Computer Graphics: 8-Hidden Surface Removal

Prof. Dr. Charles A. Wüthrich,
Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de
Depth information

- Depth information is an important clue to our visual system
- It allows us to discern which objects are in front, and which ones are behind
- The challenge is to know which are the closest objects to the viewer
- Basically, it is a 2-dimensional sorting problem!
Introduction on hidden surface removal

- Problem: which elements in a picture are not hidden by other ones?

- Two main classes of algorithms
 - Object precision: based on objects

 for each object DO
 compute non-hidden parts
 draw them on screen
 END

- Image precision: based on pixels

 for each pixel DO
 search object closest to screen
draw corresp. colour
end

- Trivial algorithm: compare all polygons with each other
Back face culling

- Of all the faces of an object, only the ones facing the viewer need to be rendered to the screen.
- This reduces the number of polygons to be rendered by ca. one half.
- The test to perform is easy if the normals to the polygon are available.
- The scalar product $V \cdot N$ must be negative.

- Note that the test can be easily done by computing the z coordinate of N in screen coordinate space.
- Even easier, looking if the polygon vertices lies clockwise produces the same result.
HSR: Painter’s algorithm

• Ever saw a painter compose a picture?
 – He starts painting the background
 – And proceeds to the foremost

• This is how the painter algorithm works:
 – Sort polygons by decreasing z_{max}
 – Draw polygons from maximum z to minimum z
Ever saw a painter compose a picture?
- He starts painting the background
- And proceeds to the foremost

This is how the painter algorithm works:
- Sort polygons by decreasing z_{max}
- Draw polygons from maximum z to minimum z

Unfortunately, there are cases when the algorithm does not work
HSR: Painter ‘s algorithm

- And which cases are they?
 - Here P_2 partially covers P_1, but since z_{max} in P_2 is bigger than the one on P_1, P_1 gets drawn over P_2

- The Painter algorithm can be modified to work in all cases
HSR: Painter’s algorithm

- Problems occur when their z domains overlap
- One can store z_{max} and z_{min} for each polygon and then compare
- If they overlap, then a number of cases allow to draw P_1
 1. x axis proj. do not overlap
 2. y axis proj. do not overlap
 3. xy plane projection does not overlap (use bounding rectangles to overlap)
 4. P_1 lies on opposite side of P_2 plane WRT viewpoint (replace pt. + VP coords. in plane eq.)
 5. P_2 lies on same side of P_1 plane WRT viewpoint

If one of these occurs, then polygon $P_1 \& P_2$ can be drawn
HSR: Painter’s algorithm

• If none of the cases is true, then P_1 and P_2 are swapped and tests 4 and 5 are repeated
 – In this case P_1 is drawn in front of P_2
• There are still some ambiguous cases remaining:
 – If polygons partially overlap, then one of them must be split by using the plane of the other one
 – Cyclic overlappings, these generate infinite loops. Solution here is to remember when a cycle is done and split (by marking polygons)
Z-Buffering (1)

• Z-buffering is easy to combine with the Scanline Algorithm
• Image Space Algorithm
• Idea: For every pixel on the screen, an additional variable is saved containing the depth value at that pixel
• The buffer of the additional variables is called the Z-buffer
• Whenever a polygon has to be drawn, the depth value of the pixel on the polygon is tested against the content of the Z-buffer to see if the new pixel must be drawn or not
Z-Buffering (2)

- **Algorithm:**
 - Write $+\infty$ in every position of the Z-buffer (max. distance from the screen)
 - Compute for each pixel that is being scan-converted its depth at the z axis.
 - If $z < z_{\text{buf}}$ draw pixel and update the Z-buffer with the depth value of the pixel.

- **Note** that the same algorithm works also for any kind of surfaces, as long as the z value of the surface is computable.
Z-Buffering (3)

• But how do I compute the Z-values of the polygon?
 - The computation can be done on the fly, while proceeding in the scanline algorithm
 - Remember the plane equation of a polygon:

\[
Ax + By + Cz + D = 0
\]

\[
\Rightarrow z = \frac{-D - Ax - By}{C}
\]
Z-Buffering (4)

- The scanline algorithm draws horizontally lines \((x, x+1, \ldots)\)
- Suppose you know the z value of the polygon at the point \((x,y)\)

 \[z_1 = P(x,y) \]

 Then you have that by moving to the right with an increment of \(\Delta x\) along the x-axis one obtains

 \[P(x+\Delta x,y) = z_1 - \left(\frac{A}{C}\right) \Delta x \]

 Since the increment is exactly one on the x-axis we obtain

 \[P(x+1,y) = z_1 - \left(\frac{A}{C}\right) \]

- This is the increment that has to be added for passing from one pixel to the next to its right
Z-Buffering (5)

• Similarly the increment for computing z while passing from the scanline y to the next scanline can be derived:

$$z_1 = P(x,y)$$

By moving downwards with an increment of Δy along the y-axis one obtains

$$P(x,y+\Delta y) = z_1 - (B/C) \Delta y$$

Since the increment is exactly one on the y axis we obtain

$$P(x,y+1) = z_1 - (B/C)$$

• This is the increment that has to be added for passing from one scanline to the next one vertically

• Obviously, one has to backtrack the scanline until the left edge of the polygon is reached
Z-Buffering (6)

• Algorithmus:

 Initialize Z-Buffer with ∞
 For all Polygons P
 For each Pixel in P (obtained by scan conversion)
 Compute $Z_{poly} = P(x,y)$
 $Z_{buffer} = \text{read}_z_\text{buffer}(x,y)$
 if $Z_{poly} < Z_{buffer}$
 $\text{Draw_Pixel_to_Framebuffer}(x,y,\text{color})$
 $\text{Set_Z_Buffer}(x,y,Z_{poly})$
 end if
 end for
 end for
Z-Buffering (7)

- Here a scene rendered with z-buffering
- In the lower pictures, the z-buffer values are rendered
 - white=far
 - black=near
A second class of algorithms uses space partitioning to reduce the complexity. Such algorithms use a divide and conquer strategy to solve the problem. The underlying idea is simple:

- Subdivide the projection plane in smaller regions
- Polygons are sorted to their relevant region
- The problem is recursively subdivided until a simple solution can be found
- The smaller the subdivision region, the less polygons have to be handled, and the easier the decision to be made

Given a polygon, and a region, four cases are possible:
Given a region R, and a polygon P, 4 cases are possible:
Area Subdivision – Warnock (3)

Given a region R, four cases are possible:

1. all polygons lie outside R
 → Draw R with the background colour

2. Only one polygon intersects or is inside R
 → Draw first background color, then draw the polygon

3. A single polygon covers completely R
 → Draw R in the colour of the polygon

4. More than one polygon intersects R, but one of these polygons covers the whole regions and is in front
 → Draw R in the colour of the surrounding polygon
Area Subdivision – Warnock (4)

- How do I test the last condition?
 - Compute all z coordinates of the planes of the relevant polygons for the region R at the corner points of the region
 - If one of the polygon has all z values at the corners in front of the other polygons relevant to the region, then draw this polygon
- If none of these case occur, then subdivide region further
- Until when?
 - Until the region R is as big as a pixel
 - In this case the colour of the pixel will be set to the colour of the polygon that is in front at the middle point of the pixel (by evaluating z at the centre of the pixel for each polygon)
 - Alternatively, one can subdivide at sub-pixel level and do a mean of the values found at subpixel level
Binary Space Partition trees (1)

- BSP trees are efficient algorithms in the case of a moving viewpoint in a static environment
 - For ex. computer games like flight simulators
- The idea: the polygon planes are used to subdivide the region into two subspaces
 - one corresponding to the front
 - one to the back of the polygon
- Subspaces are recursively subdivided until they contain only one polygon
- This achieves a binary tree with single polygons as leaves, and mid nodes splitting planes
- Given a viewpoint V, correct polygon painting can be done by traversing the tree in an in-order fashion, and drawing polygons as encountered.
- This corresponds to implementing that a polygon will be scan-converted correctly if
 - all polygons on the other side of it from the viewer are scan converted
 - then the polygon itself
 - then the ones on the side of the viewer
How to build the BSP tree

- Choose one polygon, consider its plane and sort remaining polygons in
 - back polygons
 - front polygons
- Decide by substituting in equation
- If a polygon belongs to both, split it into 2 subpolygons
- Redo the splitting on the subspaces obtained
- Continue splitting till each subdivision has only one element
- First we pick one arbitrary polygon, e.g. 3
How to build the BSP tree

• repeat process until one polygon only in subspace
How to render from the BSP tree

- Given tree and viewpoint V, it suffices to render the polygons in the correct order
 - If V is in front space of root polygon
 - display first rear polygons
 - display root polygon
 - display front polygons
 - do it recursively for all subspaces till leaves are reached
 - If V in rear space, display in the order front, root, rear
 - If poly is seen on edge, then either order will be okay
 - Note that V coords. can be substituted in plane eq to decide the front rear question
 - This decision has to be taken at EACH node!!!!
How to render from the BSP tree

Front: rear, root, front
Rear: front, root, rear
How to render from the BSP tree

- The advantage of this method is that the tree is traversed in linear time.
- Once tree is built, it is easy to do visibility from a new point.
- Tree needs no recomputing.
- Algo can be modified to deal with non static scenes.
- Backface culling can be done during rendering time, so that it is done on the fly.
 (front-rear test is all I need to decide backfaces.)
Relative Performance

<table>
<thead>
<tr>
<th>Algo</th>
<th>100</th>
<th>2500</th>
<th>60000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Painter</td>
<td>1</td>
<td>10</td>
<td>507</td>
</tr>
<tr>
<td>Z-Buffer*</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Warnock</td>
<td>11</td>
<td>64</td>
<td>307</td>
</tr>
</tbody>
</table>

nach Foley, van Dam, Table 15.3, S. 716
End considerations

- Depth Sort: efficient for few polygons
- Z-Buffer: constant performance, but needs additional buffer
- Warnock: efficient for many polygons
- BSP trees, convenient when viewpoint moves and not the scene
End