphabet we will have therefore a list 
of production rules 
     A → a0 (prob. p0)
     A → a1 (prob. p1)
            ….
     A → ah (prob. ph),
whereby the sum of these 
probabilities equal 1.

• Example:
     A →  (prob. 25%)
     A → ABAA (prob. 75%)

• Any time we have to apply a 
production rule to the letter of the 
alphabet, we draw a random 
number in [0,1].

• If it is smaller than 0.25 we choose 
the 1st production, otherwise the 
2nd.

• The new productions are called 
stochastic productions



Stochastic L-systems

• This way from the same 
axiom one can derive 
different branching shapes..

• …and more realistic pictures 



Stochastic L-systems

• This way from the same 
axiom one can derive 
different branching shapes..

• …and more realistic pictures 

• It looks good, but does not 
model what nature does! 



A further example

• Let us get back to the example 
of the last time….

• For a long time, botanists have 
been trying to describe and 
understand how plants develop

• For a long time, the plant called 
arabidopsis thaliana has been 
used as a good observation 
object for plant growth

• There are plenty of observations 
of how this plant develops from 
a cell



A further example

First phase of growth arabidopsis thaliana



Reasoning on the second example

• What can one learn from this picture?



Reasoning on the second example

• What can one learn from this picture?
– Cells differentiate in time
– Start growing in different ways

• depending on their position
• and on their surroundings

– Unfortunately our cell development model is too rigid:
a cell develops always in the same way.

– If the production rules in  are such that the left hand side is a single 
element, the Lindenmayer system is called a D0L-system, or context free 
Lindenmayer system

– BUT one can learn from this!



Reasoning on the second example

• Remember: we had for D0L-systems that the productions were
                      :  → *              

 associating          ai → aj

• Who says that at the left hand side of the productions we need to have a single 
element?

• Can’t it be that depending on what the symbol to which we apply the production 
has around we can have two different production rules applied?

• If ai is preceded by a certain string, and followed by a certain other string, we  
apply one production rule. 

• If instead it is preceded and followed by  other strings we apply another rule. 



Reasoning on the second example

• In this case we have that the productions are still defined similarly
                     :       → *              
but they associate to ai         

                          araias → aj

in case that ai is preceded by ar and followed by as, while if it is preceded and followed by 
two different strings ap and aq, with 
ap≠ ar and aq≠ as , then a different production rule is applied:

                          apaiaq → am 
with am ≠ aj.

• This means that AABC gets transformed into AADC, but CCBA into CCEA
• L-systems such that they use such production rules are called D2L-systems, whereby the 2L 

indicates that both sides of the letter to be substituted influence the production to be applied. 
• If instead the production rule is influenced only by one side, they are called 

D1L-systems.
• D1L- and D2L-sytems are said to be context sensitive systems. 



Contex-sensitive L-systems

• Let us recap the definition:
• A D2L-system is a triplet L=<,a,>, where 

–  is an alphabet, * is the set of the juxtaposition of letters of 

.

– a∈* is an axiom 
– The context sensitive set of production rules applied to 

letters of the alphabet is
             :        → *

                                     araias → aj 
                  apaiaq → am 



Contex-sensitive L-systems



Context-sensitive L-systems

• Context sensitive L-systems 
model better nature, since you 
can make the production rules 
dependent on the context you 
immerse your L-system into.

• For example, trees in a forest 
develop new branches only at 
the tip, so as to maximize light 
captured…



Context-sensitive L-systems

• Context sensitive L-systems 
model better nature, since you 
can make the production rules 
dependent on the context you 
immerse your L-system into.

• …or external forces, such as 
wind, force trees to develop 
opposite of the direction of 
prevailing wind…



Context-sensitive L-systems

• Context sensitive L-systems 
model better nature, since you 
can make the production rules 
dependent on the context you 
immerse your L-system into.

• ..or trees moving away from the 
façade of a house to collect 
more light.



Context-sensitive L-systems

• Context sensitive L-systems 
model better nature, since you 
can make the production rules 
dependent on the context you 
immerse your L-system into.

• ..or trees moving away from the 
façade of a house to collect 
more light.

• All these factors can be 
incorporated into the production 
rules to model nature.



 Parametric and timed L-systems

• In parametric L-systems, symbols can have one or more parameters 
associated to them

• These parameters can be set and modified by the productions of the L-
system

• Additionally, optional conditional terms can be associated with the 
productions

• All this to simulate differences in the change through time in a plant



 Parametric and timed L-systems

• Timed L-systems add two things
– A global time variable helping control the evolution of a string And a 

local age value ti assoc. with each letter mi.
– The production 

(m0,b0)→((m1,a1),...,(mn,an))
indicates that m0 has a terminal age of b0.

– Each symbol has one and only one terminal age
– When a new symbol is generated, it is initialized at age 0 and 

exist until it reaches
– After its lifespan ends, the symbol will become something else 

and „mutate“



Let’s look at where we are!



Forests

• Do the trees of a forest have 
to look similar to each other?

• What about forest borders?
• How do I render the forest? 
• Close view?
• Far view?
• Wind?



More information

• Read the literature, if you are 
interested!



Water

• Water is challenging: its appearance and motion take various forms
• Modeling water can be done by adding a bump map on a plane surface
• Alternatively, one can use a rolling height field, to which ripples are 

added later in a postprocessing step
• When doing ocean waves, water is assumed not to get transported, 

although waves do travel either like sinus or cicloidally
• If water has to be transported (=flow) this adds a lot of computational 

complexity



Small waves

• Simple way: big blue polygon
• Add normal perturbation with sinuisoidal function and you have small 

waves
• Usually you would start sinuisoidal perturbation from a single point 

called source point
• Sinus perturbation has, however crests of the same amplitude. This is 

not so realistic, and waves can be perturbated through smaller radial 
waves to achieve non self-similarity

• Similarly, one can superimpose more different sinuisoidal waves to 
achieve an interesting complex surface

• All these methods give a first decent approximation, but not always very 
realistic



Wave functioning

• A better way of doing water is to 
incorporate physical laws

• There is a variety of types of 
waves: 
– Tidal waves
– Waves created by the wind

• In general, at a distance s of the 
sourcepoint we have that 

• Where 
– A maximum amplitude
– C speed of propagation
– L wavelength

(it holds C=L/T, with T time for 
one wave cycle to pass a given 
point (freq.))

– t time  
• Waves move differently from the 

water itself. A water particle 
would almost move circularly:
– Follow wave crest, sink down 

and move backwards, then 
come up again

÷
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Wave functioning

• Small waves (with little 
steepmness) work almost like 
sinus curves

• The bigger they get, the more 
they look like a sharply crested 
peak, i.e. They approach the 
shape of a cycloid 
(point on wheel)

• When a wave approaches the 
shoreline, at an angle, the 
nearest part to the coastline 
slows down

• While its speed C and wavelength L 
reduce near the coast, its period 
stays the same and amplitude 
remains the same or increases. 

• But because the speed of the water 
particles remains the same, the 
wave tends to break as it 
approaches the shore

• Litterally, particles are „thrown 
forward“ beyond the front of the 
wave



Gaseous Phenomena

• Gas is quite complicated to do 
• But occurs often (smoke, fire, clouds)
• Fluid dynamics long studied, and applies to both gas and liquids

– Uncompressible --> Liquid
– Compressible --> Gas

• There are different types of movement in fluids
– Steady state flow: velocity and acceleration at any point in space 

are constant
– Vortices: circular swirls of material, 

• depend on space and not on time in steady state flow
• In time varying flow, particles carrying non zerovortex strength travel 

through the environment and „push“ other particles. This can be 
simulated by using a distance-based force



Gaseous phenomena

• There are 3 main approaches to modeling gas:
– Grid-based methods (Eulerian formulation)
– Particle-based methods (Lagrangian formulation)
– Hybrid methods



Grid-based method

• Decomposes space into grid cells
• Density of gas in a cell is updated 

from time to time step
• The density of gas in a cell is used 

to determine the visibility and 
illumination for rendering

• Attributes of gas in a cell can be 
used to track the gas travelling 
across the cells 

• Flow out of a cell is computed 
based on cell velocity, size and 
density

• External forces (wind or obstacles) 
are used to accelerate particles in a 
cell

• Major disadvantage: grid is fixed, so 
you have to know before what grid 
to lay over the whole simulated 
environment



Particle-based method

• Here, particles (or globs of gas) are 
tracked in space

• Often this is done like a particle 
system

• One can render either invividual 
particles, or as spheres of gas of a 
given density

• Technique similar to rigid body 
dynamics

• Disadvantage: loads of particles are 
needed to simulate a dense 
expansive gas

• Particles have masses, and external 
forces are easy to incorporate by 
updating the particle acceleration

vi(t)

ai(t) vi(t+dt) ai(t+dt)



Hybrid method

• In hybrid methods, particles are 
tracked in a spacial grid

• They are passed from cell to 
cell as they traverse the space

• Rendering parameters of the 
cells are determined by counting 
the particles in a cell at a certain 
time point and looking at the 
particle type

• Particles are used to carry and 
distribute attributes through the 
grid, and the grid is used for 
computing the rendering



Computational fluid dynamics

• CFD solves the physical 
equations directly

• Equations are derived from the 
Navier-Stokes equations

• Standard approach is based in a 
grid: set up differential 
equations based on 
conservation of momentum, 
mass and energy in and out of 
differential elements

• Quite complicated

Flow

Differental element

Flow out

Flow in
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Clouds

• The biggest problem with clouds 
is that we are so familiar with 
them, i.e. we know well realistic 
looking ones

• Made of ice crystals or water 
droplets suspended on air 
(depending on temperature). 

• Formed when air rises, and 
humidity condensates at lower 
temperatures

• Many many shapes: cirrus, 
stratocumulus, cumulus
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Clouds

• Clouds have differet detail at 
different scales

• Clouds form in a turbulent 
chaotic way and this shows in 
their structure

• Illumination charateristics are 
not easy, and vary because the 
ice and water droplets absorb, 
scatter and reflect light

• There are two illumination 
model types for clouds:
– low albedo
– High albedo
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Cloud illumination

• Low albedo: assumes that 
secondary scattering effects are 
neglegible

• High albedo: computes 
secondary order and high order 
scattering effects

• Optically thick clouds like cumuli 
need high albedo models

• Self shadowing and cloud 
shadowing on landscape have 
also to be considered
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Cloud illumination: surface methods

• Early models used either by using Fourier synthesis to control the 
transparency of large hollow ellypsoids

• Others used randomized overlapping spheres to genrate the shape
• A solid cloud texture is combined with transparency to control the 

transparency of the spheres
• Transparency near the edges is increased to avoid seeing the shape of 

the spheres
• Such surface models are not so realistic, because the surfaces are 

hollow



Cloud illumination: volume methods

• More accurate models have to 
be used in order to capture the 
3D structure of a cloud [Kajiya, 
Stam and Fiume, Foster and 
Metaxas, Neyret]

• Meyret did a model based of a 
convective cloud model using 
bubbling and convection 
preocesses

• However, it uses large particles 
(surfaces) to model the cloud 
structure

• One can use particle systems, 
but a very large number of 
particles is needed

• Other approaches use volume-
rendered implicit functions, 
sometimes combining them with 
particle systems approaches

• Implicit functions rendering can 
be used on the large scale, to 
define the global structure of a 
cloud, and combined with 
simpler procedural techniques 
to produce the detail

• To add a „bit“ to complexity, 
clouds also need to be animated 
since they change in time



Fire

• Fire is even more difficult:
– it has the same complexity of gas and clouds 
– but has very violent internal processes producing light and motion

• Recently, good advances were made
• At the „exactness“ limit of the models, CFD can be used to produce fire 

and simulate its internal development, but it is difficult to control
• Studies on simulating the development and spreading of fire began to 

appear, but are usually not concerned with the internal processes within 
fire. 



Fire: particle systems

• Computer generated fire has 
been used in movies since a 
long time, exactly since Star 
Wars II

• In this film, an expanding wall of 
fire spread out from a single 
impact point

• The model uses a two-level 
hierarchy of particles
– First level at impact point to 

simulate initial ignition
– Second level: concentric rings 

of particles, timed to progress 
concentrically to form a wall of 
fire and of explosions

• Each of these rings is made 
of a number of particle 
systems positioned on the 
ring and overlapping with 
neighbors so as to form a 
continuous ring.

• The individual particle 
systems are modelled to 
look like explosions

• Particles are oriented to fly 
up and away from the planet 
surface

• The initial position of a 
particle is randomly chosen 
from the circular base of the 
particle systems

• Initial ejection direction is 
forced into a certain cone



Fire: other approaches

• Two dimensional animated texture maps have been used to 
simulate a gas flame

• This works however only in one direction
• Others (Stam and Fiume) presented advection-diffusion 

equations to evolve both density and temperature fields 
• The users control the simulation by specifying the wind field 



Charles A. Wüthrich

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++ 

End

C
op

yr
ig

ht
 (

c)
 1

98
8 

IL
M

 


	Slide 1
	Introduction
	Plants
	L-systems
	Example
	Interpreting L-systems
	The Koch curve
	Interpreting L-systems
	L-systems
	Rooted trees
	Axial trees
	Some examples
	Bracketed L-systems
	Stochastic L-systems
	Stochastic L-systems
	Stochastic L-systems
	Stochastic L-systems
	Stochastic L-systems
	Stochastic L-systems
	A further example
	A further example
	Reasoning on the second example
	Reasoning on the second example
	Reasoning on the second example
	Reasoning on the second example
	Contex-sensitive L-systems
	Contex-sensitive L-systems
	Context-sensitive L-systems
	Context-sensitive L-systems
	Context-sensitive L-systems
	Context-sensitive L-systems
	Parametric and timed L-systems
	Parametric and timed L-systems
	Let’s look at where we are!
	Forests
	More information
	Water
	Small waves
	Wave functioning
	Wave functioning
	Gaseous Phenomena
	Gaseous phenomena
	Grid-based method
	Particle-based method
	Hybrid method
	Computational fluid dynamics
	Clouds
	Clouds
	Cloud illumination
	Cloud illumination: surface methods
	Cloud illumination: volume methods
	Fire
	Fire: particle systems
	Fire: other approaches
	Slide 55

