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In this paper we deal with the problem of identifying piezoelectric material parameters from indirect
measurements of arbitrarily shaped probes. For this purpose, it is essential to choose the measurement
points - i.e., the frequencies where the electrical impedance (and mechanical displacement) data are
taken - in an optimal way to maintain reliability on one hand and minimize computational effort
on the other hand. For achieving this aim, we develop a method based on ideas from optimum
experiment design: Considering cost functions derived from the variance-covariance matrix of the
inverse problem, we combine optimal weighting of data points with shifting measurements to optimal
positions. Numerical tests illustrate applicability of the proposed methodology.

1 Introduction

Piezoelectric transducers that convert electrical into mechanical energy and
vice versa are used in a wide range of applications from injection valves in
automotive industry to ultrasound transducers in medical imaging and ther-
apy. Their simulation via a PDE model requires knowledge of certain material
tensors, which are hard or even impossible to obtain from direct measurements
at the required accuracy [8], [14].

Numerical identification of the material tensors is in principle possible [9], but
so far lacks a measure of reliability such as tight confidence intervals around
the computed material parameter values. It is the aim of this paper to provide
and improve such bounds by means of methods from optimum experiment
design [3], [4], [5], [7], [11], [12], [16], [19], [20] and [21].

More concretely, from an application point of view, the use of measurement
optimization in the context of piezoelectric material parameter identification
is, e.g., motivated as follows: In the course of the production of piezoelectric
transducer elements such as stack actuators or piezoelectric discs, the material
properties are subject to changes due to variations in the processing conditions.
To check quality, measurements of the impedance curves [15], Chapter 9, are
made for each produced piece. An improved way of checking will combine
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these measurements with an automatic reconstruction of the material param-
eter set (or at least the subset of relevant parameters). This computational
reconstruction has to be both reliable and fast in order not to cause a delay in
production time. For this purpose it is necessary to choose optimal measure-
ment frequencies that lead to minimal confidence intervals for the identified
material parameters. This optimization is done once and for all before the
beginning of the batch production of some transducer element type, while the
parameter reconstruction from measurements at the optimized frequencies has
to be done very often, namely for each produced piece. Here, the number of
measurements nmeas decisively influences the computation time in the param-
eter identification for each produced piece, and therefore should be as small
as possible, i.e., equal to or just slightly larger than the number of parameters
npar to be reconstructed.

The optimization process suggested in this paper is divided into two parts: In
the first part, we start with a large number of possible measurement frequen-
cies, which for obvious reasons leads to the best reliability but requires too
time consuming computations for identification. Using a linearization strategy
based on weight functions and a variable number of measurement frequencies,
by minimization of the confidence interval widths we select nmeas frequencies
as initial values for the second part of the optimization. Here, the number
nmeas is only slightly larger than the number npar of searched for material
tensor entries. In this second part, the number of frequencies is kept fixed to
nmeas and the confidence intervals are minimized with respect to the position
of the measurement frequencies. This leads to a highly nonlinear optimization
problem, for which we can expect convergence only close to a solution. For
this reason the first part of initial value construction is really essential. Note
that the minimization of confidence intervals at the same time improves the
condition of the identification problem. Therefore, and due to the small num-
ber of selected frequencies, the second part can be expected to exhibit fast
local convergence.

The remainder of this paper is organized as follows: Section 2 describes the
piezoelectric PDEs containing the searched for parameters as coefficients. In
Section 3 we formulate the inverse problem of piezoelectric material tensor
determination, i.e., of coefficient identification in the piezoelectric PDEs. The
main emphasis lies on Section 4 where we deal with the problem of selecting
the measurement frequencies in our identification process in an optimal way.
Finally, in Section 5 we show some numerical results and in Section 6 we
summarize and draw some conclusions.
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2 Direct problem

The piezoelectric PDEs are a system of four partial differential equations for
the mechanical displacement ~u and the electric potential φ, inside a piezoelec-
tric body Ω ⊂ R

3 (see, e.g., Figure 1 for a simple thickness resonator).

ρ
∂2~u

∂t2
−BT

(

cEB~u + eT gradφ
)

= 0 in Ω (1)

−div
(

eB~u − ε
Sgradφ

)

= 0 in Ω , (2)

see for example [2], [9], [13]. In case of the 6-mm crystal class which is consid-
ered here
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B is the three dimensional strain-displacement differential operator, cE
66 =

1
2(cE

11 − cE
12) and cE , ε

S are positive definite matrices. Considering the usual

Figure 1. Thickness resonator

experimental setting of vanishing normal stress at the boundary, and two elec-
trodes being attached at opposite positions Γg and Γe of Ω, one of them loaded
with a prescribed voltage φload and the other one grounded, we arrive at the
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boundary conditions

NT σ = 0 on ∂Ω
φ = 0 on Γg

φ = φload on Γe

~nT (eB~u − ε
Sgradφ) = 0 on ∂Ω \ (Γg ∪ Γe) ,

(4)

where ~n = (nx, ny, nz) is the outer unit normal vector and

N =





nx . . . nz ny

. ny . nz . nx

. . nz ny nx .





T

,

see Figure 1. Note that we model the electrodes as equipotential surfaces, i.e.,
φload = φload(t) is independent of the space variable.
We assume sufficient decay as |t| → ∞, so that for each x ∈ Ω, the field
quantities ~u, φ and their derivatives as appearing in (1), (2) are L2-functions
of time. This is no restriction, since in practice they will have compact support.
Thus, we can apply the Fourier transform with respect to the time variable to
(1), (2) and obtain the harmonic version of the piezoelectric PDEs

−ρω2~̂u − BT
(

cEB~̂u + eT gradφ̂
)

= 0 in Ω (5)

−div
(

eB~̂u − ε
Sgradφ̂

)

= 0 in Ω . (6)

as well as the same boundary conditions as (4) for the Fourier transformed

displacement ~̂u and potential φ̂.
A weak formulation of the boundary value problem (4), (5), (6) (with ~u, φ

replaced by ~̂u, φ̂ in (4)), can be obtained by testing (5) with vector-valued

C∞-functions ~b = (bx, by, bz) : Ω → C
3, and (6) with scalar C∞-functions w

vanishing at the electrodes Γg,Γe. Integrating by parts

∫

Ω
(BT~σ)T~b dΩ = −

∫

Ω
~σTB~b dΩ +

∫

∂Ω
(NT~σ)T~b dΓ , (7)

we arrive at

φ̂0(·, ω) := φ̂(·, ω) − φ̂load(ω)χ(·) ∈ H1
0,Γ(Ω)

~̂u(·, ω) ∈ H1
B(Ω)
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For all ~b ∈ H1
B(Ω) , w ∈ H1

0,Γ(Ω) :
∫

Ω

(

−ρω2~̂u(ω)T~b + (cEB~̂u(ω))TB~b + (eT gradφ̂0(ω))TB~b

+ (eB~̂u(ω))T gradw − (εSgradφ̂0(ω))T gradw
)

dΩ

= φ̂load(ω)

∫

Ω

(

−(eT gradχ)TB~b + (εSgradχ)T gradw
)

dΩ . (8)

Here, z denotes the complex conjugate of some z ∈ C and the function χ ∈
H1(Ω) is supposed to be constructed such that χ|Γg

≡ 0 χ|Γe
≡ 1 ; (such a χ

exists if Ω is a Lipschitz domain and Γe ∩ Γg = ∅). The function spaces

H1
0,Γ := {w ∈ C∞(Ω) : w|Γg

= wΓe
= 0}

H1

,

H1
B := (C∞(Ω))3

H1
B , ||~b||H1

B
:= ||~b||L2 + ||B~b||L2 ,

are the closures of the above mentioned test function spaces with respect to
appropriate topologies, and to be understood as spaces of complex valued func-
tions. Note that in our situation of imposing Neumann boundary conditions
to the mechanical part, Korn’s inequality does not apply so that H1(Ω)3 is a
strict subset of H1

B.

More generally, consider for some ω ∈ R+ and

~̂
f1 ∈ H1

B(Ω))∗ with N (B) ⊆ N (
~̂
f1(0)) ,

f̂2 ∈ H1
0,Γ(Ω))∗ ,

~̂g1 ∈
(

tr∂Ω(H1
B(Ω))

)∗
,

φ̂e ∈ C ,

ĝ2 ∈
(

tr∂Ω\(Γg∪Γe)(H
1
0,Γ(Ω))

)∗
,

where trΓ is the trace operator v 7→ v|Γ, to be understood component wise for
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vector valued v, the boundary value problem

−ρω2~̂u − BT
(

cEB~̂u + eTgradφ̂
)

=
~̂
f1 in Ω

−div
(

eB~̂u − ε
Sgradφ̂

)

= f̂2 in Ω

NT
(

cEB~̂u + eTgradφ̂
)

= ~̂g1 on ∂Ω

φ̂ = 0 on Γg

φ̂ = φ̂e on Γe

~nT
(

eB~̂u − ε
Sgradφ̂

)

= ĝ2 on ∂Ω \ (Γg ∪ Γe) .

(9)

Analogously to Propositions 1, 2 in [9] one sees that for all ω (up to count-
ably many in case of real valued material tensors), there exists a unique and

stable weak solution (~̂u(ω), φ̂(ω)). For further well posedness results for the
piezoelectric PDEs, we refer to [1], [6], [17], and [18].
In order to solve the piezoelectric PDEs numerically, we use the finite element
method, see for example [2], [9], [13].

3 Inverse problem

Our aim is to identify the npar = 10 parameters

p = (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10)
T

= (cE
11, c

E
33, c

E
12, c

E
13, c

E
44, e15, e31, e33, ε

S
11, ε

S
33)

T ,
(10)

i.e., the non vanishing entries of cE , e, ε
S . The given data are electrical

and/or mechanical measurements (ŷ1, . . . . . . , ŷnmeas
) defined as follows: From

impedance measurements [15] one obtains the surface charge q̂e at the loaded
electrode

ŷi = q̂e(ωi) =

∫

Γe

~nT
(

−eBT ~̂u(ωi) + ε
Sgradφ̂(ωi)

)

dΓ , i ∈ {1, . . . , nchar} .

(11)
In addition, one can, for these frequencies, part of them, or even more, measure
the mechanical deformation in a boundary point, or rather, its weighted mean
value

ŷnchar+i = û(ωi) =
1

|Γ̃|

∫

Γ̃
S~̂u(ω) dΓ , i ∈ {1, . . . , ndisp} . (12)
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Here, |Γ̃| is the measure of the surface area Γ̃ and the matrix S serves as a
weight for scaling the mechanical measurements, since these are usually several
orders of magnitude smaller in absolute value than the electrical ones.
In sum we therefore have nmeas = nchar+ndisp data values ŷj by measurements
of electrical and/or mechanical quantities at nfreq different frequency points.

We denote by F̂ the forward operator mapping the set of parameters to the
measurable quantities

F̂ : C
npar → C

nmeas

p 7→
(

q̂e
1, . . . , q̂

e
nchar

, û1, . . . , ûndisp

)T
,

(13)

where (~̂u
i
, φ̂i) solves (8) with ω := ωi and q̂e

i , ûi are derived from (~̂u
i
, φ̂i)

according to (11), (12). Therewith, we can rewrite the inverse problem under
consideration as a nonlinear operator equation

F̂(p) = ŷ . (14)

This is a finite system of equations for finitely many unknowns. Note, however,
that the evaluation of the forward operator involves an infinite dimensional
subproblem, namely the solution of (8).
A formulation emphasizing the structure of the forward operator (note that
all components of F̂ involve a solution of the same system of PDEs, only
the frequencies change) arises from reordering and decomposing F̂ into nfreq

components F̂

F̂ (p, ωi) =







(q̂e
i , ûi)

T if q̂e
i and ûi are measured

q̂e
i if only q̂e

i is measured
ˆ̂ui if only ûi is measured.

(15)

Equivalently to (14) we get

F̂ (p;ωi) = ŷi , for all i ∈ {1, . . . , nfreq} ,

where the ŷi denote the respective measured data for the right sides of (15).
Given these measurements at fixed frequencies ω1, . . . , ωnfreq

, we solve the in-
verse problem of identifying p by applying Newton type iterations to the op-
erator equation (14), see [9].
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4 Optimum experiment design

Our task is to choose the frequency points ωi, i = 1, . . . , nfreq where we evaluate
measurements in such a way that the sensitivity of the measurements with
respect to the searched for material parameters is maximal in the sense that
the result of the reconstruction is most robust to errors in the data. For this
purpose we assume that the noisy measurements take the form

ŷδ
i = ŷi + εi

with

εi ∼ N(0,W−1
i ) , Wi ∈ R

2
2(or R) symmetric nonnegative definite

so the noise is normally distributed with mean zero and known covariance
matrix W−1

i that might also depend on the choice of the frequency points
ω = (ω1, . . . ωnfreq

), i.e., Wi = W (ωi). We assume for simplicity (and since it
in fact realistic) that the noise components are independent of each other. A
generalization of the proposed approach to interdependent noise components
is straightforward. Here W (ωi) is set to (δ|ŷi|)

−2 (to be interpreted as a 2× 2
diagonal matrix in case of two measurements at a frequency), where δ is the
relative noise level. In our application, we typically have δ ∼ 0.01 correspond-
ing to one per cent measurement noise.
We define a solution of the parameter estimation problem with noisy data via
a maximum likelihood estimator, i.e., a minimizer of

min
p

1

2

nfreq
∑

i=1

‖F̂ (p, ωi) − ŷi‖
2
Wi

. (16)

In this form, we formulate a multi-experiment parameter identification prob-
lem, where each ωi defines an experiment. According to [21] an optimal choice
of the frequencies in the above sense then means that we have to minimize some
functional ϕ of the resulting variance-covariance matrix of the parameters

Cov(p,ω) = (

nfreq
∑

i=1

F̂ ′(p;ωi)
HW (ωi)F̂

′(p;ωi))
−1 ∈ C

npar

npar
,

which is hermitian nonnegative definite. Here, F̂ ′ denotes the derivative of the
forward operator with respect to the parameters and the superscript H stands
for the complex conjugate of its transposed.
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4.1 Fixed number of frequencies

Let us first consider the situation that we keep the number of frequencies nfreq

fixed and optimize with respect to the position of the frequencies ωi.
Using the A-criterion, which minimizes the average variance of the parameters,

ϕ(C) =
1

npar
trace(C) , C ∈ R

npar

npar
(17)

and assuming the number of measurements as well as the parameter vector to
be fixed, we have to solve the minimization problem

min
ω

J(ω) = min
ω

1

npar
trace

(

(

nfreq
∑

i=1

F̂ ′(p;ωi)
HW (ωi)F̂

′(p;ωi))
−1

)

. (18)

Value and gradient of the objective J can be expressed via solutions of systems
of the form (9): For given p and ω, we have that the local linearization of

F̂ (.;ωi) in some direction dp ∈ C
npar is given by

F̂ ′(p;ωi)[dp] =







(dq̂
i
, dûi)

T if q̂e
i and ûi are measured

dq̂
i

if only q̂e
i is measured

dûi if only ûi is measured.

(19)

for i ∈ {1, . . . nfreq}, where the quantities dq̂
i
, dûi in (19) are determined by

(11), (12) from (d~̂u
i
, dφ̂

i
) and (d~̂u

i
, dφ̂

i
) solve the variational form of (9) with

ω = ωi and

~̂
f1 = BT (dcEB~̂u

i
+ deT gradφ̂i)

f̂2 = div(deB~̂u
i
− dεSgradφ̂i)

~̂g1 = −NT (dcEB~̂u
i
+ deT gradφ̂i)|∂Ω

φ̂e = 0

ĝ2 = −~nT (deB~̂u
i
− dεSgradφ̂i)|Ω\(Γg∪Γe) .

(20)

Here, dcE , de, dεS are the tensors formed from the respective entries in dp,

and (~̂u
i
, φ̂i) solve the variational form of the piezoelectric system, i.e., (9) with
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ω = ωi and

~̂
f1 = 0

f̂2 = 0
~̂g1 = 0

φ̂e = φ̂load(ωi)
ĝ2 = 0 .

A component of the gradient of J with respect to the frequency vector ω,
due to linearity of the trace and by the quotient rule for the derivative of a
parameter dependent matrix C(λ)

∂

∂λ
(C(λ))−1 = −C(λ)−1 ∂C

∂λ
(λ)(C(λ))−1

is given by

∂

∂ωi
J(ω) = −

1

npar
trace (Cov(p,ω)A(p,ω)Cov(p,ω)) ,

where

A(p,ω) =

nfreq
∑

i=1

(

F̂ ′
ωi

(p;ωi)
HW (ωi)F̂

′(p;ωi) + F̂ ′(p;ωi)
HW (ωi)F̂

′
ωi

(p;ωi)

+F̂ ′(p;ωi)
HWωi

(ωi)F̂
′(p;ωi)

)

and the subscript ωi
denotes differentiation with respect to ωi.

Similarly to (19) one sees that

F̂ ′
ωi

(p;ωi)[dp] =







(∆q̂
i
,∆ûi)

T if q̂e
i and ûi are measured

∆q̂
i

if only q̂e
i is measured

∆ûi if only ûi is measured.

where ∆q̂
i
,∆ûi are determined by (11), (12) from (∆~̂u

i
,∆φ̂

i
) that solve the
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variational form of (9) with ω = ωi and

~̂
f1 = 2ρωid~̂u

i
+ BT (dcEBD~̂u

i
+ deT gradDφ̂

i
)

f̂2 = div(deBD~̂u
i
− dεSgradDφ̂

i
)

~̂g1 = −NT (dcEBD~̂u
i
+ deT gradDφ̂

i
)|∂Ω

φ̂e = 0

ĝ2 = −~nT (deBD~̂u
i
− dεSgradDφ̂

i
)|Ω\(Γg∪Γe) ,

(D~̂u
i
,Dφ̂

i
) solve the variational form of (9) with ω = ωi and

~̂
f1 = 2ρωi

~̂u
i

f̂2 = 0
~̂g1 = 0

φ̂e = φ̂′
load(ωi)

ĝ2 = 0 ,

and (d~̂u
i
, dφ̂

i
), (~̂u

i
, φ̂i) are as above. Hence, for evaluating the gradient of the

objective J , we have to solve nfreq piezoelectric PDE systems (1), (2) with
several different right hand sides. Note that this effort cannot be reduced by
using an adjoint state approach, since already the state equation itself consists
of nfreq piezoelectric PDE systems.

Confidence intervals for the parameters can be easily computed from the di-
agonal entries Cii of the variance-covariance matrix Cov(p,ω). Namely, with
χ2

npar
(1 − α) being the 1 − α quantile of the χ2

npar
probability distribution, an

approximation to the 100·(1−α) per cent confidence region for the parameters

is included in the npar− dimensional box with side lengths 2
√

Ciiχ2
npar

(1 − α),

see [5]. This means the probability that

|pexact
i − pcomputed

i | ≤
√

Ciiχ2
npar

(1 − α)

is larger than 1 − α.

4.2 Variable number of frequencies

Better reconstruction results can be expected if not only the values ωi are to
be determined but also their number which could bring in a discrete aspect
in the optimization. However, both aspects can be resolved by reformulating
the measurement location in the form of a measurement density ̺(ω) (not to
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be mistaken with the physical mass density ρ appearing in the piezoelectric
PDEs (1), (2)), so that the least-squares objective becomes now

min
p

1

2

∫ ωf

ω0

̺(ω)‖F̂ (p;ω) − ŷ(ω)‖2
W (ω)dω (21)

and the variance-covariance matrix is to be reformulated as

Cov(p) =

(∫ ωf

ω0

̺(ω)F̂ ′(p;ω)HW (ω)F̂ ′(p;ω)dω

)−1

.

We choose ̺ ∈ L1 with box constraints

0 ≤ ̺(ω) ≤ 1 . (22)

This upper bound 1 may also be increased with the interpretation that at
certain frequencies more than one evaluations have to be performed.
Again, using the A-criterion (17) and fixing the parameter vector p, we arrive
at the box-constrained minimization problem

min
0≤̺(ω)≤1

J(̺) = min
0≤̺(ω)≤1

1

npar
trace

(
∫ ωf

ω0

̺(ω)F̂ ′(p;ω)HW (ω)F̂ ′(p;ω)dω

)−1

.

(23)
In order to obtain meaningful results, we should state a maximum number of
measurements to be performed, i.e. a maximum total measure of the measure-
ment density as an additional constraint

∫ ωf

ω0

̺(ω)dω ≤ M . (24)

The fraction M/(ωf − ω0) can in the situation of almost continuous mea-
surements be interpreted as the requirement to involve only this fraction of
all the available measurement in the least-squares optimization. Experiment
design methods based on weight optimization for a discrete set of weights
can be found e.g., in [4], [12]. Note that the formulation with a continuous
weight function as proposed here is new, to the best of our knowledge. In a
numerical implementation, via discretization of the integral it again leads to a
finite dimensional optimization problem but gives more freedom for discretiz-
ing adaptively instead of fixing the weighted points a priori.
Now the gradient of J with respect to the frequency density ̺ is given by the
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following function of ω

∂

∂̺
J(̺)(ω) = −

1

npar
trace

(

Cov(p)F̂′(p;ω)HW (ω)F̂′(p;ω)Cov(p)
)

.

Note that by the introduction of a weight function, the objective in (23) ap-
pears to be less nonlinear than in (18).
The integral in the objective has to be approximated by, e.g., summed trape-
zoidal rule, which gives a natural discretization for ̺ via breakpoints ω(j),
j ∈ {1, . . . , N} with N >> npar. The derivatives w.r.t. to p have to be com-
puted only once for each ω value in the discretized problem.
In order to save computational effort in the minimization of the data misfit
with respect to the searched for parameters, we neglect frequency points with
small weights by thresholding, i.e., given a weight function ̺, we replace (21)
by

min
p

1

2

∑

ω∈S

∆(ω)̺(ω)‖F̂ (p;ω) − ŷ(ω)‖2
W (ω) , (25)

where

S := {ω(j) | ̺(ω(j)) ≥ γ max
ω

̺(ω)} := {ω(j1), . . . , ω(jcard(S))}

with γ ∈ (0, 1) (typically, γ = 0.8) and card denoting the cardinality of a set.
Moreover,

∆(ω(jl)) :=
1

2
(ω(jmin{l+1,card(S)}) − ω(jmax{l−1,1})) ,

so that (25) corresponds to an approximation of the integral in (21) by a
composite trapezoidal rule on the (coarse) discretization given by S. If this
criterion yields too few frequency points (less than npar), we just select the
npar frequency points with the largest weights:

if card(S) < npar set S := {ω(j1), . . . , ω(jnpar )}

where maxω ̺(ω) = ̺(ω(j1)) ≥ ̺(ω(j2)) ≥ ̺(ω(j3)) . . . .
The 100 · (1−α) per cent confidence region for the parameters can then be ap-

proximated by the npar− dimensional box with side lengths 2
√

Ciiχ2
npar

(1 − α),
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where

C =

(

∑

ω∈S

F̂ ′(p;ωi)
HW (ωi)F̂

′(p;ωi)

)−1

.

Note that the weighting by ∆(ω)̺(ω) does not play a role in the size of the
confidence intervals, since these obviously have to be invariant with respect to
a scaling of the card(S) equations in (14).

A simple iterative scheme for identifying the parameters and optimizing the
measurements in a sequential design approach could be

Algorithm 1 Choose ̺0(ω), p1

For k = 1, 2, 3, . . .
Fix p = pk

Solve (23) (or (18)) to obtain ̺k (or ω
k)

(e.g. by a projected steepest descent method)
Fix ̺ = ̺k (or ω = ω

k)
Solve (25) (or (16)) to obtain pk+1

(e.g. by a Gauss-Newton iteration with starting value pk)

Both “Solve” steps can be done in an inexact way with accuracy depending
on the state of convergence of the overall method (i.e., large tolerances are
used as long as ̺k, pk are “far” from optimal). Note, that here especially in
the “Solve (23)” step many forward problems with the same stiffness matrix
have to be solved.
Stopping criteria are sufficient smallness of the confidence ellipsoid determined
by Cov(p,ω) and/or the changes in ̺ (or ω, respectively) and p.

To arrive at an efficient overall method with large convergence radius, we
combine both approaches as follows: The weight function formulation from
subsection 4.2 is used for obtaining starting guesses in the highly nonlinear
problem of optimizing the positions of a fixed number of frequencies, see sub-
section 4.1.

4.3 Descent method

4.3.1 Fixed number of frequencies. We define the following sets: Im :=
[ω0, ωf ] - the interval in which measurements are available, Ir := [ωr − ǫr, ωa +
ǫa] a set including frequencies between and around frequencies at resonance
(ωr) and antiresonance (ωa), respectively. The set of admissible frequencies is
I := Im \ Ir. Here, the constants ǫr, ǫa are chosen such that measurements are
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neither taken between resonance and antiresonance frequency nor very close
to them since due to the lack of regularity of the forward problem at eigenfre-
quencies, the parameter identification method tends to fail in this region. The
frequencies ωr and ωa are detected just by finding the minimum and maximum
of the impedance curve, respectively. Projection onto the feasible set I is done
by the operator P defined by Pω = ω̄ where

ω̃ = min{ωf ,max{ω0, ω}}
ω̄ = ωc + sign(ω̃ − ωc)max{|ω̃ − ωc|,

ωr+ǫr−ωa+ǫa

2 } with ωc = ωr+ǫr+ωa−ǫa

2 .

Since the eigenfrequencies ωr, ωa depend on the material parameters, the
admissible set I changes in the course of the identification procedure.
The minimization problem

min
ω∈I

J(ω) (26)

is numerically solved by the following projected gradient method with line
search.

Algorithm 2 Set ω
0 ⊂ I, λ0 > 0, θ < 1, cω > 0

While (||P (ωk −∇J(ωk)) − ω
k|| > cω)

dk = −∇J(ωk)
While (J(ωk + λkdk) > J(ωk))

λk = θλk

ω
k+1 = ω

k + λkdk

ωk+1
i = Pωk+1

i i ∈ {1, . . . , N},
k = k + 1

4.3.2 Variable number of frequencies. Also the minimization of (20) is
done by a projected gradient method, where P is the projection on the convex
feasible set defined by (22), (24) as well as the exception of frequencies too
close to resonance and antiresonance, to avoid stability problems in the forward
solution.

Algorithm 3 Set ̺0 ∈ [0, 1], λ0 > 0, θ < 1, γ = 0.8, c̺ > 0

While (||P (̺k − ∂
∂̺

J(̺k)) − ̺k|| > c̺)

dk = − ∂
∂̺

J(̺k)

While (J(̺k + λkdk) > J(̺k))
λk = θλk

̺k+1 = ̺k + λkdk
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̺ = P̺
Select S = {i ∈ {1, . . . , N} | ̺(ω(i))k+1 > γ maxj ̺(ω(j))k+1} ,

Set ̺(ω(i))k+1 = 0 for i /∈ S
k = k + 1

As an initial guess we use a constant weight function ̺0(ω) ≡ 0.01.

5 Numerical results

Our numerical tests were done with simulated data for a piezoelectric disc as
in Figure 1 with a radius of 10 mm and a thickness of 1 mm, see Figure 2
for the influence of the probe thickness on the impedance curve. Due to the
rotational symmetry, the parameter cE

12 has no influence on the transducer
behavior [9], hence we identify the nine parameters cE

11, cE
33, cE

13, cE
44, e15, e31,

e33, εS
11, εS

33 here.
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Figure 2. Impedance curves for different thicknesses (actually used: 0.01) for comparison (dashed).

For such a thin disc — a typical thickness resonator — it is easy to obtain
nice results for cE

33, e33, εS
33, but hard to get reliable values for the rest of the

parameter set, that can get relevant e.g., as soon as the transducer is operated
at lower frequencies close to the radial mode, though. The material under
consideration was Pz27, for which we had material parameters from data sheets
as well as measurements that had been carried out at the department of sensor
technology in Erlangen. All computations were carried out with one per cent
normally distributed random noise, and 99 per cent confidence intervals are
displayed. For more details about discretization and solution of the forward
problem, we refer to [9]. To simulate an industrially relevant scenario, we
consider easy to obtain impedance measurements only and do not assume
mechanical displacement measurements to be available here.
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5.1 Variable number of frequencies

For the setting with variable number of frequencies, where we have to optimize
the weight function ̺, we used a discretization of ̺ with thirty equidistant fre-
quency points. As mentioned above, frequency points between and too close
to the resonance and antiresonance frequencies are excepted from the range
of admissible values. On the other hand, from the identification procedure
according to the IEEE standard [8] that is based on resonance frequency mea-
surements, it is clear that the sensitivity for the identification problem is high
close to these eigenfrequencies. Therefore the algorithm shifts some of the
measurements frequencies as close as possible to the resonance/antiresonance
frequency.

In the setting with variable frequency number, we follow two approaches:
Firstly, we apply Algorithm 1 to (23), i.e., we carry out a full optimization
of the frequencies by alternating between weight function optimization and
parameter fitting. This is computationally quite costly, since parameter fitting
has to be done on a fine grid (here: 30 frequency points). The results are
displayed in Figures 3, 4, 5.
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Figure 3. Development of confidence intervals (dashed lines) of the different parameters (solid
line) during Algorithm 1 applied to (23).
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1 1.5 2 2.5 3 3.5 4

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency ω (Hz)

ρ(
ω

),
 |Z

| (
Ω

)

M
r
 M M 

γ max ρ(ω) 

ρ1 

ρ9 
 ρ23 

Figure 5. 1st (dotted), 9th (dashed), and 23rd (dash-dotted) iterate of weight function, and
impedance curve (solid) for comparison.

The second approach within optimization of a variable number of frequencies
is only supposed to generate good starting values for the optimization of the
position of a fixed number of frequency values (see Subsection 5.2 below). For
this purpose, we only apply one step of the weight function optimization to the
initial guess for our parameters, see Figure 6. After this weight function opti-
mization, the frequency points with weights above 80 per cent of the maximal
weight (or, if these are too few, those twelve with highest weight,) were se-
lected for parameter fitting. For efficiency reasons, this second approach turns
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out to be favorable to the first one in our context.
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Figure 6. Weight function ̺ (dotted) as well as selected frequencies (o) after one optimization
step, and impedance curve (solid) for comparison.

In Figure 7, we plot the resulting confidence intervals of all nine relevant
material parameters, compared to those obtained without an optimization of
measurement location.

5.2 Fixed number of frequencies

After a preprocessing step of determining good approximations for the num-
ber and positions of the measurement points, (e.g., by one weight function
optimization step, see Subsection 5.1 above), we consider the case described
in Subsection 4.1, where we keep the number of frequencies fixed to twelve
while optimizing their location.
Figure 8 shows results for the simultaneous identification of all nine relevant
material parameters. The narrow intervals for cE

33, e33, and εS
33 reveal the

dominant behavior of these parameters for a thickness resonator. Due to the
trade-off between all material parameters that is made by the A-criterion,
some of the confidence intervals are still too large, see, e.g. εS

11. Therefore
we also consider optimization of the measurement frequencies with respect
to single material parameters or subsets of them. Figure 9 shows the (now
more satisfactory) result for εS

11 alone, in Figure 10 we plot the results from
simultaneous optimization for cE

13, e15, e31, εS
11.
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Figure 7. Comparison of confidence intervals: For twelve equidistant frequencies at abscissa value
1, and for the frequencies chosen as in Figure 6 at abscissa value 2.

6 Conclusions and Remarks

For the optimal choice of measurement frequencies in the identification of
piezoelectric material parameters, we applied methods of optimum experi-
ment design, that minimize a functional of the variance-covariance matrix of
the (linearized) inverse problem. It turned out that a combination of finding
starting values via a data weighting approach for variable number of frequen-
cies with a locally convergent gradient method for the highly nonlinear problem
of optimal measurement location for fixed number of measurements leads to
an efficient optimization scheme.
Further research in this context will be focused on optimal measurement se-
lection for the identification of nonlinear material properties as occurring for
large excitations [10].
Moreover, we plan to apply the proposed methodology to material parame-
ter identification problems in different physical contexts such as magnetics,
acoustics, or mechanics.
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