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Iterative Multilevel Algorithm Using Modified Landweber
Iterations With Application to Piezoelectricity
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Abstract. In piezoelectric applications, especially when the devices are used as actuators, the piezo-
electric materials are driven under large signals which cause a nonlinear behavior. Our aim is to
model the nonlinearities by functional dependencies of thematerial parameters on the electric field
strength. The focus lies in the inverse problem, namely the identification of the parameter curves
by appropriate measuremets of charge signals over time. Since the measured data are contaminated
with data noise we deal with a typicallyill-posedproblem. The solution requires regularizing meth-
ods where we consider modified Landweber iterations, namelythe steepest descentand minimal
error methodtogether witha posterioristopping rules. Since any implementation requires a dis-
cretization of the parameter curves an iterative multilevel algorithm is proposed where the iterations
begin with coarse discretizations of the sought-for quantities profiting from the inherent regulariza-
tion property of coarse discretization. At an advanced state of the iterations the algorithm switches
to finer levels of discretization. By this a sufficiently smooth resolution of the sought-for quantities
can be achieved. Convergence results and the regularizing property of such an iterative multilevel
algorithm using modified Landweber iterations on each levelwill be proven. The application to
the above mentioned inverse problem in piezoelectricity together with numerical results closes this
article.
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1. Introduction

Piezoelectric transducers convert electrical signals into mechanical ones and vice versa.
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Figure 1: Piezoelectric effect. Left pictures: Direct piezoelectric effect, i.e. the genera-
tion of an electrical signal by a mechanical force. Right pictures: Converse piezoelec-
tric effect, i.e. shape deformation due to an applied voltage or charge.



Piezoelectric Tensor Identification with Iterative Multilevel Algorithm 13

So, the term piezoelectricity is endowed with two effects: The direct effecton one
hand, i.e. the conversion of a mechanical force into an electric signal which is typical
for sensor applications (e.g. force and acceleration sensors). On the other hand there is
the indirect or inverse piezoelectric effect, i.e. the mechanical excitationby application
of an electric field (actuator applications, e.g. ultrasound generation, stack actuators)
[1].

The paper is organized as follows. After a brief derivation of the piezoelectric consti-
tutive equations and partial differential equations with the unknown quantities mechan-
ical displacement and electric potential, we show how nonlinearities can be modeled
for moderate electric fields. Then we turn to the theoretical investigation of an iterative
multilevel algorithm, which is strongly motivated by the work of Scherzer [21]. Here,
modified Landweber iterations are considered as inner iterations on eachlevel, which
allow for an appropriate choice of the relaxation parameter in the Landweber iteration
improving the speed of convergence without increasing the computational costs. Con-
vergence results and the regularization property of the iterative multilevelalgorithm
are in the focus. This article closes with the application of the derived algorithm to
the simulation based (FEM) identification of material parameter curves in nonlinear
piezoelectricity.

1.1. Material Laws and Partial Differential Equations

The piezoelectric effect in the linear case is described by the following constitutive
equations [6],

~σ = c
E ~S − e

T ~E

~D = e~S + ε
S ~E, (1.1)

where~σ is the mechanical stress tensor and~D the dielectric displacement. Further (1.1)
involves the mechanical strain~S and the electric field~E, respectively. The material
tensors are the fourth order modulus of elasticityc

E (N/m2) at constant electric field,
the third order piezoelectric couplinge (N/Vm), and the second order permittivity
tensorεS (C/Vm) at constant strain. The symmetry and the sparsity of the material
tensors involved can be seen in (3.5) by assuming all entries to be constants. We
additionally refer to [1,6,8,10].

Together with Newton’s law of motion the fact that piezoelectric materials areinsu-
lators we obtain

ρ
∂2

u

∂t2
− B

T
(

c
E
Bu + e

T∇φ
)

= 0 in Ω

∇ ·
(

eBu− ε
S∇φ

)

= 0 in Ω , (1.2)

where by Faraday’s law, the electric field is the negative gradient of the electric poten-
tial φ [5]

~E = −∇φ (1.3)
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with ∇ := ( ∂
∂x ,

∂
∂y ,

∂
∂z ). By linearized elasticity the strain is the spatial variation of the

mechanical displacementu

~S = Bu. (1.4)

The three dimensional differential operator relates mechanical strainsto the mechanical
displacements

B :=
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. (1.5)

As boundary conditions we consider the experimental setting of vanishingnormal

s

I

U∼ P

Ω Γg

Γe

Figure 2: Piezoelectric disc. Notation of boundaries. This shape is for example used to
simulate radial or thickness modes. The direction of polarization is markedwith P .

stresses at the boundary∂Ω. Two electrodes are applied at opposite surfacesΓg and
Γe of Ω, see Figure 2. One of them is loaded with a prescribed potentialφe, the other
one is grounded. Further, on the parts of the boundary which are not covered by any
electrode there shall be no free charge. Together, this gives the following boundary
conditions

N
T~σ = 0 on∂Ω
φ = 0 onΓg

φ = φe on Γe

~D · ~n = 0 onΓR := ∂Ω \ (Γe ∪ Γg), (1.6)

where

N =







nx . . . nz ny

. ny . nz . nx

. . nz ny nx .







T

and~n = (nx, ny, nz) is the outer unit normal vector. Additionally, appropriate initial
conditions are given by

u(·,0) = u0

u̇(·,0) = u1. (1.7)



Piezoelectric Tensor Identification with Iterative Multilevel Algorithm 15

Concerning the electric field strengths one can assume linear behavior only in the range
of 0.0− 0.1kV/mm. Above these field strengths nonlinear effects occur. Signals with
which piezoelectric actuators are usually driven cause fields of 0.2− 0.3kV/mm, thus
the actuators mainly operate in nonlinear ranges [4]. In order to model the nonlinear
behavior we consider higher order terms in the constitutives, which can be seen as a
special case of functional dependencies of the material tensors on thefield quantities
strain and electric field. The model allows to describe nonlinear effects for moderate
electric fields staying below the coercive field strength. Effects like a nonlinear relation
between applied voltage and displacement, jump phenomena in the response spectra,
appearance of higher harmonics, and softening of the material are already visible at
weak fields [18, 19]. In our model the nonlinear effects are assumedto be reversible,
i.e. no depolarization of the crystals in the piezoelectric material is expectedas opposed
to models regarding hysteresis [11, 23]. The constitutives in their most general form
considering material nonlinearities read as [12]

~σ = c
E(~S)~S − e

T (~S, ~E) ~E (1.8)

~D = e( ~E, ~S)~S + ε
S( ~E) ~E. (1.9)

The now nonlinear set of differential equations in (1.2) is solved with the Finite El-
ement Method using the Newmark scheme for time integration and a dampedfixed-
point iteration to solve the nonlinear problem at each time-step. For details werefer
to [10,14].

The inverse problem of parameter identification formulated with a parameter-to-
solution mappingF corresponds to the problem of solving a nonlinear operator equa-
tion.

2. Iterative Multilevel Algorithm

The mathematical problem which we have in mind is the following

F : D(F ) → Y with D(F ) ⊆ X

F (p) = yδ, (2.1)

whereF is a nonlinear operator mapping from the infinite dimensional Hilbert space
X into Y . The valuep is the sought-for quantity andyδ is the noisy input, in general
measurements of physical quantities with

||y − yδ|| < δ (2.2)

whereδ is a measure for the noise level andy denotes noisefree data.

Motivated by the efficiency of a multilevel strategy on one hand and by the speed up
of convergence of minimal error and steepest descent method as compared to classical
Landweber, on the other hand we aim at carrying over the results by Scherzer [21]
on multilevel Landweber to modified versions of Landweber’s iteration, namely the
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steepest descent and minimal error method [9]. Let us introduce the general assump-
tions considered in the sequel. The operatorF in (2.1) is assumed to be continuous,
differentiable and its Frechét derivativeF ′ to be Lipschitz continuous and normalized
such that

||F ′(p)|| ≤ 1, ∀ p ∈ D(F ). (2.3)

Further, we assume thatN (F ′(p)) is trivial for all p ∈ Bρ(p0).
The numerical realization of the modified Landweber iterations is now considered in
a finite dimensional subspaceXN := PNX of X , wherePN denotes the orthogonal
projection onto

XN ⊆ X, with X0 ⊆ X1 ⊆ ... ⊆ XN and
⋃

N∈N

XN = X. (2.4)

Let the union∪N∈NXN be dense inX . The initial guess at discretization levelN is
denoted byp0

N .
Moreover the tangential cone condition is assumed to hold on the discrete subspaces
XN

||F (p)− F (PNp
†) − F ′(p)(p− PNp

†)|| ≤ ηN ||F (p)− F (PNp
†)||

for all p ∈ XN ∩ Bρ/2(PNp
†) ⊆ D(F ) with ηN ≤ 1

4
. (2.5)

At each level, the modified Landweber iteration now reads as follows,

pk+1,δ
N = pk,δ

N + ωk,δ
N sk,δ

N , sk,δ
N := PNF

′(pk,δ
N )∗(yδ − F (pk,δ

N )) (2.6)

where the coefficientsωk,δ
N are chosen either as

ωk,δ
N :=

||sk,δ
N ||2

||F ′(pk,δ
N )sk,δ

N ||2
(2.7)

or as

ωk,δ
N :=

||yδ − F (pk,δ
N )||2

||sk,δ
N ||2

. (2.8)

These choices transform the classical Landweber iteration into a discreteversion of the
steepest descend or minimal error method, respectively. See [9, 16, 20] for the infinite
dimensional case of these methods. By (2.3) for both choices

ωk,δ
N ≥ 1 (2.9)

holds.
The size of the discretization parameterN is rather crucial. A small value ofN does
not allow for a precise approximation. However the iteration might be verysensitive
to noise in the data when using a largeN . Further, depending on the implementa-
tion a largeN makes the iterations extremely time consuming, e.g. if one thinks of
approximatingF ′ by finite differences.



Piezoelectric Tensor Identification with Iterative Multilevel Algorithm 17

Concerning the stopping criteria in each level the residual is tested by a combina-
tion of an approximation estimate for the current level and the data error level. The
approximation error may be estimated either inX or Y which gives the following two
criteria

||F (pk+1,δ
N ) − yδ|| ≤ C1(δ + ||F (PNp

†) − F (p†)||) (2.10)

or
||F (pk+1,δ

N ) − yδ|| ≤ C̃1(δ + ||(PN − I)p†||). (2.11)

Each of them determines a well-defined stopping indexk∗(N, δ) at levelN , i.e.

k∗(N, δ) := min{k ∈ N | where (2.10) holds} (2.12)

and analogously for (2.11). In the sequel we assumeC1 = C̃1.
The stopping rules (2.10) and (2.11) are used for theoretical purposes; in a practi-

cal implementation the terms||F (PNp
†) − F (p†)|| and ||(PN − I)p†|| containing the

unknown solution have to be estimated based ona priori information onp†, see for
example [13, 15, 21, 22]. Obviously, as long as the iterations are not terminated we
have for allk < k∗(N, δ)

||F (pk,δ
N ) − yδ|| > C1(δ + ||F (PNp

†) − y||), (2.13)

or

||F (pk,δ
N ) − yδ|| > C1(δ + ||(PN − I)p†)||). (2.14)

Note that the stopping criterion might get active atk = 0 so that there is nok satisfying
(2.14) (or (2.13)). It is a crucial assumption in [21] and also in some(but not all)
assertions made here, that at least one step is carried out on levelN , i.e. (2.14) (or
(2.13)) is satisfied fork = 0.

Even though the choice ofk∗(N, δ) in (2.12) avoids an undesired amplification of
the data error, the stopping criterion has a minor drawback since it does not guarantee
that the number of iterations is finite in each level. This however is necessary in order
to compute the initial guess at any subsequent level. As a consequence we introduce
somea priori chosen finite maximal numberk̃max(N) of iterations

0< k̃max(N) <∞. (2.15)

A combination of (2.12) and (2.15), i.e.

k∗(N, δ) := min{k∗(N, δ), k̃max(N)} <∞ (2.16)

gives a well suited, finite stopping index for the inner iterations of the multilevel algo-
rithm.

Refinement of the discretization, i.e. the outer iteration will be performed until an a
posterioristopping rule becomes active

||yδ − F (pk∗,δ
N )|| ≤ C2δ ≤ ||yδ − F (pk,δ

N )||, C2 > 2
1 + ηN

1− 2ηN
> 2. (2.17)
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Only as long as this global discrepancy principle does not terminate the iterations one
continues at the next levelN + 1 and uses the last approximate from levelN as an
initial guess at the next finer level, i.e.

p0,δ
N+1 := p

k∗(N,δ),δ
N .

Algorithm 2.1 summarizes the procedure.

Algorithm 2.1. Iterative multilevel algorithm for modified Landweber iterations:

SETp0,δ
0 := P0p

0 ∈ X0

SETN = 0
SETk = 0
SETk∗(N, δ) = 0
CHOOSEC1 < C2 sufficiently large
WHILE ||F (p

k∗(N,δ),δ
N ) − yδ|| > C2δ

k = 0
If N > 0

p0,δ
N+1 = p

k∗(N,δ),δ
N

N = N + 1
DO WHILE ||F (pk,δ

N ) − yδ|| violates (2.10) ork > k̃max(N)

pk+1,δ
N = pk,δ

N + ωk
Ns

k,δ
N , sk,δ

N := PNF
′(pk,δ

N )∗(yδ − F (pk,δ
N ))

whereωk,δ
N is either ωk,δ

N := ||sk,δ
N ||2

||F ′(pk,δ
N

)sk,δ
N

||2

or ωk,δ
N := ||yδ−F (pk,δ

N
)||2

||sk,δ
N

||2

k = k + 1
k∗(N, δ) = k

pN∗(δ) := p
k∗(N,δ),δ
N

The algorithm can analogously be formulated with (2.10) replaced by (2.11). The
assumption thatC1 andC2 are sufficiently large can be made more precise with the
help of the following definition which is taken from [21]:

Definition 2.2. An operatorF is called regular at levelXN in UN := XN ∩ Bρ(p0
0) if

it is Fréchet-differentiable inUN := XN ∩ Bρ(p0
0) ⊆ D(F ) and

Binf (N, p†, p0
0, ρ) := inf

p∈UN ,p6=PN p†

||F (p)− F (PNp
†)||

||p− PNp†||
> 0.

An operatorF is called regular at levelXN in UN with magnitudeλN if it is regular at
levelXN and

λN := Binf (N, p†, p0
0, ρ).
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Here,λN measures the stability of the solution of (2.1) with respect to perturbations of
the right-hand side data on the finite dimensional subspaceXN .
So for the constants the following is assumed ifF is regular at levelXN with magnitude
λN

C1 ≥ 4(1 + ηN ), C0 < C1 < C2 (2.18)

with

λN
C2

0

8(1 + C0)2 ≤ ||F ′(p0,δ
N )||, andC0 ≥

√
8 ∀N.

2.1. Convergence Results

Before we show monotonicity of the iterates on each level we prove the well-definedness
of the step-length parametersωk,δ

N . One can show, that as long as the stopping rules as
defined in (2.10) and (2.11) are not active, the parameter updatesk,δ

N andF ′(pk,δ
N )sk,δ

N

are nonzero.

Lemma 2.1. Letp† ∈ Bρ/2(p
0) be a solution of (2.1) andk∗(N, δ) be as in (2.12) and

pk,δ
N − PNp

† 6= 0 for all k < k∗(N, δ). Then

||sk,δ
N || 6= 0 and ||F ′(pk,δ

N )sk,δ
N || 6= 0 for all k < k∗(N, δ).

Proof. We carry out the proof in case of (2.10). The case (2.11) then immediately
follows, since by (2.3) the right hand side in (2.11) is greater or equalthe one in (2.10)
if C̃1 = C1.
If k∗(N, δ) = 0 we need not to prove anything. Otherwise (2.13) holds. Assume that
k < k∗(N, δ). If F ′(pk,δ

N )∗(F (pk,δ
N ) − yδ) would vanish, then

0 =
(

F (pk,δ
N ) − yδ, F ′(pk,δ

N )(pk,δ
N − PNp

†)
)

=
(

F (pk,δ
N ) − yδ, F (pk,δ

N ) − yδ
)

+
(

F (pk,δ
N ) − yδ, y − F (PNp

†)
)

+
(

F (pk,δ
N ) − yδ, yδ − y

)

−
(

F (pk,δ
N ) − yδ, F (pk,δ

N ) − F (PNp
†) − F ′(pk,δ

N )(pk,δ
N − PNp

†)
)

.

From this we deduce

||F (pk,δ
N ) − yδ||2 ≤ (δ + ||y − F (PNp

†)||)||F (pk,δ
N ) − yδ||

+ ηN ||F (pk,δ
N ) − F (PNp

†)|| ||F (pk,δ
N ) − yδ||
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and further

||F (pk,δ
N ) − yδ|| ≤ δ + ||y − F (PNp

†)||
+ ηN (||F (pk,δ

N ) − yδ|| + ||y − F (PNp
†)|| + ||y − yδ||).

(2.19)

So

||F (pk,δ
N ) − yδ|| ≤ 1 + ηN

1− ηN
(||F (PNp

†) − y|| + δ)

which contradicts (2.13).
To show that||F ′(pk,δ

N )sk,δ
N || 6= 0 let us assume again the contrary, i.e.||F ′(pk,δ

N )sk,δ
N || =

0. Thensk,δ
N ∈ N (F ′(pk,δ

N )) = {0} which is a contradiction to the already shown fact
sk,δ

N 6= 0. 2

This actually guarantees that the choices of the relaxation parameters in (2.7) and (2.8)
are well-defined. Now, monotonicity of the iteration error at a fixed levelN will be
proven:

Theorem 2.3. Let N ∈ N0 be fixed such that||(I − PN )p†|| < ρ/2, wherep† is a
solution of (2.1) inB ρ

2
(p0,δ

N ) andp0,δ
N ∈ XN . Assume that Algorithm 2.1 carries out at

least one inner step at levelN , i.e. there exists an iteration indexk ≥ 0 such that (2.13)
and (2.14) hold respectively withC1 ≥ 4(1+ ηN ). Then, for0 ≤ k < k∗(N, δ)

pk+1,δ
N ∈ B ρ

2
(p†) ∩XN ⊆ Bρ(p

0,δ
N ) ∩XN further

||p† − pk+1,δ
N || ≤ ||p† − pk,δ

N || and

||PNp
† − pk+1,δ

N || ≤ ||PNp
† − pk,δ

N ||. (2.20)

Proof. Let pk,δ
N ∈ B ρ

2
(p†) for 0 ≤ k < k∗(N, δ). From the definition of the iteration it

follows that

||pk+1,δ
N − p†||2

= ||pk,δ
N − p†||2 + ||ωk,δ

N PNF
′(pk,δ

N )∗(F (pk,δ
N ) − yδ)||2

− 2ωk,δ
N

(

F ′(pk,δ
N )(pk,δ

N − PNp
†), F (pk,δ

N ) − yδ
)

= ||pk,δ
N − p†||2 + ||ωk,δ

N PNF
′(pk,δ

N )∗(F (pk,δ
N ) − yδ)||2

+ 2ωk,δ
N

(

F (pk,δ
N )− F (PNp

†)− F ′(pk,δ
N )(pk,δ

N − PNp
†), F (pk,δ

N ) − yδ
)

− 2ωk,δ
N

(

F (pk,δ
N ) − F (PNp

†), F (pk,δ
N ) − yδ

)

.



Piezoelectric Tensor Identification with Iterative Multilevel Algorithm 21

With the nonlinearity condition (2.5) we obtain that
(

F (pk,δ
N ) − F (PNp

†) − F ′(pk,δ
N )(pk,δ

N − PNp
†), F (pk,δ

N ) − yδ
)

−
(

F (pk,δ
N ) − F (PNp

†), F (pk,δ
N ) − yδ

)

≤ ηN ||F (pk,δ
N ) − F (PNp

†)|| ||F (pk,δ
N ) − yδ||

−
(

F (pk,δ
N ) − yδ, F (pk,δ

N ) − yδ
)

+ ||yδ − F (PNp
†)|| ||F (pk,δ

N ) − yδ||
≤ (ηN − 1)||F (pk,δ

N ) − yδ||2 + (1 + ηN )||yδ − F (PNp
†)|| ||F (pk,δ

N ) − yδ||.

By (2.13)

(1+ ηN )||yδ − F (PNp
†)|| ||F (pk,δ

N ) − yδ||

≤ (1+ ηN )
(

||y − F (PNp
†)|| + δ

)

||F (pk,δ
N ) − yδ|| ≤ 1

4
||F (pk,δ

N ) − yδ||2.

(2.21)

Hence we continue to estimate

||pk+1,δ
N − p†||2 ≤ ||pk,δ

N − p†||2 + (ωk,δ
N )2||sk,δ

N ||2

+ 2ωk,δ
N (ηN − 3

4
)||F (pk,δ

N ) − yδ||2.

Finally, it holds that

||pk+1,δ
N − p†||2 + 2ωk,δ

N (
1
4
− ηN )||F (pk,δ

N ) − yδ||2

≤ ||pk,δ
N − p†||2 + (ωk,δ

N )2||sk,δ
N ||2 − ωk,δ

N ||F (pk,δ
N ) − yδ||2. (2.22)

Inserting now the choice ofωk,δ
N as a minimal error method (2.8) one sees, that the

difference of the last two terms on the RHS of (2.22) vanishes. For the steepest descent
variant (2.7) it holds

ωk,δ
N ||sk,δ

N ||2 =

(

F ′(pk,δ
N )sk,δ

N , F (pk,δ
N ) − yδ

)2

||F ′(pk,δ
N )sk,δ

N ||2
≤ ||F (pk,δ

N ) − yδ||2,

so in both cases

||pk+1,δ
N − p†||2 + 2ωk,δ

N (
1
4
− ηN )||F (pk,δ

N ) − yδ||2 ≤ ||pk,δ
N − p†||2. (2.23)

The monotonicity of||PNp
† − pk,δ

N || follows by inspection of the estimations of this
proof. 2
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The next lemma will show that the first Landweber step at the next finer level under
certain assumptions always provides some improvement to the old state ofthe un-
known. Whereas the results so far hold for both stopping rules (2.10) and (2.11), we
restrict ourselves to (2.11) with (2.16) now.

Lemma 2.2. LetF be regular at levelXN with magnitudeλN in UN and assume that

ηN ≤ 1
8, further that (2.14) holds fork = 0 at levelN + 1. Then withψ := Ĉ2

1

8(1+Ĉ1)2

andĈ1 ≥
√

8

||p1,δ
N+1 − PN+1p

†||2 ≤ (1− ω0,δ
N+1ψλ

2
N )||p0,δ

N+1 − PNp
†||2.

Proof. Let us start with some estimates at levelN . Supposepk,δ
N , PNp

† ∈ Bρ(p0
0), then

it follows from (2.3) fork ≤ k∗(N, δ)

||F (pk,δ
N )− yδ|| ≥ ||F (pk,δ

N ) − F (PNp
†)|| − ||F (PNp

†) − y|| − δ

≥ ||F (pk,δ
N ) − F (PNp

†)|| − (||PNp
† − p†|| + δ).

Now

||F (pk,δ
N ) − F (PNp

†)|| ≤
(

1 +
1

Ĉ1

)

||F (pk,δ
N ) − yδ|| (2.24)

and so together with (2.14) fork = 0 and since max{a, b}2 ≥ 1
2a

2 + 1
2b

2

||F (p0,δ
N ) − yδ||2 ≥ Ĉ2

1

2(1+ Ĉ1)2
||F(p0,δ

N ) − F (PNp
†)||2 +

Ĉ2
1

2
||(PN − I)p†||2. (2.25)

Furtherψ ≤
(

1
2 − 2ηN+1

) Ĉ2
1

2(1+Ĉ1)2 andψ1 := Ĉ2
1

8 ≤
(

1
2 − 2ηN+1

) Ĉ2
1

2 .

From the proof of monotonicity (2.23) withp† replaced byPNp
†, due to orthogonality,

and sincep0,δ
N+1 = p

k∗(N,δ),δ
N ∈ XN ⊆ XN+1 one obtains

||p1,δ
N+1 − PN+1p

†||2 + ω0,δ
N+1 (

1
2
− 2ηN+1)||F (p0,δ

N+1)− yδ||2

≤ ||p0,δ
N+1 − PN+1p

†||2

≤ ||p0,δ
N+1 − PNp

†||2 + ||PN+1p
† − PNp

†||2

from which with (2.24) and (2.25) follows

||p1,δ
N+1 − PN+1p

†||2 + ω0,δ
N+1ψ||F (p0,δ

N+1) − F (PNp
†)||2

+ ω0,δ
N+1ψ1||PNp

† − p†||2

≤ ||p0,δ
N+1 − PNp

†||2 + ||PN+1p
† − PNp

†||2. (2.26)
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Now, with the boundedness (2.9) ofω0,δ
N+1 from below as well asψ1 ≥ 1 and by or-

thogonality

||PNp
† − p†||2 = ||PNp

† − PN+1p
† + PN+1p

† − p†||2

= ||PNp
† − PN+1p

†||2 + ||PN+1p
† − p†||2

+2
(

PNp
† − PN+1p

†, PN+1p
† − p†

)

≥ ||PNp
† − PN+1p

†||2

we get
||(PN+1 − PN )p†||2 ≤ ω0,δ

N+1ψ1||(PN − I)p†||2.
Consequently (2.26) reduces to

||p1,δ
N+1 − PN+1p

†||2 + ω0,δ
N+1ψ||F (p0,δ

N+1) − F (PNp
†)||2 ≤ ||p0,δ

N+1 − PNp
†||2. (2.27)

From the assumption thatF is regular at levelN with magnitudeλN and withp0,δ
N+1 =

p
k∗(N,δ),δ
N ∈ Bρ(p

0,δ
N ) one has

||F (p0,δ
N+1)− F (PNp

†)|| ≥ λN ||p0,δ
N+1 − PNp

†||.

From the latter inequality it follows that

||p1,δ
N+1 − PN+1p

†||2 ≤ (1− ω0,δ
N+1ψλ

2
N )||p0,δ

N+1 − PNp
†||2. (2.28)

2

Corollary 2.3. Let the assumptions from Lemma 2.2 hold. Then for allk < k∗(N, δ):

||pk+1,δ
N+1 − PN+1p

†||2 ≤ (1− ω0,δ
N ψλ2

N )||p0,δ
N − PNp

†||2.

Proof. With the results from Theorem 2.3 and Lemma 2.2 it holds

||pk+1,δ
N+1 − PN+1p

†||2 ≤ ||p1,δ
N+1 − PN+1p

†||2

≤ (1− ω0,δ
N+1ψλ

2
N )||p0,δ

N+1 − PNp
†||2

= (1− ω0,δ
N+1ψλ

2
N )||pk∗(N,δ),δ

N − PNp
†||2

≤ (1− ω0,δ
N+1ψλ

2
N )||p0,δ

N − PNp
†||2.

2

Now we have all auxiliary means for deriving the main result of this article.It states
that the iterates of the proposed multilevel algorithm with least squares or minimal
error inner iterations form a monotone sequence.

We define now a set which contains the indices of those levels where at least one
iteration is performed and where (2.17) is not active yet

N̂ δ := {N < N∗(δ) | ||F (p0,δ
N ) − yδ|| > C1(δ + ||(I − PN )p†||) =: (Nl)

L
l=1 (2.29)
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Theorem 2.4. Let all conditions of Lemma 2.2 hold. If for allN ∈ N̂ δ the operatorF
is regular at levelN with magnitudeλN inUN = XN∩Bρ(p0

N), then for allN < N∗(δ)
and allk ≤ k∗(N, δ)

||pk+1,δ
N+1 − PN+1p

†||2 ≤
∏

I ∈ N̂ δ

I ≤ N

(1− ω0,δ
I+1ψλ

2
I)||p0,δ

0 − P0p
†||2. (2.30)

Especially, if additionally for alll ∈ {1, ..., L∗ − 1}

(1− ω0,δ
Nl+1

ψλ2
Nl

)
φ(λNl

)

φ(λNl+1)
≤ 1 (2.31)

holds with some functionφ : R → R, then

||pN∗(δ) − PN∗(δ)p
†||2 ≤ ||p0,δ

0 − P0p
†||2 φ(λNL∗

)

φ(λN1)
. (2.32)

In caseN̂ δ = {0, ..., N∗(δ)} this yields

||pN∗(δ) − PN∗(δ)p
†|| = O(

√

φ(λN∗(δ))). (2.33)

Proof. The result in (2.30) directly follows from Corollary 2.3. Inserting
N := N∗(δ) − 1, k = k∗(N∗(δ), δ) and (2.31) into (2.30) we get

||pN∗(δ)− PN∗(δ)p
†||2

≤
L∗
∏

l=1

(1− ω0,δ
Nl+1

ψλ2
Nl

)||p0,δ
0 − P0p

†||2

≤
L∗−1
∏

l=1

φ(λNl+1)

φ(λNl
)
||p0,δ

0 − P0p
†||2

=
φ(λNL∗

)

φ(λN1)
||p0,δ

0 − P0p
†||2. (2.34)

2

As opposed to [21], Lemma 5.4, this can give a convergence rate notonly for mildly-ill
posed but also for exponentially ill-posed problems for example withφ(·) ∼ log(·).

2.2. Convergence in Case of Exact Data

It is also of interest to provide weak convergence results in case of noise free data.
These results will e.g. be used later on when the regularization property of the multi-
level algorithm will be shown. At this point we introduce the following set

N δ := {N ∈ N : ||F (p0,δ
N ) − y|| > C1(δ + ||F (PNp

†) − yδ||)} (2.35)
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which contains all levels where at least one inner iterations is performed,so thatp1,δ
N is

certainly computed.

Proposition 2.4. If δ = 0 andk∗(N, δ) as in (2.16)

F (pk∗(N,0),0
N ) → y as N → ∞. (2.36)

Proof. There are two cases to be considered:
1) The iteration stops at a finite levelN . In this situation by (2.17) the last iterate is a
solution of (2.1).
2) The iteration does not terminate. Because of (2.23) it holds that

∑

I∈N 0

k∗(I,0)−1
∑

j=0

||y − F (pj,0
I )||2 <∞. (2.37)

For I /∈ N 0 the following is true

||y − F (p0,0
I )|| ≤ ||F (PIp

†) − y|| or

||y − F (p0,0
I )|| ≤ ||(I − PI)p

†||. (2.38)

Now, we will make use of a subsequence-subsequence argument applied to

aN := ||y − F (p0,0
N )||.

Let (aNi
)i∈N be an arbitrary subsequence. We distinguish between the cases:

a) The index setN 0 ∩ {Ni}i∈N is infinite, hence we can denote it by(Nil
)l∈N. Due to

(2.37)(aNi
)i∈N converges to zero.

b) The setN 0 ∩ (Ni)i∈N is finite, then(N \ N 0) ∩ {Ni}i∈N must be infinite and with
(Nil

)l∈N := (N \ N 0) ∩ {Ni}i∈N, we have convergence of(aNil
)l∈N to zero by

pointwise convergence ofPI to the identity in (2.4).

So, in both cases,(aNi
)i∈N has a subsequence converging to zero. This implies that

each subsequence of(aN)N∈N has a convergent subsequence and the limit of each
convergent subsequence of(aN)N∈N is zero.

2

With the latter result weak convergence for exact data can be established:

Proposition 2.5. Let δ = 0 and the assumptions of Proposition 2.4 hold. Moreover,
let F be weakly closed. Then each subsequence ofp

k∗(N,0),0
N has a weakly convergent

subsequence and each weak accumulation point is a solution ofF (p) = y. If the

solutionp† of (2.1) is unique, thenpk∗(N,0),0
N converges weakly top†.
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Proof. In case Algorithm 2.1 terminates after a finite numberN∗(0) of iterations by the
stopping criterion (2.17) thenpN∗(0) solves (2.1). Otherwise ifk∗(N,0) > 0 it follows
from Theorem 2.3 that

||p† − p
k∗(N,0),0
N || ≤ ||p† − p0,0

0 ||
which trivially holds in the complementary casek∗(N,0) = 0. Therefore, we have
boundedness ofpk∗(N,0),0

N in X andpk∗(N,0),0
N has a weakly convergent subsequence.

From (2.36) and the weak closedness of the operatorF it follows that for each weak
accumulation pointz, the identityF (z) = y holds, which proves the assertion. 2

2.3. Regularization Property

A still open question is whether the iterative multilevel algorithm has regularizing prop-
erties or not, i.e. if it converges to the exact solution in case that the data error level
forms a sequence converging to zero. In order to answer this questionwe start at with
fixed iteration indexk and fixed levelN ,

Theorem 2.5. Let {δn} → 0 for n → ∞. Further, denote byyδn a sequence of noisy
data and assume thatF ′ is Lipschitz continuous. Then, for fixedk ∈ N

pk,δn

N → pk
N , asn→ ∞, (2.39)

wherepk,δn

N := p
k∗(N,δn),δn

N for k ≥ k∗(N, δn).

Proof. For each pair(δn, yδn) let us denote byk∗(N, δn) the corresponding stopping
index according to (2.17). Similar as in [20] one can define for each levelN

fk
N (n) := ||F (pk,δn

N ) − yδn ||
and prove (2.39) by induction forN andk:

1. N = 0 andk = 0: Sincep0,δn

0 = P0p
0 it clearly depends continuously onyδn .

2. N = 0 andk → k + 1. Letk ∈ N be fixed and suppose thatpk,δn

0 → pk
0 asδn → 0.

Assuming thatfk
0 (n) is monotone (otherwise consider monotone subsequences) one

needs to consider the two cases:

1. fk
0 (n) is strictly bounded from below. Then forn→ ∞,

fk
0 (n) → ||F (pk

0) − y|| > C1||(I − P0)p†|| > 0 and according to Lemma 2.1 stating
thatsk

0 6= 0

||F ′(pk
0)F

′(pk
0)

∗(F (pk
0) − y)|| > 0, ||F ′(pk

0)
∗(F (pk

0) − y)|| > 0

which implies continuous dependence ofωk
0 in both cases (2.7) and (2.8). From the

definition of the modified Landweber iteration, continuity ofF and Lipschitz continu-
ity of F ′ it follows thatpk+1,δn

0 → pk+1
0 for n→ ∞.
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2. Let fk
0 (n) → 0: Thenfk

0 (n) → ||F (pk
0) − y|| = 0 for n → ∞, i.e. pk

0 solves (2.1)
The following two situations need to be distinguished:
b.i) fk

0 (n) > C2δn, thenk < k∗(0, δn) and substitutingp† by pk
0 in (2.20)

||pk
0 − pk+1,δn

0 || ≤ ||pk
0 − pk,δn

0 ||.

b.ii) fk
0 (n) ≤ C2δn, then the iteration is stopped andpk+1,δn

0 = pk,δn

0 . Together (b.i)
and (b.ii) givepk+1,δn

0 → pk
0 = pk+1

0 for n→ 0.

Now, assume that for someN > 0 one has shown thatpk+1,δn

N depends continuously

on the data. Thenp0,δn

N+1 = p
k∗(N,δn),δn

N does sincek∗(N, δn) continuously depends on
the data and therefore equals somek∗(N) for all n ≥ n0 with n0 sufficiently large and
one can argue as above to carry out the induction stepN → N + 1. 2

The next result shows that the Algorithm 2.1 with its stopping rules is a regularizing
method. For a sequence of data errors which is converging to zero, theregularized
solution of (2.1) converges to the exact onep†.

Theorem 2.6. Assume thatδn forms a sequence of data errors converging to zero and
that the assumptions of Theorem 2.5 are satisfied. Then, the sequencepδn

N∗(δn) con-
verges weakly subsequentially (in the sense of Proposition 2.5) to the solution of (2.1).

Proof. We consider the two cases forN∗(δn) :

1.) In the first case we assume thatN∗(δn) has a finite accumulation pointN for
n → ∞. Without loss of generality,N∗(δn) = N for all n sufficiently large. By
(2.16) it is assured thatk∗(N, δn) has a finite accumulation point. Now, without loss
of generality assume thatk∗(N, δn) = k for all n sufficiently large. By definition
of k∗(N, δn) it follows that

||yδn − F (pk,δn

N )|| ≤ τδn. (2.40)

Since by Theorem 2.5pk,δ
N → pk

N for yδ → y ask is fixed now, one has

pk,δn

N → pk
N (2.41)

and
F (pk,δn

N ) → F (pk
N).

Taking the limit in (2.40) givesF (pk
N) = y.

2.) In the second case whereN∗(δn) → ∞ for n→ ∞ , then

p
k∗(M,δn),δn

M = p0,δn

M+1 → p0
M+1 for n→ ∞ (2.42)

sincek = 0 is fixed and by an application of Theorem 2.5. Hence Proposition 2.5
yields weak subsequential convergence in this case.

The proof is complete. 2

Note, that in the proof of Theorem 2.6 the case thatk∗(N, δn) → ∞ asn→ ∞ will
not occur due to (2.15) and (2.16).
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3. The Piezoelectric Parameter Curve Identification Problem

We formulate the inverse problem of identifying the material parameter curves from
time dependend electrical or mechanical measurements with the following parameter-
to-solution mapF which in its most general form is given by

F : D(F ) ⊆ Xpar → Ymeas

(cE , e, εS) 7→ yδ(t), t ∈ [0, T ], (3.1)

where(cE , e, εS) are parameter curves depending on the physical field quantities elec-
tric field and mechanical strain. In order to reduce the complexity of computations and
the representation of the Fréchet derivative ofF and its adjoint we consider only the
dependency of the 33 components ofe andε

S on ~E3 = (0,0, φ|3)T and assume that the
constant material parameters are sufficiently precisely known, e.g. by applying means
suggested in [6] or by performing simulation-based material parameteridentification
for the linear case, see [8,14]. The parameter-to-solution map reduces and specifies in
case of electric charge measurements to

F : D(F ) ⊆
(

H2(φ|3, φ|3)
)2

→ L2([0, T ])

(e33, ε33) 7→
∫

Γ
~D(t) · ~ndΓ

=

∫

Γ

(

e3(φ|3)Bu(t)− ε
S
3 (φ|3)∇φ(t)

)

· ~ndΓ,

(3.2)

where the pair(u, φ) solves

ρ
∂2

u

∂t2
− B

T
(

c
E
Bu + e3(φ|3)

T∇φ
)

= 0 in Ω × [0, T ]

−∇ ·
(

e3(φ|3)Bu− ε
S
3 (φ|3)∇φ

)

= 0 in Ω × [0, T ] , (3.3)

combined with the boundary and initial conditions

N
T (cE

Bu + e3(φ|3)
T∇φ

)

= 0 on∂Ω × [0, T ]

φ = 0 onΓg × [0, T ]

φ = φe on Γe × [0, T ]
(

e3(φ|3)Bu− ε
S
3 (φ|3)∇φ

)

· ~n = 0 onΓr × [0, T ]

u(·,0) = u0 on Ω

ut(·,0) = u̇0 on Ω (3.4)
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and the tensorse3(v), εS
3 (v) andc

E are defined as

e3(v) =







0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33(v) 0 0 0






,

ε
S
3 (v) =







ε11 0 0
0 ε11 0
0 0 ε33(v)






andc

E :=





















cE11 cE12 cE13 0 0 0
cE12 cE11 cE13 0 0 0
cE13 cE13 cE33 0 0 0
0 0 0 cE44 0 0
0 0 0 0 cE44 0
0 0 0 0 0 cE66





















.

(3.5)

The derivatives of the terms in (3.5) are defined as

e
′
3(v) :=







0 0 0 0 0 0
0 0 0 0 0 0
0 0 e′33(v) 0 0 0






andε

S
3
′
(v) :=







0 0 0
0 0 0
0 0 εS

33
′
(v)






.

The choice of a second order Sobolev space as a pre-image space is motivated by the
continuous differentiability of the parameter curves that is required for carrying out
Newton’s method in forward computations. Since we only have measurements of zero
order derivatives available, i.e. electric charge or mechanical displacements and not
any values of higher order derivatives with respect to time (velocity, acceleration or
electric current) the data space is

Y = L2[0, T ]. (3.6)

For the sought-after quantities, the parameter curves, as already mentioned, we assume
spaces

D(F ) := X ⊆ (H2(φ|3, φ|3))
2 (3.7)

in order to obtainC1 curves bySobolev’s embedding theorem. The operatorF actually
maps intoC2[0, T ]. So we have a difference in the regularity of these spaces which
corresponds to an ill-posedness of twice numerical differentiation for the parameter
curves reconstruction, see e.g. Example 1.1 and 1.6 in [2].

3.1. The Adjoint Operator

The following is devoted to the computation of the adjoint operator of the linearized
problem.
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Proposition 3.1. The adjoint operatorF ′(e33, ε
S
33)

∗ of the linearization ofF defined
in (3.2) is given by

(F ′(e33, ε
S
33)

∗[z])(λ) (3.8)

=

∫ T

0

∫

Ω
Φ(λ− φ|3)

(

(Bu)3z̃|3 − φ|3(Bṽ)3

φ|3z̃|3

)

dΩ dt,

whereΦ is defined by

Φ(a) =
1
2

√

π

2
(1+ |a|)e−|a|. (3.9)

The values(ṽ, z̃) are here obtained by solving the adjoint set of differential equations

ρṽtt − B
T (cE

Bṽ + e3(φ|3)
T∇z̃) = 0 on Ω × [0, T ]

−∇ ·
(

(e3(φ|3) + e
′
3(φ|3)φ|3)Bṽ + e

′
3(φ|3)Buz̃|3

− (εS
3
′
(φ|3)φ|3 + ε

S
3 (φ|3))∇z̃

)

= 0 on Ω × [0, T ]

N
T
(

c
E
Bṽ + e3(φ|3)

T∇z̃
)

= 0 on∂Ω × [0, T ]

z̃ = z(t) on Γe × [0, T ]

z̃ = 0 on Γg × [0, T ]
(

(e3(φ|3) + e
′
3(φ|3)φ|3)Bṽ + e

′
3(φ|3)Buz̃|3

− (εS
3
′
(φ|3)φ|3 + ε

S
3 (φ|3))∇z̃

)

· ~n = 0 on Γr × [0, T ]

ṽ(·, t = T ) = ṽt(·, t = T ) = 0 on Ω. (3.10)

By the analytic formula of the adjoint the smoothing character of the adjoint and so the
ill-posedness of the linearized problem can be quantified by the following theorem:

Proposition 3.2. Assume that the solution operatorS : z 7→ (ṽ, z̃) of the adjoint equa-
tion in (3.10) is bounded in its norm, i.e.

||S||(Hσ(0,T ))∗→(Hσ(0,T ;H1
0,Γ(Ω)∗))∗×(Hσ(0,T ;H1

B
(Ω)∗))∗ <∞. (3.11)

If further u, φ ∈ C∞([0, T ]× Ω), then the operatorF ′(e33, ε
S
33)

∗ can be extended to a
continuous linear operator from(Hσ[0, T ])∗ to (H2(R))2 for anyσ ∈ (0,3/2).



Piezoelectric Tensor Identification with Iterative Multilevel Algorithm 31

Proof. For anyz ∈ L2[0, T ] andσ ∈ (1, 3
2) we have

||F ′(e33, ε
S
33)

∗[z]||(H2(R))2

=

∫

R

(1 + ω2)2

∣

∣

∣

∣

∣

∫ T

0

∫

Ω
e−iφ|3ω(FΦ)(ω)

(

(Bu)3z̃|3 − φ|3(Bṽ)3

φ|3z̃|3

)

dΩ dt

∣

∣

∣

∣

∣

2

dω

=

∫

R

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

e−iφ|3ω

1 + ω2

(

(Bu)3z̃|3 − φ|3(Bṽ)3

φ|3z̃|3

)

dΩ dt

∣

∣

∣

∣

∣

2

dω

=

∫

R

(

1
1 + ω2

)2




∣

∣

∣

∣

∣

∫ T

0

∫

Ω
e−iφ|3ω

(

(Bu)3z̃|3 − φ|3(Bṽ)3
)

dΩdt

∣

∣

∣

∣

∣

2


 dω

+

∫

R

(

1
1 + ω2

)2




∣

∣

∣

∣

∣

∫ T

0

∫

Ω
e−iφ|3ωφ|3z̃|3 dΩdt

∣

∣

∣

∣

∣

2


 dω

≤
∫

R

(

1
1 + ω2

)2
(

2||z̃|3||2(Hσ([0,T ];L2(Ω)))∗ ||e−iφ|3ω(Bu)3||2Hσ([0,T ];L2(Ω))

+ 2||(Bṽ)3||2(Hσ([0,T ];L2(Ω)))∗ ||e−iφ|3ωφ|3||2Hσ([0,T ];L2(Ω))

+ 2||z̃|3||2(Hσ([0,T ];L2(Ω)))∗ ||e−iφ|3ωφ|3||2Hσ([0,T ];L2(Ω))

)

dω. (3.12)

We now analyze single components of (3.12), where

||z̃|3||(Hσ([0,T ];L2(Ω)))∗ ≤ ||z̃||(Hσ([0,T ];H1
0,Γ(Ω)∗))∗ and

||(Bṽ)3||(Hσ([0,T ];L2(Ω)))∗ ≤ ||ṽ||(Hσ([0,T ];H1
B

(Ω)∗))∗ . (3.13)

The values in (3.13) are, by our assumption on the solution operator of the adjoint
equation, bounded by some constant times||z||(Hσ([0,T ]))∗. The terms in (3.12) with
norms inHσ([0, T ], L2(Ω)) including the functione−iφ|3ω can be estimated with the
help of the following interpolation inequality

∀υ ∈ H2[0, T ] : ||υ||Hσ [0,T ] ≤ ||υ||2−σ
H1[0,T ]

||υ||σ−1
H2[0,T ]

, (3.14)

which is a Nirenberg-Gagliardo type interpolation inequality [3,17]. Now, the first and
second time derivatives ofe−iφ|3ωφ|3 are

d

dt
e−iφ|3ωφ|3 = e−iφ|3ω

(

−iφ2
|3ω

d

dt
φ|3 +

d

dt
φ|3

)

d2

dt2
e−iωφ|3φ|3 = e−iφ|3ω

(

−ω2φ3
|3

(

d

dt
φ|3

)2

− 3iφ|3ω(
d

dt
φ|3)

2

)

+ e−iφ|3ω

(

−iφ|3ω
d2

dt2
φ|3 +

d2

dt2
φ|3

)

.

(3.15)
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Thus withu andφ ∈ C∞

(

1
1+ ω2

)2

||e−iωφ|3φ|3||(Hσ [0,T ];L2(Ω))

= O
(

(

1
1 + ω2

)2
)

O
(

(ω(2−σ))2
)

O
(

((ω2)σ−1)2)

= O
(

(

1
1 + ω2

)2
)

O
(

(

1
1 + ω2

)−2+σ
)

O
(

(

1
1 + ω2

)2−2σ
)

= O
(

1
1 + ω2

)2−σ

. (3.16)

We can argue analogously for||e−iωφ|3(Bu)3||(Hσ [0,T ];L2(Ω)). Finally this gives together
with (3.12)

||F ′(e33, ε
S
33)

∗[z]||(H2(R))2 ≤ C||z||(Hσ [0,T ])∗

∫

R

(

1
1+ ω2

)2−σ

dω.

The integral here overR remains finite as long asσ < 3/2. SinceL2[0, T ] is dense in
(Hσ[0, T ]) it follows thatF ′(e33, ε

S
33)

∗ can be extended to a continuous linear operator
mapping from(Hσ[0, T ])∗ to (H2(R))2 for anyσ ∈ (0,3/2). 2

This allows for the interpretation of the adjoint operator being smoothing of order 3
2.

As it is similarly shown in [7]

||F ′(e33, ε
S
33)[s]||Hσ [0,T ]

= sup
z∈Y

(F ′(e33, ε
S
33)[s], z)L2[0,T ]

||z||(Hσ [0,T ])∗

= sup
z∈Y

(s, F ′(e33, ε
S
33)

∗[z])(H2(R))2

||z||(Hσ [0,T ])∗

≤ ||F ′(e33, ε
S
33)

∗||(Hσ [0,T ])∗→(H2(R)2||s||(H2(R))2

for anys ∈ X andσ ∈ (0,3/2). Hence, the rangeR(F ′(e33, ε
S
33)) of the linearization

of the forward operatorF is nonclosed inY which shows even the ill-posedness of the
linearized problem.

3.2. Numerical Results

In this section numerical identification results using synthetically generated data will be
presented. The main intention of this section is to test the iterative multilevel algorithm,
described in detail in Algorithm 2.1. The discretization of the parameter curves is
implemented with cubic splines. The refinement of discretization when goingfrom
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level N to levelN + 1 is done by bisection of each subinterval. The coarsest level
always consists of three grid points only. For the implementation of the innerstopping
rule a term including information about the size of the discretization intervals,the data
error and appropriate scaling factors is evaluated according to

||F (ek
33, ε

S,k
33 ) − yδ|| ≤ C1(c1δ + c2

1
2N

). (3.17)

The discretization error may be estimated by infS∈Sk
h
||f − S||Hj (Ω) ≤ chk−j ||f ||Hk(Ω)

for any splineS of orderk with uniform knots and widthh [24].
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Figure 3: Charge response with constant (initial guess, dotted) and nonlinear permit-
tivity (exact and fitted data, solid and dashed).

In a first step we report on reconstructing just the permittivity as a function of the
electric field. As initial guess we use a constant function with the value obtained in the
small signal case, see Figures 5-6. As excitation a special signal with zero charge and
zero derivative fort = 0 is chosen. The electric charge serves as measurements, see
Figure 3
Figure 4 shows the development of the residual during the multilevel algorithm for
different choices of the damping parameterωk

N . Along the abscissa the accumulated
inner iteration index is plotted, vertical lines show a transition between two levels. The
horizontal line shows the quantityC2δ. As we see, both the steepest descent and mini-
mal error variant behave rather similarly and proceed (by coincidence) to the next finer
level after the same amount of inner iterations. Two different types of functions have
been reconstructed, see Figures 5-6, which are assumed to be physically reasonable.
Results of the simultaneous reconstruction of the two parameter curvese33 andεS

33 are
given in Figure 8. The reconstruction seems to be robust with respect toerrors in the
data. However, in particular for lower field intensities one sees less satisfying recon-
struction results which might be due to the fact that the material parametersmutually
influence each other.

Concerning computation times the following can be observed: During the multilevel
algorithm the computation of the discretized adjoint problem is performed before the
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Figure 4: Development of residual norm for different choices ofω during reconstruc-
tion of the permittivity (for the curve in Figure 6) with one percent data noise.
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Figure 6: Reconstruction of a parabolic parameter curve with differentamounts of data
noise.
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projection of the solution onto the current level. So the computing time on eachlevel
for the adjoint problem is nearly the same. And since it is a linear problem, the solu-
tion is distinctly less expensive than that for a single forward solve which is anonlinear
PDE. Nevertheless, the multilevel strategy pays off concerning computing times since
information at different levels are taken into account which decreasesremarkably the
over-all number of modified Landweber iterations compared to a strategy where one
immediately starts on some fine and fixed level. Table 1 tries to quantify the observa-
tions. The values listed stem from the reconstruction of the curve in Figure 6with one
per cent data noise. Here, first we counted the number of minimal error iterations and
the CPU time on each level, where the iterative multilevel algorithm passed fivedif-
ferent levels to reach a prescribed residual of 0.1e-09. Then we restarted the algorithm
on that level (level 4), which guarantees the same resolution of the sought-for quanti-
ties, hold the number of nodes fixed, and counted the required number of iterations and
CPU-time, see last row in Table 1.

Level Number of Nodes Number of Iterations CPU time Residual

0 3 1 37.0s 1.6e-09

1 5 1 38.3s 0.31e-09

2 9 4 153.1s 0.28e-09

3 17 3 112.2s 0.12e-09

4 33 2 81.9s 0.102e-09

fixed level: 33 28 1090.0 s 0.101e-09

Table 1. Number of iterations and computing times on different levels.
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3.3. Conclusions and Outlook

The proposed iterative multilevel algorithm can be applied to any arbitrary identifi-
cation or more general to any nonlinear inverse problem where discretizations of the
sought-for quantity are involved. Regarding just the numerics the choiceof the mod-
ified Landweber iterations has turned out to be be a powerful algorithm due to an
optimal steering of the step-length parameter. Of course, the inner iterations might be
substituted by any other regularizing iterative method, e.g. inexact Newton methods or
others discussed e.g. in [9].

The application, parameter curve identification in nonlinear piezoelectricity,is rather
problem oriented. Here, an open task is the identification from real world measure-
ments. It is open yet, if the functional dependencies can be reduced to one or two
unknowns as it is done in this work and how appropriate measurements need to be
conducted in order to mask interactions with other tensor entries.
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