EMPIRISCHE ERKENNTNISSE ZUR NACHFRAGE NACH LADEINFRASTRUKTUR UND OPTIONEN ZUR LÖSUNG DES REICHWEITENPROBLEMS

Prof. Martin Wietschel Fraunhofer Institut für System- und Innovationsforschung (ISI)

Berlin, 17. Mai 2018

Tagung "Bereitstellung der Ladeinfrastruktur für die Elektromobilität – Handlungserfordernisse und Forschungsbedarf aus ökonomischer und juristischer Sicht"

- Wer nutzt Elektrofahrzeuge (EV)?
- Wo laden Elektrofahrzeuge?
- Welche Optionen zur Reichweitenverlängerung gibt es und wie sind sie zu bewerten?
- Was ist aus einer energiewirtschaftlichen Perspektive zu sagen?
- Was lässt sich schlussfolgern?

Vorgestellt werden Erkenntnisse aus verschiedenen Forschungsprojekten des Fraunhofer ISI

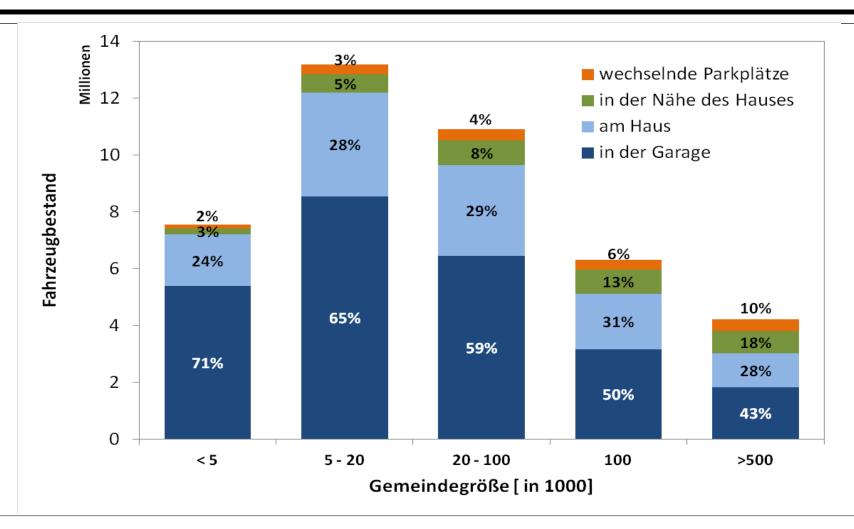
Erstnutzer von EV weisen eine bestimmte Charakteristika auf

Charakteristika¹⁾:

- Mehr Männer und eher jünger
- Höheres Einkommen und Bildung
- Technikaffiner und umweltbewusster
- Haben mehr Kinder
- Längere Wege zur Arbeit
- Kommen eher aus einem kleinstädtischen bis ländlichen Umfeld
- Besitzen eher mehrere Pkws in der Familie
- Nutzen das EV häufig täglich

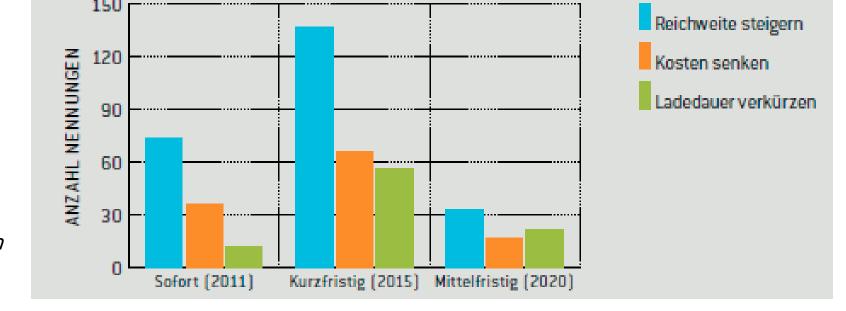
Ergebnis von Simulationsrechnungen: diese Gruppe weist (neben den gewerblichen Nutzern) auch aus wirtschaftlichen Überlegungen heraus die höchste Attraktivität auf und wird somit auch künftig wahrscheinlich weiter dominieren²⁾

© Fraunhofer ISI


Seite 3

Fraunhofer

Die Mehrzahl der Pkw-Nutzer hat eine Garage/Stellplatz und wohnt außerhalb der Großstädte


Fahrzeugbestand und Anteil der Stellplätze von Fahrzeugen über Nacht nach Gemeindegröße.

Quelle: Eigene Darstellung mit Daten aus MiD 2002. Die Kategorie "unbekannt / keine Angabe" ist aufgrund von Werten unter einem Prozent nicht dargestellt.

Reichweite und Ladedauer sind Hemmnisse für die Akzeptanz von Elektrofahrzeugen

- Befragungsergebnisse von Privatnutzern
 - Eher mittelmäßige Bewertung von EV bei vielseitiger und flexibler Nutzung von Elektrofahrzeugen (Reichweite, Ladedauer, Transportkapazität)

Antworten von EV-Nutzern auf die Frage: Waskann ausihrer Sichtan ihren Elektrofahrzeugen verbessertwerden, um sie attraktiver zu machen?

- Wer nutzt Elektrofahrzeuge (EV)?
- Wo laden Elektrofahrzeuge?
- Welche Optionen zur Reichweitenverlängerung gibt es und wie sind sie zu bewerten?
- Was ist aus einer energiewirtschaftlichen Perspektive zu sagen?
- Was lässt sich schlussfolgern?

Erstnutzer von EV laden überwiegend zu Hause, öffentliches Schnellladen wird aber für die Akzeptanz benötigt

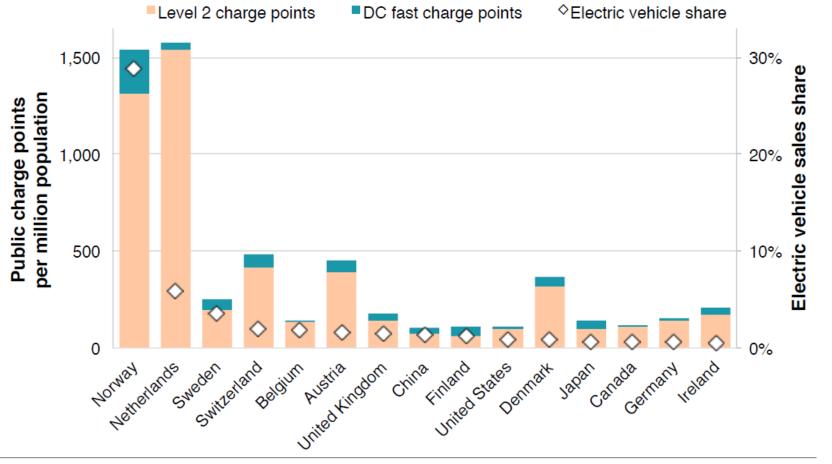
Empirische Erhebung zu Ladeverhalten von EV-Erstnutzern¹⁾:

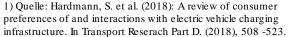
- Überwiegend zu Hause (50-80% der Ladevorgänge)
- Teilweise bei der Arbeit (15-25% der Ladevorgänge)
- Selten öffentlich und Schnellladen fast nur bei außergewöhnlichen Fahrten (ca. 5% der Ladevorgänge)

- Umfragen zeigen¹⁾:
 - Der Zugang zu Lademöglichkeit am Haus hat den größten Einfluss auf die Kaufentscheidung
- Simulationen zur Fahrtenabdeckung zeigen:
 - Niedrige Ladeleistungen (3,7 KW) am Haus reichen aus
- Auswertungen von Fahrprofilen in Deutschland zeigen³⁾:
- Durchschnitt von Fahrten (Privat-Pkw) über 100 km: 10 mal pro Jahr
- Erhebungen zeigen:
 - Öffentliche Ladeinfrastruktur ist notwendig für die generelle Bereitschaft zum Kauf von EV¹⁾
 - Einen Wunsch nach Ausbau der öffentlichen Ladeinfrastruktur besteht²⁾
 - Vorhandene öffentliche Ladeinfrastruktur erhöht die jährliche elektrische Fahrleistung¹⁾

Quellen

¹⁾ Hardmann, S. et al. (2018): A review of consumer preferences of and interactions with electric vehicle charging infrastructure. In Transport Reserach Part D. (2018), 508 -523. Dort werden Ergebnisse von verschiedenen Erhebungen zusammengefasst

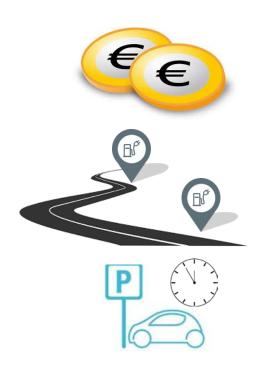

²⁾ Gnanh, E; Plötz, P.; Globisch, J.; Schneider, U.; Dütschke, E; Funke, S. Wietschel, M.; Jochem, P.; Heilig, Mi.; Kagerbauer, M.; Reuter-Oppermann, M. (2017): Öffentliche Ladeinfrastruktur fün Elektrofahrzeuge. Ergebnisse der Profilregion Mobilitätssysteme Karlsruhe. Fraunhofer-ISI: Karlsruhe


Viele Einflussfaktoren beeinflussen den Markterfolg von EV, die öffentliche Ladeinfrastruktur ist eine davon

Öffentliche Ladeinfrastruktur:

- Beeinflusst die EV-Marktdurchdringung positiv, aber mit große Bandbreite zwischen den Ländern
- Fehlende Interoperabilität und mangelnde
 Preistransparenz gelten als mögliche Barrieren der Nutzung¹⁾
- Hohe Nutzungskosten reduzieren die Anzahl der Ladevorgänge

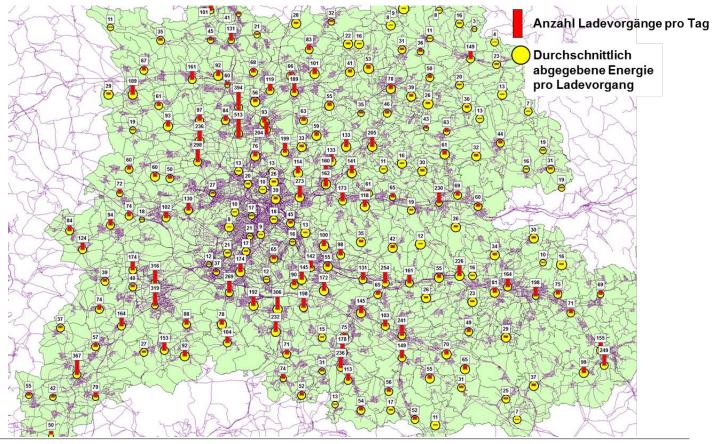
Öffentliche Ladeinfrastrukturin Relation zum Verkauf von Elektrofahrzeugen



Erfragte Mehrpreisbereitschaften für öffentliches Schnellladen sind eher gering

- Ergebnisse einer Umfrage zur Zahlungsbereitschaft (Grundgebühr) für öffentliches Schnellladen¹⁾:
 - Im Durchschnitt nur eine geringe Zahlungsbereitschaft
 - Für Erstnutzern von EV sowie für junge, sehr technikaffine und umweltbewusste Frauen existiert eine höhere Zahlungsbereitschaft
 - Die Ladedauer hat den größten Einfluss auf die Attraktivität für öffentliches Schnellladen
 - Die Existenz von Schnellladeoptionen ist wichtig für die generell Akzeptanz von EV
- Auch in Praxisprojekten mit Umstellung von freies auf bezahltes Laden zeigt sich ein Einbruch der Nutzerzahlen von öffentlichem Laden²⁾

Ladeinfrastruktur für Elektrofahrzeuge. Ergebnisse der Profilregion Mobilitätssysteme Karlsruhe. Fraunhofer-ISI: Karlsruhe



Bei rein bedarfsorientierten Analysen: Notwendige Anzahl an Schnellladestationen ist überschaubar

Beispielsimulation

- Region Stuttgart (2,7 Mio. Einwohnern):
 - Bei 5-Minuten Erreichbarkeit: 218
 Schnellladestandorte
 - Bei 10 Minuten Erreichbarkeit: 60
 Schnellladestandorte
- Bei Bestand von 200.000 Batteriefahrzeugen:
 - Vier Schnellladepunkte pro Standort bei mittlere Wartezeit von maximal fünf Minuten

Anzahl Ladevorgänge je Standort in der Region Stuttgart Szenario 300 000 BEV- für eine Erreichbarkeit von fünf Minuten

Öffentliche Ladeinfrastruktur in Ballungszentren wirkt sich nur bedingt auf die Marktpenetration von EV aus

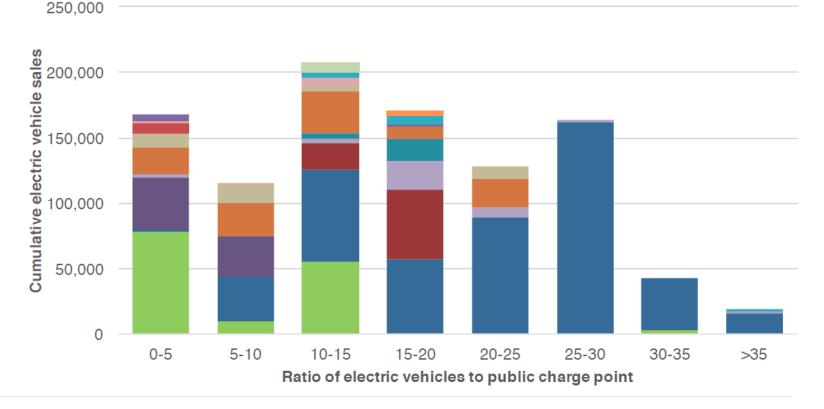
■ China*

Sweden

Austria

Verschiedene Ballungszentren in:

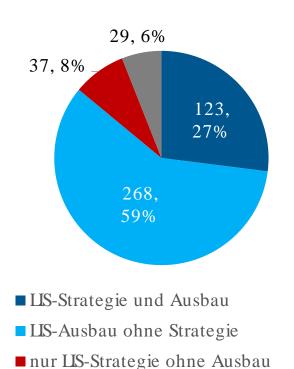
United StatesJapanBelgiumNorwayGermanyFinland


■ Netherlands ■ Unit
■ Denmark ■ Swit

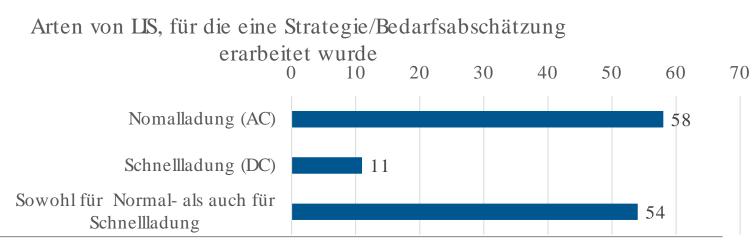
■ United Kingdom
■ Switzerland

Canada

EVMarktpenetration im Verhältnis von EVAnzahl zu öffentlichen Ladepunkten


 Länderspezifika wie Möglichkeiten zum Laden zu Hause sind zu berücksichtigen

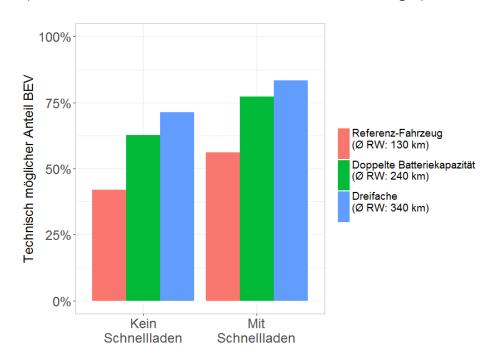
Kommunen sollten deutlich stärker eine Strategie zum Aufbau der Ladeinfrastruktur entwickeln


Ergebnisse einer Kommunenbefragung in Deutschland

Kommunen mit LIS

■ keine LIS-Strategie oder Ausbau

86 % der Kommunen haben LIS

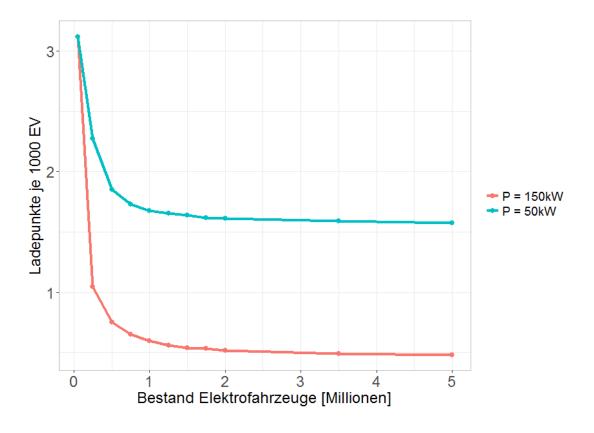

- Wer nutzt Elektrofahrzeuge (EV)?
- Wo laden Elektrofahrzeuge?
- Welche Optionen zur Reichweitenverlängerung gibt es und wie sind sie zu bewerten?
- Was ist aus einer energiewirtschaftlichen Perspektive zu sagen?
- Was lässt sich schlussfolgern?

Zur Erhöhung der BEV-Nutzung kann man in höhere Batteriekapazitäten oder in Schnelladeinfrastruktur investieren

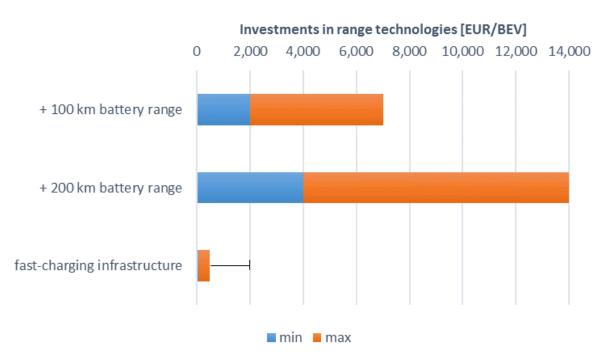
Optionen zur Lösung des Reichweitenproblems

- Erhöhung Batteriekapazität
 - Fahrzeugseitige Maßnahme
 - Hohe Batteriekosten
 - Erhöhung des Fahrzeuggewichts
- Ausbau öffentliche Ladeinfrastruktur
 - Öffentliche Maßnahme
 - Anfänglich nicht ausgelastet
 - Bedarf muss quantifiziert werden
- Senkung Fahrenergiebedarf
 - Fahrzeugseitige Maßnahmen
 - Aerodynamik, Gewicht etc.
 - Als Effizienzmaßnahme interessant, nicht für Reichweitenproblematik
 - Daher nicht gezeigt

Auswirkungen der Batteriekapazität und von Schnellladen auf BEVNutzungsmöglichkeiten (BEW: Rein batterieelektrische Fahrzeuge)


Betrachtung des Wirtschaftsverkehrs mit hohen Anforderungen

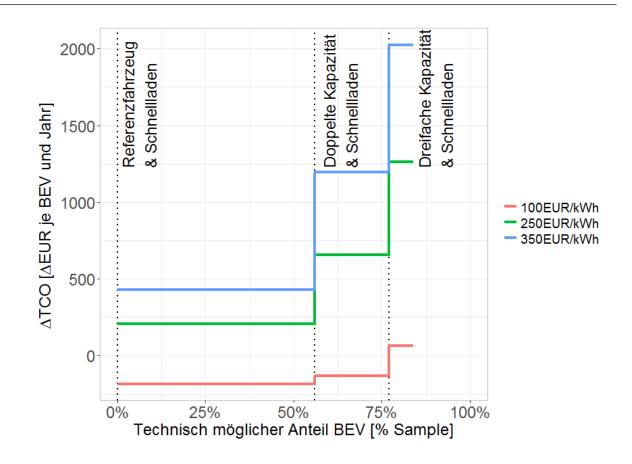
Auch diese Analysen zeigen: Bedarf an Schnellladeinfrastruktur in Deutschland insgesamt überschaubar


- Sehr geringe spezifische Infrastrukturbedarfe von <1 Ladepunkt je 1.000 EV möglich bei sehr optimistischen Annahmen
- Aktuelle Situation in Deutschland:
 ca. 30 Ladepunkte je 1.000 BEV (IEA,2017)
- Ladeinfrastruktur mit hohen Ladeleistungen sind mittelfristig günstiger

Ladepunkte in Verhältnis zum Bestah

Die Investition in Ladeinfrastruktur ist günstiger als die Investition in Batteriekapazitäten

Vergleich der Investitionen

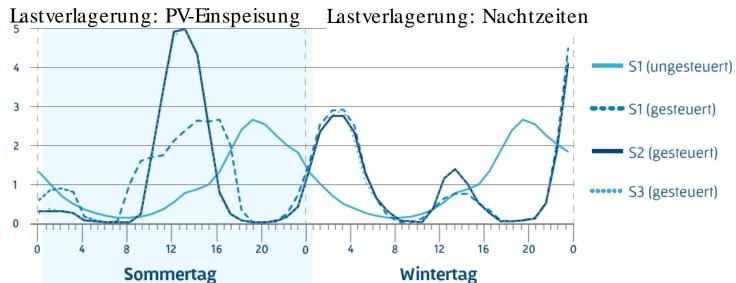

- Spezifische Investitionen in Schnellladeinfrastruktur gering, auch bei heutiger Situation
- Investitionen in größere Batteriekapazitäten mittelfristig vergleichsweise sehr hoch

Die Investition in Ladeinfrastruktur lässt sich auch als Geschäftsmodell darstellen (bei bedarfsoptimierten Aufbau)

Differenz-Total Cost of Ownership (TCO) von einem BEV zu einem zu konventionellen Fahrzeug

- Schnellladen immer Teil der kostenoptimalen Lösung
 - Aufpreis auf Strom von 4-15 ct je kWh für wirtschaftlichen Betrieb von Schnellladeinfrastruktur ausreichend (je nach Ladeleistung)
 - Bei einer durchschn. Auslastung von 13% bis 28%
- Batteriekapazitäten von ca. 50 kWh für viele Nutzer ausreichend

- Wer nutzt Elektrofahrzeuge (EV)?
- Wo laden Elektrofahrzeuge?
- Welche Optionen zur Reichweitenverlängerung gibt es und wie sind sie zu bewerten?
- Was ist aus einer energiewirtschaftlichen Perspektive zu sagen?
- Was lässt sich schlussfolgern?


Eine intelligente Ladeinfrastruktur zu Hause und am Arbeitsplatz ist sinnvoll

Strombedarf von Elektrofahrzeugen an = einem Dienstag im Sommer und Winter bei ungesteuertem und gesteuertem Laden

-adeleistung (GW)

- Szenario S1: Nur Ladeinfrastruktur zu Hause (oder gewerbliche Fahrzeuge am Firmenstandort)
- Szenario S2: Privatnutzern zusätzlich Lademöglichkeiten bei der Arbeit (3,7 KW)
- Szenario S3: zusätzlich öffentliche Ladesäulen (3,7 kW)

Quelle: Michaelis, J.; Gnann, T.; Klingler, A. (2017): How much charging infrastructure is needed and how does it affect the load shift potential of electric vehicles? Electric Vehicle Symposium 30 (EVS30), Stuttgart, 9.-11.10.2017

- Wer nutzt Elektrofahrzeuge (EV)?
- Wo laden Elektrofahrzeuge?
- Welche Optionen zur Reichweitenverlängerung gibt es und wie sind sie zu bewerten?
- Was ist aus einer energiewirtschaftlichen Perspektive zu sagen?
- Was lässt sich schlussfolgern?

Was lässt sich schlussfolgern?

- Die Leute laden heute und künftig überwiegend zu Hause und am Arbeitsplatz, künftig ergänzt durch halböffentlichen Bereich
- Eine intelligente Ladeinfrastruktur sollte hier aufgebaut werden (ökonomisch wie ökologisch sinnvoll)
- Eine öffentliche Schnellladeinfrastruktur ist eine notwendige (Akzeptanz) und sinnvolle (elektrische Reichweite) Ergänzung des Ladeangebots
- > Und bei entsprechender Auslastung auch als Geschäftsmodell darstellbar
- > Rein bedarfsorientiert ist die notwendige Anzahl an öffentlicher Schnellladeinfrastruktur überschaubar
 - Allerdings zeigen Nutzerwünsche höheren Bedarf
 - Aber die Zahlungsbereitschaft ist derzeit niedrig
 - Der Einfluss des Komforts ist zu beachten (wenig Wissen hier vorhanden)
- Rein ökonomisch ist der Ausbau der öffentlichen Schnellladeinfrastruktur günstiger als die Ausdehnung der Batteriekapazität oder von Effizienzmaßnahmen (auch hier stellt sich Komfortfrage)
- > Öffentliches Langsamladen (Laternenparker) ist wirtschaftlich nicht sinnvoll (teuer, fehlendes Geschäftsmodell), ökologisch wenig zielführend und in der jetzigen Marktpenetrationsphase nicht notwendig Kommunen haben hier Beratungsbedarf

