

SIMPLIFIED NUMERICAL MODEL DEVELOPMENT OF LIGHTWEIGHT-CONCRETE ENCASED COLD-FORMED STEEL ELEMENTS

> By Nathalie Eid Ph.D. candidate

Bauhaus Summer School, Weimar 2022



BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS Faculty of Civil Engineering - Since 1782

Department of Structural Engineering

30/8/2022

### **CONTENTS**

- Introduction
- Problem and aim
- Numerical model development
- Results evaluation& Conclusions
- Future work



### **INTRODUCTION ABOUT COLD-FORMED STEEL SECTIONS**



### **INTRODUCTION**





Buckling modes of cold-formed sections (CFS): (a) local, (b) distortional, (c) global and (d) local-flexural interactive modes [Ye et al., 2018]

Innovative building system [Hegyi and Dunai, 2016]





Loading frame of the member tests

A: E= 115.36 MPa

X: E=

270.39 MPa



b) 600 mm; c) 2000 mm

Cross-section of braced elements



Local failure at the end of the braced specimen

| specimen type | Number of specimens <sup>a</sup> | Ultimate load [kN] |            |            | Increment [%] |            |
|---------------|----------------------------------|--------------------|------------|------------|---------------|------------|
|               |                                  | Unbraced – 0       | Braced – A | Braced – X | Braced – A    | Braced – X |
| C90-10-300    | 3/3/2                            | 27.34              | 38.93      | 40.26      | 42            | 47         |
| C90-10-600    | 3/2/3                            | 27.34              | 37.80      | 37.44      | 38            | 37         |
| C90-10-2000   | 3/3/3                            | 17.76              | 34.44      | 33.57      | 94            | 89         |

#### **Bauhaus Summer School 2022**

### POLYSTYRENE AGGREGATE CONCRETE (PAC)





### Expanded Polystyrene beads

Ec= [30-300] MPa

- Poor strength
- Light weight
- Low thermal conductivity

### Polystyrene concrete block

### **RESEARCH PROBLEM**

CFS encased in lightweightconcrete are new elements

### **RESEARCH AIM**

- Development of a simplified shell finite element model
- Validation of the model by test results
- Providing rules for the simplified model

Checking by experimental test

Checking by numerical model

New design rules



new structural system

# NUMERICAL MODEL DEVELOPMENT FOR UNBRACED SPECIMENS

Experimental and numerical axial loaddisplacement curves of:



the 300 mm column



### **COMPARISON OF TESTS AND FEA ULTIMATE LOADS**

| Column | Ultimate load [KN] |       |          |  |  |
|--------|--------------------|-------|----------|--|--|
| [mm]   | Test               | FEA   | FEA/Test |  |  |
| 300    | 27.34              | 27.59 | 1.01     |  |  |
| 600    | 27.34              | 27.43 | 1.00     |  |  |
| 2000   | 17.76              | 17.80 | 1.00     |  |  |



Comparison of local failure mode between test and FEA for 300 mm specimens

### SIMPLIFIED NUMERICAL MODEL DEVELOPMENT FOR BRACED SPECIMENS



Applied load and restraint conditions for braced specimens

**Parametric study:** 

- Predict the bracing effect of concrete
- Determine the optimum range of bracing

K = 0.001-100000 N/mm







### Failure mode of the 2000 mm column



### SPRING STIFFNESS FORMULA DEVELOPMENT FOR PAC BRACED MEMBERS

### [Hegedűs and Kollár, 2006]

$$k_{w} = \frac{2\pi E_{c}}{(3-v_{c})(1+v_{c})} \sqrt{\frac{1}{l_{x}^{2}} + \frac{1}{l_{y}^{2}}} \longrightarrow \frac{D}{t} \left(\frac{\partial^{4}w}{\partial x^{4}} + 2\frac{\partial^{4}w}{\partial x^{2}\partial y^{2}} + \frac{\partial^{4}w}{\partial y^{4}}\right) - \sigma_{x}\frac{\partial^{2}w}{\partial x^{2}} - 2\tau_{xy}\frac{\partial^{2}w}{\partial x\partial y} - \sigma_{y}\frac{\partial^{2}w}{\partial y^{2}} = \frac{k_{w}}{t}w$$

$$w = A_{0} \cdot \sin\frac{\pi x}{l_{x}} \cdot \sin\frac{\pi y}{l_{y}}$$

## Internal compressed element model [Hegyi, 2016] $\sigma_{cr,p} = 4 \frac{\pi^2 E_s}{12(1 - v_s^2)(b/t)^2} - \frac{4680 MPa}{b/t} + 2.35E_c + \sqrt{E_c.3025 MPa}$

#### **Outstand compressed element model**

$$\sigma_{cr,p} = 0.43 \frac{\pi^2 E_s}{12(1 - v_s^2)(b/t)^2} + \frac{1200 MPa}{b/t} + 2.22E_c + \sqrt{E_c.3390 MPa} - 40MPa$$

### SPRING STIFFNESS FORMULA DEVELOPMENT FOR PAC BRACED MEMBERS INTERNAL COMPRESSED ELEMENT MODEL

Buckling mode of unbraced (left) and braced (right) internal compressed plates (b/t=50)

### Parameter range of numerical investigation

| Parameter                                | Range        |          |  |
|------------------------------------------|--------------|----------|--|
| Plate slenderness (b/t)                  | Internal     | Outstand |  |
|                                          | 50-250       | 20-60    |  |
| Elastic modulus of PAC (E <sub>c</sub> ) | 50-200 [MPa] |          |  |
| Element size (A)                         | 5-20 [mm]    |          |  |



Applied load and boundary conditions for simply supported unbraced and braced plates







### **OUTSTAND COMPRESSED ELEMENT MODEL**



The 3D curve of K as a function of Ec and A (b/t=50)

| b/t | a $\left[\frac{N}{mm}\right]$ | $b\left[\frac{N}{mm^3}\right]$ | C [mm] | d $\left[\frac{N}{mm^5}\right]$ | $e\left[\frac{1}{mm}\right]$ | $f\left[\frac{mm^3}{N}\right]$ |
|-----|-------------------------------|--------------------------------|--------|---------------------------------|------------------------------|--------------------------------|
| 20  | -190.1                        | 5.984                          | 1.726  | -0.03303                        | 0.02399                      | 0.001433                       |
| 35  | -231.1                        | 3.485                          | 2.906  | -0.00814                        | 0.01683                      | 0.0004                         |
| 50  | -255.9                        | 3.879                          | 2.891  | -0.0096                         | 0.01908                      | 0.000625                       |
| 60  | -269.9                        | 3.735                          | 3.024  | -0.00816                        | 0.02133                      | 0.00022                        |
|     |                               |                                |        |                                 |                              |                                |

Dep

### **APPROXIMATING EQUATION SUGGESTION FOR SPRING STIFFNESS FORMULA** $K = -200 \left[ \frac{N}{mm} \right] + 4 \left[ \frac{N}{mm^3} \right] A + 2.5 \text{ [mm]} E_C + 0.009(-A^2 \left[ \frac{N}{mm^5} \right] + A.E_C \left[ \frac{1}{mm} \right] + E_C^2 \left[ \frac{mm^3}{N} \right])$

The error of the simplified formula in case of internal plate





#### Bauhaus Summer School 2022 19

### DESIGN RESISTANCE

### **Test-based design resistance** EC 1993-1-3 2006 (A.6.3.2 (1))

Buckling mode of C90-0.9-600-A



### Design values for $\alpha = b/66$

## Comparison of local failure at the end of the braced specimen between test and FEA

| Cranative and trues | Test-based design | Numerical design resistance [KN] |              |              |  |
|---------------------|-------------------|----------------------------------|--------------|--------------|--|
| Specimens type      | resistance [KN]   | L=300 [mm]                       | L=600 [mm]   | L=2000 [mm]  |  |
| C90-0.9-A           | 26.50             | 27.22 (2.7%)                     | 27.23 (2.7%) | 27.16 (2.5%) |  |
| C90-0.9-X           | 26.50             | 27.17 (2.5%)                     | 27.38 (3.3%) | 27.46 (3.6%) |  |
| C140-0.9-WM         | 27.33             | 27.13 (0.7%)                     | 27.37 (0.1%) | 27.34 (0.0%) |  |
| C140-1.5-WM         | 63.24             | 59.40 (6.0%)                     | 59.97 (5.1%) | 59.87 (5.3%) |  |







### FAILURE MODES COMPARISON

Contact

pair

Comparison of connection failure of the unbraced specimen between test and FEA

Comparison of connection failure of the braced specimen between test and FEA



### **CONCLUSIONS**

- Simplified numerical models were developed for fully and partially-PAC filled CFS columns and joints.
- A simplified numerical formula was proposed to define the solid-replacement spring stiffness.
- Design equivalent geometrical imperfection amplitudes were suggested to predict the design resistance of PAC filled thin-walled columns and joints.
- Further studies

- **PUBLICATIONS** [1] ANALYSIS AND CROSS SECTION DEVELOPMENT OF COLD-FORMED **STEEL RECTANGULAR HOLLOW FLANGE BEAMS, 15th International** Miklos Ivanyi PhD & DLA Symposium, Pecs, Hungary. [2] ANALYSIS AND CROSS SECTION DEVELOPMENT OF COLD-FORMED **STEEL RECTANGULAR HOLLOW FLANGE BEAMS, Nathalie Eid, Attila** László Joó, Pollack Periodica journal, published. [3] NUMERICAL SIMULATION OF ULTRA-LIGHTWEIGHT-CONCRETE **ENCASED COLD-FORMED STEEL STRUCTURES**, Eurosteel 2021, Sheffield, UK, published. [4] Simplified model of ultra-lightweight-concrete encased coldformed steel structures Nathalie Eid, Attila László Joó, Advances in
- **Civil Engineering**, published.

## **Thank you for your listening!**



**BUDAPEST UNIVERSITY** OF TECHNOLOGY AND ECONOMICS

Department of Structural Engineerin