
Algorithms and Data Structures

Charles A. Wuethrich

Bauhaus-University Weimar - CogVis/MMC

May 2, 2019

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 1/16



Tables

• In general, a table is nothing else than a 2-dimensional array
(or 3-D, or n-D) of data

• Data can be quite complex

• Access like in arrays is ruled through 2-dimensional indexes
(up to n-D)

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 2/16



Hash Tables

• Problem with arrays and lists: access not so easy if I search
for a particular data and do not know its index

• Example: I know the data I want to look for, but do not know
where it is
– I have to retrieve and read sequentially all data until I find
the data I am looking for

• To overcome this problem, Hash Tables were invented

• Hash tables are used to store data in a large table

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 3/16



Hash Tables

• A hash table is nothing else than a big table, where the access
is ruled by a function called hash function

• For each data that has to be put in the table, the hash
function computes a unique index that is used to insert the
data in the table

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 4/16



Hash Functions

• Hash tables are usually much bigger than the foreseen data I
want to store in them

• A hash function H is a transformation that takes a variable-
size input m and returns a fixed-size string, which is called the
hash value h (that is, h = H(m)).

• A fundamental property of all hash functions is that if two
hashes (according to the same function) are different, then
the two inputs were different in some way

• The hash value one gets is usually used to compute the index
at the hash table where the data will be stored (or, if it is an
integer, to compute it directly)

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 5/16



Hash Functions

• However, while hash functions are injective, they are not a
bijective function: I.e. given two inputs, the output of the
hash function is not necessarily different

• If given two different data, the hash function computes the
same value, then the hash function is said to generate a
collision

• Obviously, it is important that the hash functions generates as
little collisions as possible

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 6/16



Hash Functions

• So what are good hash
functions?

• Consider a table containing
an index , a name, and a
telephone number

• To search this table for
Kurt, I would need to search
through all of the names

• Which means, in worst case,
to search N elements

• On average, I would have to
search N/2 elements

Index Name Phone

0 Jason 558293

1 Carl 314276

2 William 834562

3 Angus 169278

4 Robert 995386

5 Kurt 635951

6 Leo 239769

7 Empty

. . . Empty

N-1 Empty

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 7/16



Hash Functions

• If I sort the names before,
then I can do binary search

• That is, I visit
– first the place at N/2,
– choose the side according to
whether Kurt is smaller or
biggerg of what I find at N/2
– then visit N/4, ...

• In this case, I still need log2N
to find the element, but I need
a preprocessing step of NlogN
to do the sorting

• Any successive search will be
log2N

Index Name Phone

0 Angus 169278

1 Carl 314276

2 Jason 558293

3 Kurt 635951

4 Leo 239769

5 Robert 995386

6 William 834562

7 Empty

... Empty

N-1 Empty

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 8/16



Hash Functions

• The idea behind hash functions
is that one could use the data
to compute the index I store
my data at

• Suppose the global size of my
table is 13

• Suppose I simply add the ASCII
codes of the letters and obtain
S

• And suppose I find the index as
the S MOD 13

• Note: I use 13 because I always
take prime numbers as the
table size (more on it later),
and my table size is 13

• Let us see what this gives

Index S S MOD 13

Angus 541 8

Carl 418 2

Jason 539 6

Kurt 454 12

Leo 320 8

Robert 654 4

William 751 10

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 9/16



Ascii codes

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 10/16



Hash Functions

• Now I fill in my 12 elements
table exactly at the place said
by S MOD 13

Index S S MOD 13
Angus 541 8
Carl 418 2
Jason 539 6
Kurt 454 12
Leo 320 8
Robert 654 4
William 751 10

Hash value Name Phone
0
1
2 Carl 314276
3
4 Robert 995386
5
6 Jason 558293
7
8 Angus -Leo 169278 - 239769
9
10 William 834562
11
12 Kurt 635951

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 11/16



Hash Functions

• And now ?!

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 12/16



Hash Functions

• There are alternative strategies that can be taken:
– The simplest one would be to look if the next cell is free,
– if it is, store the data there,
– if not, look forward

• This approach is called open addressing

• A smarter version of this approach sets a chained list at each
hash table position.

• This approach is called bucketing, because at each position
you have a bucket containing some elements instead of a
single element

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 13/16



Hash Functions

• Another approach is to use a second hash function H2 for
handling collisions (double hashing)

• Obviously, the second function needs to be completely
different from the first one

• For example, take one plus the bitwise exclusive or of all codes
in a name (again taken as all lowercase) mod N, where N is
the size of the hash table

• If the first hash function H1 gives a collision, use the second
hash function H2 to generate a new hash index, and add it
(mod N) to the result of H1

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 14/16



Hash Functions

• Why do we usually take hash tables with prime numbers?

• The reasons are deeply rooted in math: given a cyclic group
Zp, with p prime, then any element a of Zp is a generator of
the group

• In other words, the sums a, (a+a), (a+a+a),... are such that
after p sums I reobtain a, and the sums have covered ALL
elements of Zp.

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 15/16



Hash Functions

• What are the advantages of a hash table?

• First and foremost, it takes ONE application of the hash
function to generically find an element of my table

• Obviously, the more a hash table is filled, the more collisions
one gets.

• At some point of filling, it might be a good idea to enlarge
the hash table and use another hash function, of course,
better suited for the larger table

c©2019 Charles A. Wuethrich,
Algorithms and Data Structures Hashing 16/16


