Charles A. Wuethrich

Bauhaus-University Weimar CoGVis/MMC

April 24, 2019

Complexity

Definition

Hands-on Examples: Sorting

Selection Sort Insertion Sort Bubble Sort Shell Sort Quicksort Heap Sort

- Maybe we have more than one algorithm solving one problem.
- We need a way to compare speed among them.
 - Can use execution timing?
 - No, because it depends on machine
 - Maybe then counting operations?
 - Their number depends on data
 - Besides, which operations should one count? Small remark on mathematicians...
 - Speed depends on data size
 - Thus its speed needs to filter it out

- Maybe we have more than one algorithm solving one problem.
- We need a way to compare speed among them.
 - Can use execution timing?
 - No, because it depends on machine
 - Maybe then counting operations?
 - Their number depends on data
 - Besides, which operations should one count? Small remark on mathematicians...
 - Speed depends on data size
 - Thus its speed needs to filter it out

- Maybe we have more than one algorithm solving one problem.
- We need a way to compare speed among them.
 - Can use execution timing?
 - No, because it depends on machine
 - Maybe then counting operations?
 - Their number depends on data
 - Besides, which operations should one count?
 Small remark on mathematicians...
 - Speed depends on data size
 - Thus its speed needs to filter it out

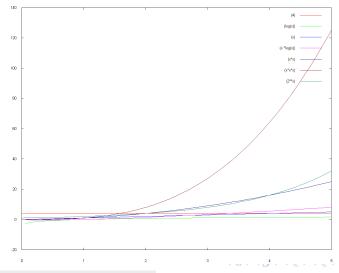
- Maybe we have more than one algorithm solving one problem.
- We need a way to compare speed among them.
 - Can use execution timing?
 - No, because it depends on machine
 - Maybe then counting operations?
 - Their number depends on data
 - Besides, which operations should one count?
 Small remark on mathematicians...
 - Speed depends on data size
 - Thus its speed needs to filter it out

- Maybe we have more than one algorithm solving one problem.
- We need a way to compare speed among them.
 - Can use execution timing?
 - No, because it depends on machine
 - Maybe then counting operations?
 - Their number depends on data
 - Besides, which operations should one count?
 Small remark on mathematicians...
 - Speed depends on data size
 - Thus its speed needs to filter it out

- Suppose *N* is the size of the data to be processed.
 - <u>Constant</u> time: The instructions of the algorithm are a finite number and independent from amount of data.
 - <u>Logarithmic</u> time: The instructions of the algorithm are repeated an $\mathcal{O}(\log N)$ number of times or a finite number of times.
 - <u>Linear</u> time: The instructions of the algorithm are repeated an $\overline{\mathcal{O}(N)}$ number of times or less.
 - $N \log N$ time: The instructions of the algorithm are repeated an $\mathcal{O}(N \log N)$ number of times or less.
 - Quadratic time: The instructions of the algorithm are repeated an $\mathcal{O}(N^2)$ number of times or less.
 - <u>Cubic</u> time: The instructions of the algorithm are repeated an $\overline{\mathcal{O}(N^3)}$ number of times or less.
 - Exponential time: The instructions of the algorithm are repeated an $\mathcal{O}(a^N)$ number of times or less.

Complexity

• The resulting functions look as follows:



Complexity: definition and computations

- If the program execution time $X \ge 0$ is such that for a given positive function f(N), $\lim_{N\to\infty} \frac{X}{f(N)} \le K$ for some K>0, then execution time is $\mathcal{O}(f(N))$.
- When an algorithm can be decomposed in more parts, the arithmetic of complexity is like computations at infinity.
 - If the algorithm has 3 consecutive steps, running in $\mathcal{O}(f_1(N))$, $\mathcal{O}(f_2(N))$, and $\mathcal{O}(f_3(N))$, $\mathcal{O}(f_2(N))$, are semplosity is
 - \Longrightarrow its complexity is
 - $\mathcal{O}(|f_1(N)| + |f_2(N)| + |f_3(N)|) = Max_i|f_i(N)|, \text{ for } N > N_0.$
 - If the algorithm has 2 nested steps, running in $\mathcal{O}(f_1(N))$ and $\mathcal{O}(f_2(N))$,
 - \implies its complexity is $\mathcal{O}(|f_1(N)| \cdot |f_2(N)|)$.
 - For a proof, just unroll the limit definition.

Complexity: hands on with sorting

- This sounds very abstract: let us make a good example: sorting
- What is sorting? order a given set according to an order relation.
- What is an order relation?
- It is a relation in a set S among pairs of elements such that it satisfies the following properties:
 - 1. reflexive: $\forall a \in S, a \leq a$,
 - 2. antisymmetric: $a \le b$ and $b \le a \iff a \equiv b$,
 - 3. transitive: $a \le b$ and $b \le c \Longrightarrow a \le c$.
- Example: telephone directory uses lexicographical order

Sorting

The sorting problem:

Given an array of N data

- ⇒ Order the array elements according to given order relation
- Basic method used: compare and swap two elements
- Efficiency: depends on speed and memory usage
 - Speed: can be estimated through the number of compares and swaps
 - Memory usage: Here not relevant due to work "on the array".
- A method is said to be <u>stable</u> if the relative position of elements with he same key is not changed.

$$1_a, 2_a, 1_b, 2_b, 2_c, 2_d, 3 \Longrightarrow 1_a, 1_b, 2_a, 2_b, 2_c, 2_d, 3$$

Selection sort

- Sort through direct selection
- Idea:
 - Look for smallest element
 - Swap with first element
 - Move to second element
 - Repeat with rest of array
- Speed: How many swaps and compares do I do?
- 1st run: Max (N-1) compares and 1 swap.
- 2nd run: Max (N-2) compares and 1 swap ...
- ... till the vector is finished.
- Now, the sum of the first (N-1) integers equals n*(n-1)/2, thus the whole becomes
- Total: $\frac{(N)(N-1)}{2} \propto N^2 \Longrightarrow \mathcal{O}(N^2)$.

Selection sort

- Sort through direct selection
- Idea:
 - Look for smallest element
 - Swap with first element
 - Move to second element
 - Repeat with rest of array
- Speed: How many swaps and compares do I do?
- 1st run: Max (N-1) compares and 1 swap.
- 2nd run: Max (N-2) compares and 1 swap . . .
- ... till the vector is finished.
- Now, the sum of the first (N-1) integers equals n*(n-1)/2, thus the whole becomes
- Total: $\frac{(N)(N-1)}{2} \propto N^2 \Longrightarrow \mathcal{O}(N^2)$.

Selection sort

- Sort through direct selection
- Idea:
 - Look for smallest element
 - Swap with first element
 - Move to second element
 - Repeat with rest of array
- Speed: How many swaps and compares do I do?
- 1st run: Max (N-1) compares and 1 swap.
- 2nd run: Max (N-2) compares and 1 swap ...
- ... till the vector is finished.
- Now, the sum of the first (N-1) integers equals n*(n-1)/2, thus the whole becomes
- Total: $\frac{(N)(N-1)}{2} \propto N^2 \Longrightarrow \mathcal{O}(N^2)$.

Insertion sort

- Sort through insertion
- Idea:
 - Choose a still unsorted element (first time: first element)
 - Put it in the right place among already sorted elements
 - Take next unsorted element until whole array is sorted

• Speed:

- Average case: Depends on order of elements.
- Worst case: Take all N elements, and insert them as last (i.e. compare with $0, 1, 2, \ldots, N-1$ $\frac{N(N-1)}{2}$ compares.
- Total: $\mathcal{O}(N^2)$.
- BUT: When data almost sorted: $\mathcal{O}(N)$.

Insertion sort

- Sort through insertion
- Idea:
 - Choose a still unsorted element (first time: first element)
 - Put it in the right place among already sorted elements
 - Take next unsorted element until whole array is sorted
- Speed:
 - Average case: Depends on order of elements.
 - Worst case: Take all N elements, and insert them as last (i.e. compare with $0,1,2,\ldots,N-1$ $\frac{N(N-1)}{2}$ compares.
- Total: $\mathcal{O}(N^2)$.
- BUT: When data almost sorted: $\mathcal{O}(N)$.

Insertion sort

- Sort through insertion
- Idea:
 - Choose a still unsorted element (first time: first element)
 - Put it in the right place among already sorted elements
 - Take next unsorted element until whole array is sorted
- Speed:
 - Average case: Depends on order of elements.
 - Worst case: Take all N elements, and insert them as last (i.e. compare with $0,1,2,\ldots,N-1$ $\frac{N(N-1)}{2}$ compares.
- Total: $\mathcal{O}(N^2)$.
- BUT: When data almost sorted: $\mathcal{O}(N)$.

Bubble sort

- Sort through swapping
- Idea:
 - Move through array from left to right
 - Swap elements if they are in wrong order
 - Repeat until there is nothing left to swap.
- Speed:
 - At each step i: N-i compares, and $\leq N-i$ swaps.
 - At most N steps (last moved to first).
- Total: $\mathcal{O}(N^2)$.
- BUT: When data almost sorted: $\mathcal{O}(N)$.

Bubble sort

- Sort through swapping
- Idea:
 - Move through array from left to right
 - Swap elements if they are in wrong order
 - Repeat until there is nothing left to swap.
- Speed:
 - At each step i: N-i compares, and $\leq N-i$ swaps.
 - At most N steps (last moved to first).
- Total: $\mathcal{O}(N^2)$.
- BUT: When data almost sorted: $\mathcal{O}(N)$.

Bubble sort

- Sort through swapping
- Idea:
 - Move through array from left to right
 - Swap elements if they are in wrong order
 - Repeat until there is nothing left to swap.
- Speed:
 - At each step i: N-i compares, and $\leq N-i$ swaps.
 - At most N steps (last moved to first).
- Total: $\mathcal{O}(N^2)$.
- BUT: When data almost sorted: $\mathcal{O}(N)$.

Shell sort

- Improved insertion sort (Donald Shell)
- Idea:
 - We subdivide into subsets (like a matrix) by picking the s_n -th element $s_0 = 1$, $s_{i+1} = 3s_i + 1$ $\Longrightarrow \{1, 4, 13, 40, 121, 364, \ldots\} = S$
 - Order elements in each subset with insertion sort
 - Resubdivide into new subsets by picking s_{n-1} -th element.
 - Order elements in each new subset with insertion sort
 - The S_n sequence works always as long as last sort step is one
- Speed:
 - The speed is dependent on the sequence s_i used¹.
- Worst case: $\mathcal{O}(N^{3/2})$ for sequence $\{1, 4, 13, 40, 121, 364, \ldots\}$.
- Best case: $\geq N^{1+c/\sqrt{M}}$ compares for N elements in M passes
- Average case for S: possibly $\mathcal{O}(N^{5/4})$ or $\mathcal{O}(N \log N^2)$

Shell sort

- Improved insertion sort (Donald Shell)
- Idea:
 - We subdivide into subsets (like a matrix) by picking the s_n -th element $s_0 = 1$, $s_{i+1} = 3s_i + 1$ $\Longrightarrow \{1, 4, 13, 40, 121, 364, \ldots\} = S$
 - Order elements in each subset with insertion sort
 - Resubdivide into new subsets by picking s_{n-1} -th element.
 - Order elements in each new subset with insertion sort
 - The S_n sequence works always as long as last sort step is one
- Speed:
 - The speed is dependent on the sequence s_i used¹...
- Worst case: $\mathcal{O}(N^{3/2})$ for sequence $\{1, 4, 13, 40, 121, 364, \ldots\}$.
- Best case: $\geq N^{1+c/\sqrt{M}}$ compares for N elements in M passes.
- Average case for S: possibly $\mathcal{O}(N^{5/4})$ or $\mathcal{O}(N\log N^2)$

Shell sort

• This also shows how speedy the algorithm is.

Comparison

	SelectionSort	InsertionSort	ShellSort
Comparisons Ave.; Worst	$N^2/2; N^2/2$	$N^2/2$; $N^2/2$	$N^{5/4}; N^{3/2}$
Comparisons Ave.; Worst	N; N	$N^2/8; N^2/4$	$N^{5/4}$
When to apply	When data ≫ than key	When data almost sorted	General case

Quicksort

- General purpose sorting.
- Developed by Hoare in 1960.
- Divide and conquer algorithm.
- Idea:
 - Choose one element w arbitrarily, the pivot.
 - Subdivide array in two parts:
 - Set A₁ of elements < w
 - Set A₂ of elements > w
 - If A_1 and A_2 are sorted, END.
 - Else sort A_1 and A_2 recursively.

- Suppose our array to sort is $[a_1, \ldots, a_N]$
- How do we do the partitioning?
- With indexes!
- Choose element $a_r = w$ as pivot
 - Swap $a_r = w$ and a_N (move pivot to end)
 - Take 2 indexes I = 1, h = N
 - Increase I until you find an element $a_1 > w$.
 - Decrease h until you find an element $a_h \leq w$.
 - Swap a_l and a_h .
 - Repeat until $l \geq h$.
 - Now swap a_l and w: this brings w at the right place in the field.
- Now do same for arrays $a_1, \ldots, a_l = w$ and a_{l+1}, \ldots, a_N

Quick Sort: an example

amheretobesorted \leftarrow Original String

amheretobesorted amheretdbesorteo amheretdbesorteo amheretdbesorteo amheretdbesorteo amheeetdbesortro amheeetdbesortro amheeetdbesortro amheeeodbestrtro amheeeodbestrtro amheeeodbe<u>s</u>trtro amheeeodbeotrtrs

amheeeodbeo trtrs

Choose pivot (half of field) Swap pivot with last place Set running indices count up / till $a_l > w$ count down h till $a_h < w$ swap count up / till $a_l > w$ count down h till $a_h \leq w$ swap count up / till $a_l > w$ count down h: indexes meet Swap a_l and w

Check if trivial case
Separate vectors and continue until sorted

Quicksort speed

Speed:

- Average case needs 2N log N comparisons
 ⇒ O(Nlog N)
- Worst case: I always choose the pivot so that it is extreme: in this case I need N and not log N steps ⇒ O(N²)

- A <u>heap</u> is a binary tree, such that each father node is greater or equal to its children nodes.
- This implies the root of the heap is the biggest node.

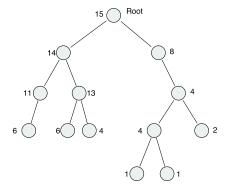


Figure: A heap.

0000

- How do I build a heap?
- Simple: initialize a tree with one element
- Insert node at free leaf.
- Compare with father, and swap if its smaller
- Push it upwards, until heap condition is satisfied
- Do this for all new elements to sort

- How do I sort from a heap?
- Simple: pick root
- Take last leaf, move to root
- Push down new root to where it belongs (restore heap condition).
- Pick again from root until tree is empty

- Speed:
- Algorithm in two parts:
 - Construction of tree: maximum N log N comparisons
 - Extraction: again $N \log N$ comparisons
- Thus: $2N \log N$ comparisons!! $\Longrightarrow \mathcal{O}(N \log N)$
- Real advantage: by dynamic sorting (constant inserts) resorting real fast due to insertion of single elements and extraction.