

ROAD CONGRESS PRAGUE 2023

BALANCING MISSED OPPORTUNITIES AND STRANDED ASSETS GUIDING PRINCIPLES OF STRATEGY DEVELOPMENT AND IMPLEMENTATION FOR CLIMATE NEUTRAL ROAD FREIGHT TRANSPORT FROM AN ECONOMIC POINT OF VIEW

TSTF22: ELECTRIC ROAD SYSTEMS (ERS)

CAROLIN GRÜTER / PROF. MICHAEL LEHMANN ET AL. REF.# IP0130 RESEARCH ASSOCIATE

BAUHAUS-UNIVERSITÄT WEIMAR

Bauhaus-Universität Weimar INSTITUT VERKEHR UND RAUM

der Fachhochschule Erfurt

RESEARCH OBJECT

THERE ARE TWO OPTIONS FOR AN E-ROAD FREIGHT TRANSPORT IN GERMANY

BET-System

- Battery electric trucks (BET) and ...
- Charging points (CP)

- … including electricity grid connection
- Provision of electricity

OBET-System • BET + overhead catenary battery electric trucks (OBET) and ... • CP + overhead lines (OL)

- at highly frequented routes
- … including electricity grid connection
- Provision of electricity

RESEARCH QUESTIONS

WE FIRST LOOK AT THE LONG TERM PERSPECTIVE IN ORDER TO DERIVE SHORT TERM RECOMMENDATIONS FOR ACTION

COMPARISON OF MAIN COST ITEMS FOR A BET-SYSTEM AND 4 POSSIBLE OBET-SYSTEMS IN THE FINAL STATE

BET- SYSTEM IS SUPERIOR IN MOST CASES WE LOOK AT, BUT COST DIFFERENCES ARE MINOR

Main system costs for BET- and OBET-Systems over 20 years [bn €]

* Comparison was updated after the submission of the paper. Design of BET and OBET-Systems we look at is based on calculations by Fraunhofer ISI and own assumptions. More details in the appendix A and B.

PIARC

OVERVIEW OF COMPARISON IN THE FINAL STATE FIRST EVALUATION, WHICH IS STILL SUBJECT TO UNCERTAINTIES, I FADS TO A NECK-AND-NECK RACE BETWEEN BET- AND OBET-SYSTEM BET-OBET-System System Evaluation criteria System-dependent costs System costs System-independent costs B Parking and charging areas Further Quality and reliability aspects + Institutional issues * More details on further aspects in the appendix C. 🕂 Superior On par XXVIITH WORLD PIARC ROAD CONGRESS **PRAGUE 2023**

APPROACH IN CASE OF A NECK-AND-NECK RACE IN ORDER TO DERIVE SHORT TERM RECOMMENDATIONS FOR ACTION WE DISTINGUISH 4 CATEGORIES

* Based on Vorwerk, L. / Beckers, T. / Westphal, M. / Bieschke, N. / Hermes, G. (2023): Energiewende, Sektorenkopplung und Infrastrukturen. Eine institutionenökonomische Analyse der zukünftigen (Infrastruktur-)Planung und Finanzierung unter Berücksichtigung juristischer Aspekte.

RECOMMENDATIONS FOR ACTION

WE RECOMMEND TO MAINTAIN BOTH OPTIONS IN THE SHORT TERM AS TODAY'S RISK OF MISSED OPPORTUNITIES IS HIGHER THAN TODAY'S RISK OF STRANDED ASSETS

No regret action	 Build up of CP, especially along highways Develop institutional framework for CP
Actions to maintain and strengthen options and to prepare for decision	 Continue R & D activities for OBET-System in order to gain knowledge and ensure future availability of main components Further investigate design questions regarding a BET- and an OBET-System Explore risks and develop mitigation actions

OUTLOOK

FOLLOWING RESEARCH TOPICS SUPPORT FUTURE DECISION-MAKING AND THE TRANSFORMATION OF ROAD FREIGHT TRANSPORT

European interoperability	Interdependencies with road	
and benefits of	transport based on hydrogen	
coordination	and synthetic fuels	
Detailed view on design of	Organisational and	
BET- and OBET-Systems in	institutional design for	
Germany and Europe	BET and OBET-Systems	

PIARC

APPENDIX A: DESIGN OF (0)BET-SYSTEMS WE LOOK AT

	DET	OBET-	OBET-	OBET-	OBET-	
	DEI-	System	System	System	System	
	System	2000-a	2000-b	4000	6000	
A.1) Infrastructure close to highways						
# of MCS-CP	5.941	5.203	5.203	4.834	2.500	
Length of OL	-	2.000	2.000	4.000	6.000	
B.1) Infrastructure off highways						
# of CCS-LP	150.000	150.000	150.000	150.000	150.000	þ
A.2) Trucks						
# of BET	300.000	150.000	150.000	105.000	50.000	
# of OBET	_	150.000	150.000	195.000	250.000	
Battery capacity of BET (kWh)	500	500	500	500	500	λ.
Ø Battery capacity of OBET (kWh)	-	350	500	300	250	
Ø Energy consumption of (0)BET(kWh/km)	1,3	1,3	1,3	1,3	1,3	
Range of BET (km)	380	380	380	380	380	
Ø Range of OBET(km)	-	270	380	230	190	J
 *BET and OBET-System Design is based on calculations for the need of CP from Fraunhofer ISI and own assumptions 	Cf. Plötz, P Burghard, U. Hochleistung	P./ Hacker, F./ Jö (2021): Infrastı jsschnelllader und	öhrens, J./ Speth, ruktur für Elektro d Oberleitung im \	D./ Gnann, T./ S)-Lkw im Fernverke /ergleich. Ein Dis	icherrer, A./ hr. kussionspapier	
XXVII TH WORLD	8				PIARC	

PRAGUE 2023

APPENDIX B: ASSUMPTIONS ON FUTURE COSTS, SERVICE LIFE AND TOTAL MILEAGE IN THE LONG TERM

A.1 und B.1) Infrastructure	
CAPEX	
MCS-CP (€ / piece)	400.000
CCS-CP (€ / piece)	80.000
OL (both directions) (€ / km)	2.500.000
Service life (years)	20
A.2 und B.2) Trucks	
CAPEX	
Battery	
General assumption (€ / kWh)	129
Variation within sensitivity (€ / kWh)	50-250
Pantograph	12.000
Truck w/o batteries and pantograph (€ /piece)	75.000
Service life (years)	5
(A.3) Ø time costs (€ / h)	35
B.3) Ø electricity costs incl. grid connection (ct / kWh)	10
[Total mileage of BET & OBET in Germany (vehicle-km / year)	40,6 bn
**Updates	

APPENDIX C: FURTHER ASPECTS TO THE EVALUATION IN THE FINAL STATE, WHICH ARE IN FAVOUR OF AN OBET-SYSTEM

(Temporal)	Shortages of parking likely to impede and
shortages of	complicate development of Charging Stations.
parking and	Due to reduced need for parking/charging areas
charging areas	related risks for the OBET-System are lower
Quality	OBET-System eliminates some coordination and
differences	transaction costs in the context of
and reliability	reservation systems for CP
Institutional issues	Institutional challenges of CP provision higher than of OL provision due to coordination and power issues

ESOB-RKI PROJECT TEAM

Bauhaus-Universität Weimar

MICHAEL LEHMANN LEON KIEFER

MATTHIAS GATHER MATS WERCHOHLAD

THORSTEN BECKERS CAROLIN GRÜTER NILS BIESCHKE HAUKE PFAFF

INTERNATIONAL RAILWAY SYSTEMS

UNIVERSITY OF APPLIED SCIENCES ERFURT TRANSPORT POLICY AND REGIONAL PLANNING

UNIVERSITY OF APPLIED SCIENCES ERFURT INFRASTRUCTURE ECONOMICS AND MANAGEMENT

BAUHAUS-UNIVERSITÄT WEIMAR (BUW-IWM)

Gefördert durch:

The project "Elektrischer Straßengüterverkehr mit Oberleitungen und Batterien: Rationalität, Kombinationen und Institutionendesign" (ESOB-RKI) is funded by the German Ministry of Economic Affairs and Climate Action.

aufgrund eines Beschlusses des Deutschen Bundestages

Bauhaus-Universität Weimar

CAROLIN GRÜTER RESEARCH ASSOCIATE

Email: carolin.elisabeth.grueter @uni-weimar.de

Website: www.uni-weimar.de/en/
 civil-engineering/chairs/iwm/

