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Abstract. In piezoelectric applications, especially when the devexe used as actuators, the piezo-
electric materials are driven under large signals whictseaa nonlinear behavior. Our aim is to
model the nonlinearities by functional dependencies ohtlagerial parameters on the electric field
strength. The focus lies in the inverse problem, namely deatification of the parameter curves
by appropriate measuremets of charge signals over timee $ite measured data are contaminated
with data noise we deal with a typicalij-posedproblem. The solution requires regularizing meth-
ods where we consider modified Landweber iterations, nahelpteepest desceand minimal
error methodtogether witha posterioristopping rules. Since any implementation requires a dis-
cretization of the parameter curves an iterative multilelgorithm is proposed where the iterations
begin with coarse discretizations of the sought-for qui@stiprofiting from the inherent regulariza-
tion property of coarse discretization. At an advancedcestlthe iterations the algorithm switches
to finer levels of discretization. By this a sufficiently snlooesolution of the sought-for quantities
can be achieved. Convergence results and the regularizameey of such an iterative multilevel
algorithm using modified Landweber iterations on each Isvi#lbe proven. The application to
the above mentioned inverse problem in piezoelectricigetioer with numerical results closes this
article.
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1. Introduction

Piezoelectric transducers convert electrical signals into mechanieskbml vice versa.

Figure 1: Piezoelectric effect. Left pictures: Direct piezoelectricotfiee. the genera-
tion of an electrical signal by a mechanical force. Right pictures: Emavpiezoelec-
tric effect, i.e. shape deformation due to an applied voltage or charge.
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So, the term piezoelectricity is endowed with two effects: The direct effiecine
hand, i.e. the conversion of a mechanical force into an electric sigmahvis typical
for sensor applications (e.g. force and acceleration sensors) e@thér hand there is
the indirect or inverse piezoelectric effect, i.e. the mechanical excithji@pplication
of an electric field (actuator applications, e.g. ultrasound generatiak atduators)
[1].

The paper is organized as follows. After a brief derivation of the pieztréc consti-
tutive equations and partial differential equations with the unknown quantiteehan-
ical displacement and electric potential, we show how nonlinearities carodeled
for moderate electric fields. Then we turn to the theoretical investigation ibéiative
multilevel algorithm, which is strongly motivated by the work of Scherzédj.[Here,
modified Landweber iterations are considered as inner iterations orleaathwhich
allow for an appropriate choice of the relaxation parameter in the Lareiwigation
improving the speed of convergence without increasing the computhtiosiz. Con-
vergence results and the regularization property of the iterative multiéédgelithm
are in the focus. This article closes with the application of the derived algotith
the simulation based (FEM) identification of material parameter curvesnifinear
piezoelectricity.

1.1. Material Laws and Patrtial Differential Equations

The piezoelectric effect in the linear case is described by the followingtitotive
equations [6],

= cPS—e"E

= eS+¢%E, (1.1)

o Q

wherez is the mechanical stress tensor dnthe dielectric displacement. Further (1.1)
involves the mechanical straifi and the electric fieldZ, respectively. The material
tensors are the fourth order modulus of elastiefty(N/m?) at constant electric field,
the third order piezoelectric coupling (N/Vm), and the second order permittivity
tensore® (C/Vm) at constant strain. The symmetry and the sparsity of the material
tensors involved can be seen in (3.5) by assuming all entries to be ctsté/e
additionally refer to [1, 6, 8, 10].

Together with Newton’s law of motion the fact that piezoelectric materialinare
lators we obtain

— —BT(CEBu—i—eTngS) = 0 inQ
v (eBu—eSV¢) = 0 inQ, (1.2)
where by Faraday’s law, the electric field is the negative gradient ofl¢lctrie poten-

tial ¢ [5] j
E=-V¢ (1.3)
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with V= (£, &, &). By linearized elasticity the strain is the spatial variation of the
mechanical displacement

S = Bu (1.4)

The three dimensional differential operator relates mechanical stegtims mechanical
displacements

9 2 o \T
ox 0z Jy
B 1o} 1o} 1o}
B P a_y E % . (1-5)
9 0 9
0z Ody Oz

As boundary conditions we consider the experimental setting of vanistangal

Figure 2: Piezoelectric disc. Notation of boundaries. This shape is éonpbe used to
simulate radial or thickness modes. The direction of polarization is maviadP.

stresses at the boundapf2. Two electrodes are applied at opposite surfdceand
. of Q, see Figure 2. One of them is loaded with a prescribed potefitjdhe other
one is grounded. Further, on the parts of the boundary which areometed by any
electrode there shall be no free charge. Together, this gives the iimjjdwoundary
conditions

Nz = 0 o0ndQ
1) 0 only,
¢ = ¢° onl,
D-ii = 0 onlg:=0Q\ (F.ul,), (1.6)
where
T
Ng - . LNy Ny
N = T (P

n, Ny Ng

and7n = (n.,ny,,n.) is the outer unit normal vector. Additionally, appropriate initial
conditions are given by

u(,0) = ug
u(-,0) = wu. (1.7)
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Concerning the electric field strengths one can assume linear behalyiam tire range
of 0.0 — 0.1kV/mm. Above these field strengths nonlinear effects occur. Signals with
which piezoelectric actuators are usually driven cause fields2of ©.3kV/mm, thus
the actuators mainly operate in nonlinear ranges [4]. In order to modeidhlinear
behavior we consider higher order terms in the constitutives, which eaeén as a
special case of functional dependencies of the material tensors delthgquantities
strain and electric field. The model allows to describe nonlinear effecimdolerate
electric fields staying below the coercive field strength. Effects like a nealirelation
between applied voltage and displacement, jump phenomena in the regpattra,
appearance of higher harmonics, and softening of the material @adglvisible at
weak fields [18,19]. In our model the nonlinear effects are assumbd reversible,
i.e. no depolarization of the crystals in the piezoelectric material is expastegposed
to models regarding hysteresis [11, 23]. The constitutives in their neostrgl form
considering material nonlinearities read as [12]

= cP(9)S-e"(S, E)E (1.8)

= e(E,S)S+%(E)E. (1.9)

o

The now nonlinear set of differential equations in (1.2) is solved with th&e~El-
ement Method using the Newmark scheme for time integration and a daimpée
point iteration to solve the nonlinear problem at each time-step. For detaitsfere
to [10, 14].

The inverse problem of parameter identification formulated with a parafwete
solution mappingr corresponds to the problem of solving a nonlinear operator equa-
tion.

2. lterative Multilevel Algorithm
The mathematical problem which we have in mind is the following
F:D(F) — Y with D(F)CX
F(p) = (2.1)

whereF' is a nonlinear operator mapping from the infinite dimensional Hilbert space
X into Y. The valuep is the sought-for quantity angf is the noisy input, in general
measurements of physical quantities with

ly—y°l| <6 (2.2)

whered is a measure for the noise level anmdenotes noisefree data.

Motivated by the efficiency of a multilevel strategy on one hand and bygéedsup
of convergence of minimal error and steepest descent methodrgsaoed to classical
Landweber, on the other hand we aim at carrying over the results bgr&oh21]
on multilevel Landweber to modified versions of Landweber’s iterati@mely the
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steepest descent and minimal error method [9]. Let us introduceetherg assump-
tions considered in the sequel. The operdtan (2.1) is assumed to be continuous,
differentiable and its Frechét derivativé to be Lipschitz continuous and normalized
such that

IF'(p)[| <1, Vp € D(F). (2.3)

Further, we assume thaf(F’(p)) is trivial for all p € B,(p°).

The numerical realization of the modified Landweber iterations is nowidered in
a finite dimensional subspacéy := Py X of X, wherePy denotes the orthogonal
projection onto

Xy CX, with XoCX;C..CXy and [ J Xy=X. (2.4)
NeN

Let the unionUyen Xy be dense inX. The initial guess at discretization levsl is
denoted by?.
Moreover the tangential cone condition is assumed to hold on the discletpasies

XN
|F(p) — F(Pnp") = F'(p)(p — Pnp")|| < ||F(p) — F(Pnp')l|
for al'pGXNﬂBp/z(PNpT) gD(F) with nN < % (25)

At each level, the modified Landweber iteration now reads as follows,
1,6 § § § 0. L0 % 0
PN =R sy, sy = PeE () (8 - FOR)  (26)

where the coefficients’};’ are chosen either as

k.8
ko . ||SN ||2 (2 7)
N T k,0\ k.0 :
||F/(PN )SN |I?
or as s
5 BY\[12
k5 . lly —F(p )||
Wy = —6||J;[ ) (2.8)

sk
These choices transform the classical Landweber iteration into a disersten of the
steepest descend or minimal error method, respectively. See E]6r the infinite
dimensional case of these methods. By (2.3) for both choices

wh? >1 (2.9)

holds.

The size of the discretization parameféris rather crucial. A small value oV does

not allow for a precise approximation. However the iteration might be sengitive

to noise in the data when using a largje Further, depending on the implementa-
tion a largeN makes the iterations extremely time consuming, e.g. if one thinks of
approximatingrF” by finite differences.
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Concerning the stopping criteria in each level the residual is tested by bimam
tion of an approximation estimate for the current level and the data exrel: I&he
approximation error may be estimated eitheXiror Y which gives the following two
criteria

IF(py ™) =4[l < CL(8 + [|F (Pyp') — F(p1)]]) (2.10)

or
IE(p™%) — 40| < Cu(6 + [|(Px — I)pf])- (2.11)

Each of them determines a well-defined stopping indexV, §) at level N , i.e.
k«(N,8) := min{k € N | where (2.10) holds (2.12)

and analogously for (2.11). In the sequel we assame: C.

The stopping rules (2.10) and (2.11) are used for theoretical pagpon a practi-
cal implementation the term&F (Pyp’) — F(p')|| and||(Px — I)p'|| containing the
unknown solution have to be estimated basedgriori information onp’, see for
example [13, 15, 21, 22]. Obviously, as long as the iterations are noinaied we
have for allk < k. (N, d)

IFGR) =9Il > Ca(S + ||F(Pxp") =yl (2.13)
or
IF(N) =4l > Ca(8 +|(Px = DphID). (2.14)

Note that the stopping criterion might get activé:at O so that there is nb satisfying
(2.14) (or (2.13)). Itis a crucial assumption in [21] and also in s¢mé not all)
assertions made here, that at least one step is carried out orMeve. (2.14) (or
(2.13)) is satisfied fok = 0.

Even though the choice @f. (N, 4) in (2.12) avoids an undesired amplification of
the data error, the stopping criterion has a minor drawback since it dbegiarantee
that the number of iterations is finite in each level. This however is negeissarder
to compute the initial guess at any subsequent level. As a consequerioéreduce
somea priori chosen finite maximal numbéf,ax( V) of iterations

A combination of (2.12) and (2.15), i.e.
k. (N, 6) := min{k, (N, d), kmax(N)} < oo (2.16)

gives a well suited, finite stopping index for the inner iterations of the multikEge-
rithm.

Refinement of the discretization, i.e. the outer iteration will be perfornméitian a
posterioristopping rule becomes active

1+
ly* = PG < <[l —FORIL - Co>29—50->2  (247)
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Only as long as this global discrepancy principle does not terminate thédtesane
continues at the next leve¥ + 1 and uses the last approximate from leXelas an
initial guess at the next finer level, i.e.

0,6 . _ k.(N,8),0
Pny1-=PN .

Algorithm 2.1 summarizes the procedure.

Algorithm 2.1. Iterative multilevel algorithm for modified Landweber iterations:

SETpY® == Pop° € Xo

SETN =0

SETkE=0

SETk,.(N,6) =0

CHOOSEC; < C; sufficiently large

WHILE [|F(ply %) — 4| > C20
k=0

If N >0
0,6 _ _k«(N,5),6
Pny1= PN
N=N+1 )
DO WHILE ||[F(p°) — ¢°|| violates (2.10) ok > kmax(N)
PN =N ks sy = PE () (6 — F(p))

5,6 i a kS . [|s%:012
wherewy’ is either w3}’ (= ——~ 1
N N 1F/ ()5 i 12

1) k.5 2
or wjlif,é — lly —IZ%NZ)H
sp 1l
k=k+1
k«(N,0) =k

. ki(N,8),6
PN.(5) = PN

The algorithm can analogously be formulated with (2.10) replaced Wi )2.The
assumption that’; and C, are sufficiently large can be made more precise with the
help of the following definition which is taken from [21]:

Definition 2.2. An operatorF is called regular at leveX i in Uy := Xy N Bp(pg) if
it is Fréchet-differentiable itV 5 := Xn N Bp(pg) C D(F) and

- |IF(p) — F(Pxph)]|
Bing(N,p',p3,p) == inf
f( 0 ) peUN ,p#Pnpt [lp — Pnpt|
An operatorF is called regular at leveX  in Uy with magnitude)y if itis regular at
level X and

> 0.
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Here,\y measures the stability of the solution of (2.1) with respect to perturbations o
the right-hand side data on the finite dimensional subspace

So for the constants the following is assumed i regular at leveK n with magnitude

AN

Cl > 4(1+77N), Oo < Cl < Cz (2.18)

with
2

Ax 5 < IF'(pR)Il, andCo > v8 VN,

%
8(1+ Co)

2.1. Convergence Results

Before we show monotonicity of the iterates on each level we prove thedeBiledness
of the step-length parametewﬁ;‘;. One can show, that as long as the stopping rules as
defined in (2.10) and (2.11) are not active, the parameter up§atand ¥’ (p%;°) s’

are nonzero.

Lemma 2.1. Letp' € B,,»(p°) be a solution of (2.1) and. (N, §) be as in (2.12) and
P’ — Pypt # Oforall k < k.(N,d). Then

Ish?]| #0 and |[F'(p%%)s%°|| £ 0 forall k < k.(N,d).

Proof. We carry out the proof in case of (2.10). The case (2.11) then inatedyl
follows, since by (2.3) the right hand side in (2.11) is greater or ettpgabne in (2.10)

if C1 = C1.

If k.(N,5) = 0 we need not to prove anything. Otherwise (2.13) holds. Assume that
k < (N, 6). If F'(p"2)*(F(p%°) — »°) would vanish, then

0 = (Fy') -y
= (FOR) 4" F(OR’) —¢°)
+ (Fy") =’y = F(Pxp'))
+ (Foy) —v°,9° =)
— (FN) - v* . F(oN’) — F(Pnp') — F' (0N (0% — Pwph)).

From this we deduce

IFON) = 4’7 < (6+|ly— FExvp)IDIF@R) -4l
+an [|F(%°) = F(PapD)|| 1F(05°) — 4]
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and further

IFGR") =9l < 6+ lly— F(Paph)]]

+an (IFN) = v°ll + lly = F(Pap")|| + [y — v II)-
(2.19)

So
1+ny

1E @) = o°ll < 7=~ (IF(Exp") — ol +6)

nN

which contradicts (2.13).

To show that|F' (p%°)s%:%|| # 0 let us assume again the contrary, [l.E!(p%°)s%°|| =

01; (;I'henséfv"; e N(F'(p%°)) = {0} which is a contradiction to the already shown fact
sy” # 0. |

This actually guarantees that the choices of the relaxation parameterg)iari@ (2.8)
are well-defined. Now, monotonicity of the iteration error at a fixed levelill be
proven:

Theorem 2.3.Let N € Ny be fixed such thaff(7 — Py)p'|| < p/2, wherep' is a
solution of (2.1) inB, (p}”) andp%’ € X. Assume that Algorithm 2.1 carries out at
least one inner step at leval, i.e. there exists an iteration indéx> 0 such that (2.13)
and (2.14) hold respectively witth > 4(1+ ny). Then, for0 < k < k. (N, d)

PRt eBs(p)NXy € B,(Y)NXy further
k+1,6 k,0
" =px ™l < ' —py°l| and
1.8 0
|1Pxpt =N < (1Pwpt = 01 (2.20)

Proof. Letph’ e By (p') for 0 < k < k.(N,d). From the definition of the iteration it
follows that

PN = pl| 2
= |IpN’ = 2P+ ln’ Py F (0R°) (F(ox°) — )|
- 23 (F RN — Pxph). FOR') = o)
= I’ = 2P+ len’ Py F (0R°) (F(ox°) — )|
+ 28 (FOR) = F(Pwp') = F'0R) 0K = ), FoR') = o)

— 2wy (F(p?v";) — F(Pyph), F(OR) — y‘;) -
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With the nonlinearity condition (2.5) we obtain that

(FOR) = F(Pap) = F 0" 0} — Pxph), FOR) = o°)
— (FOR) - F(Pwph), FO) - o)
<anl|F(pR’) = F(Pxp)|IF(oN°) = |
= (FON) =o' PO~ o)
+ v’ = F(Pap) [ IF(pN) = o]

< (v = DIFGR) = v° 1P+ @+ 0n)lly’ — F(Pph) [ IFGR) — |-

By (2.13)

(L4 nn)lly’ = F(Pvp)I| IFG5) — )]

k,
N
k,o
N
k

< (L+0w) (Ily = F(Pxph)|l +6) [|[F(K’) — 4| < }IIF(p'fv"s) — .
(2.21)
Hence we continue to estimate
Iy ™ =l < 1IN = PHIP + (h*)1sh 1P
+ 257 (o — DIFGE) oI
Finally, it holds that
I = 112+ 285 — )P o)
< Ik — I+ (WAD2AANP - W IE@R) — I (2.22)

Inserting now the choice oﬁjﬁ;‘; as a minimal error method (2.8) one sees, that the
difference of the last two terms on the RHS of (2.22) vanishes. Foit¢lepast descent
variant (2.7) it holds

(F (p]v )SN ,F(pN ) — y5)2

°2 =
|E" (") s’ |2

k.6 2
<F(pN") =9Il

N llsh
so in both cases
1 2
k+1,6 k,0 k,0 k,6
P =l PP + 2wy (7 = m)IIF(PN) — v < llpy’ — 'l (2.23)

The monotonicity of/|Pyp' — plf\}ls” follows by inspection of the estimations of this
proof. O
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The next lemma will show that the first Landweber step at the next fimel lmder
certain assumptions always provides some improvement to the old stéie ah-
known. Whereas the results so far hold for both stopping rules (2riDja11), we
restrict ourselves to (2.11) with (2.16) now.

Lemma 2.2. Let F' be regular at levelX y with magnitude\ y in Uy and assume that
A2
nny < 3, further that (2.14) holds fok = 0 at level N + 1. Then withy := 8—01-—

R (1+C]_)2
andC; > /8
1,6 2 - 0,6 2110, 2
pnes — Prapt|P < (1= wif A% lIpay — Pap'l%.

Proof. Let us start with some estimates at ley@l Supposq)’fv*‘;, Pyp' € Bp(pg), then
it follows from (2.3) fork < k..(NV, d)

IF(R) — o0l > |F () — F(Pxph)|| = [|F(Papt) —y|| — 6
> [|[F(p’) — F(Pnp")|| - (||Pnp’ = pl|| +6).

Now

IF ) = FPaal < (14 2 ) IFGRY) - o] (229
1

and so together with (2.14) far= 0 and since mafa, b}> > $a® + 3b°

C? C?
PR = I 2 Sl FR) —F(PNp*>||2+7l||<PN ~ Dyl (2.25)

T 2(1+ )2
A2
Further) < (3 — 29v+1) 5775 (1+c ; andqyy = S (2 - 2pvi1) G-
From the proof of monoton|C|ty (2.23) witht replaced byPx p', due to orthogonality,
and smcepNJrl =py ke (N,9),8 € Xn € X1 0ne obtains

1
1.6 2 0,6 0,6 5112
1PN'1 = Prap 2 4wy’ (5= 20v40)[[F(py) = o]

0,6
< lpyia — Pyi1p'|?

IN

1951 — Paptl? + || Pysap’ — Papl |2
from which with (2.24) and (2.25) follows
1,5 0,8 0,8
||pN+1 - PN+1pT||2 + WN+17/)||F(I)N+1) - F<PNPT)||2
+ W?\}illePNpT —p'[?
< Xy = PplI? + [|Pyiap’ — PapfI (2.26)



Piezoelectric Tensor Identification with Iterative Mudtiel Algorithm 23

Now, with the boundedness (2.9) @ﬁ;il from below as well ag); > 1 and by or-
thogonality

|Pyp" = pl|P = ||Pnp" — Pyyap’ + Pyiap’ — p|?
= ||Pnp' — Pyap'|* + ||[Pniap’ — p'|
+2(Pnp' — Pyiap', Pyiap' — p)
> ||Pyp’ — Pyiap'||?

we get
[(Prvea = Pw)p!|I? < il unll(Py = D
Consequently (2.26) reduces to
1371 = P apt[[? + el F(0%1) = F(Puph) | < (I3 — Papll® (227)
From the assumption that is regular at levelV with magnitude\ y and Withp?\}il =
pN( ‘eB ,(p%7) one has
IF (1) — F(Paph)]| = Ao — Papl-
From the latter inequality it follows that
1,6 0,6 0,8
||pN+1—PN+1pT|| (l wN+11/)/\§V)||pN+1_PNpT||2- (2.28)

O
Corollary 2.3. Let the assumptions from Lemma 2.2 hold. Then fok all k.(N, §):

PN — Prrapl|? < (1= RNy — Prpf|2.
Proof. With the results from Theorem 2.3 and Lemma 2.2 it holds
||p" N+1 *— Pyiapll? < ||p}\}i1—PN+1PT||2
< (1= RPN — PapTl?
= (L= w30l 0 - Papl|?
< (1= w9 Rl — Papll?.
O

Now we have all auxiliary means for deriving the main result of this artitigtates
that the iterates of the proposed multilevel algorithm with least squares amaidin
error inner iterations form a monotone sequence.

We define now a set which contains the indices of those levels where tbleas
iteration is performed and where (2.17) is not active yet

NP = {N < N.(8) [ IF(R’) = Il > Ca(8+ [|(I = Py)p'|]) = (N)fy (2.29)
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Theorem 2.4. Let all conditions of Lemma 2.2 hold. If for all € A% the operatorF
is regular at levelV with magnitude\y in Uy = XnxNB,(p% ), then forallN < N.(5)
and allk < k.(N,9)

k+1,6 0,6 0,6

||pN++1 - PN+1PT||2 < H (1- W[-s—lw)‘%)npo - POPTHZ- (2.30)
IenN?
I<N

Especially, if additionally for all € {1, ..., L. — 1}

. P(A
(- o ) S5 <1 (2.31)
holds with some function : R — R, then
ANL,)
-P 12 < 075_13*2‘1’( Vel 2.32
PN, 5) — PrnasyP' 17 < lpo op' | S0 (2.32)

In caseN® = {0, ..., N, (6)} this yields

llpw.5) — Prv.syp' |l = O({/d(An, (5))- (2.33)

Proof. The result in (2.30) directly follows from Corollary 2.3. Inserting
N :=N,(0) — 1, k = k.(N.(9),) and (2.31) into (2.30) we get

lpn. (8) = Py syp'I|?
L.
0,8 0,8
< JJa-o¥ wX3)lpg° — Popl|?
=1

L,-1

T 2OANid) 06 5 42
A
- Lo gy (234

O
As opposed to [21], Lemma 5.4, this can give a convergence ratmhyotor mildly-ill
posed but also for exponentially ill-posed problems for example #(ith~ log(-).
2.2. Convergence in Case of Exact Data

It is also of interest to provide weak convergence results in case of freis data.
These results will e.g. be used later on when the regularization progdettg oulti-
level algorithm will be shown. At this point we introduce the following set

NP :={NeN : [[F@}) —yll > Co(d + ||F(Pap') —4°II)} (2.35)



Piezoelectric Tensor Identification with Iterative Mudtiel Algorithm 25

which contains all levels where at least one inner iterations is performetdatp}(,‘s is

certainly computed.

Proposition 2.4. If § = 0 andk.(N, §) as in (2.16)

F(pl;\,*(N’O)’O) —y as N — oo. (2.36)

Proof. There are two cases to be considered:

1) The iteration stops at a finite leval. In this situation by (2.17) the last iterate is a
solution of (2.1).

2) The iteration does not terminate. Because of (2.23) it holds that

k. (1,00-1

(
> ly — F@}%)|? < . (2.37)

IeN®  j=0
For I ¢ N the following is true

ly — E@?0)| |E(Ppt) —yl|  or
ly = F@YO)I < |- Pr)pf|. (2.38)

IN

A

Now, we will make use of a subsequence-subsequence argundietap

. 0,0
an = lly = F(py)ll

Let (an, )ien be an arbitrary subsequence. We distinguish between the cases:

a) Theindex seN®N {N;};cn is infinite, hence we can denote it b, );cn. Due to
(2.37)(an, )ien CONverges to zero.

b) The setV° N (N;);en is finite, then(N \ M%) N { N, }ieny must be infinite and with
(Ni))ien := (N\ N N {N;};en, We have convergence 0f N, )ien to zero by
pointwise convergence @f; to the identity in (2.4).

So, in both casequy,)ien has a subsequence converging to zero. This implies that
each subsequence @iy )nven has a convergent subsequence and the limit of each
convergent subsequence(afy) ney is zero.

O

With the latter result weak convergence for exact data can be established

Proposition 2.5. Let § = 0 and the assumptions of Proposition 2.4 hold. Moreover,

let F be weakly closed. Then each subsequen@é;&lf’ 0% has a weakly convergent
subsequence and each weak accumulation point is a solutignof = y. If the

solutionp of (2.1) is unique, thep”: 9% converges weakly tof.
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Proof. In case Algorithm 2.1 terminates after a finite numhg(0) of iterations by the
stopping criterion (2.17) thepy, ) Solves (2.1). Otherwise . (N, 0) > 0 it follows
from Theorem 2.3 that

: .(N,0),0 ,
1o =2 ™0 < lipt - w5l
which trivially holds in the complementary casg(N,0) = 0. Therefore, we have

boundedness qffv*w’o)’o in X andp’]i;‘(N’c’)’o has a weakly convergent subsequence.
From (2.36) and the weak closedness of the oper&tirfollows that for each weak
accumulation point, the identityF'(z) = y holds, which proves the assertion. O

2.3. Regularization Property

A still open question is whether the iterative multilevel algorithm has regulariziop-
erties or not, i.e. if it converges to the exact solution in case that the datalevel
forms a sequence converging to zero. In order to answer this questigiart at with
fixed iteration index: and fixed levelV,

Theorem 2.5. Let {4,,} — 0for n — oc. Further, denote by’ a sequence of noisy
data and assume thdt’ is Lipschitz continuous. Then, for fixéte N

n

pﬁ}‘s — pk,  asn — oo, (2.39)

(N5

whereph; = ph N0 for > (N, 6,).

Proof. For each paifé,,, y°*) let us denote by. (N, d,) the corresponding stopping
index according to (2.17). Similar as in [20] one can define for eacH lév

() = IF(oy™) =™
and prove (2.39) by induction fa¥ andk:

1. N =0andk =0: Sincepg"s" = Pypl it clearly depends continuously gfi-.

2. N =0andk — k + 1. Letk € N be fixed and suppose thef’" — p§ asd,, — 0.
Assuming thatfy(n) is monotone (otherwise consider monotone subsequences) one
needs to consider the two cases:

1. f§(n) is strictly bounded from below. Then far— oo,
f&(n) — |F(pE) — yl| > C41||(I — Po)p'|| > 0 and according to Lemma 2.1 stating
thatsh # O

|F' (p6) F' (p8)*(F(p§) — )|l > 0, [|F'(pg)*(F(p§) — )| > 0

which implies continuous dependenceugf in both cases (2.7) and (2.8). From the

definition of the modified Landweber iteration, continuityfofand Lipschitz continu-

ity of F it follows thatpg ™" — pk*t for n — oc.
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2. Let ff(n) — O: Thenf§(n) — ||F(p§) — y|| = 0 forn — oo, i.e.p§ solves (2.1)
The following two situations need to be distinguished:
b.i) f&(n) > C24,, thenk < k.(0,4,) and substituting’ by p§ in (2.20)

k+l On k N ||

|Ip§ — | < Ilpg —
b.i) f§(n) < C29,, then the iteration is stopped apg*" = py°. Together (b.i)
and (b.ii) givepg " — pk = pk*tforn — 0.

+1,0

Now, assume that for som€ > 0 one has shown tha " depends continuously
k.(N,6,),68

on the data. ThepN+1 =Py °» does sincé:. (N, §,,) continuously depends on
the data and therefore equals sotmeVN) for all n > ng with ng sufficiently large and
one can argue as above to carry out the induction 8tep N + 1. O

The next result shows that the Algorithm 2.1 with its stopping rules is a regiuig
method. For a sequence of data errors which is converging to zeroedharized
solution of (2.1) converges to the exact grie

Theorem 2.6. Assume thai,, forms a sequence of data errors converging to zero and
that the assumptions of Theorem 2.5 are satisfied. Then, the sequfg ce con-

verges weakly subsequentially (in the sense of Proposition 2.5) to thesadti(2.1).
Proof. We consider the two cases ¥, (4,,) :

1.) In the first case we assume thét(d,,) has a finite accumulation poin¥ for
n — oo. Without loss of generalityN.(d,) = N for all n sufficiently large. By
(2.16) itis assured that. (N, 6,,) has a finite accumulation point. Now, without loss
of generality assume that (V, d,,) = & for all n sufficiently large. By definition
of k. (N, d,,) it follows that

Iy’ — F(@5)|| < 76, (2.40)
Since by Theorem 2.5%5 — phk; for y° — y ask is fixed now, one has

PN = ok (2.41)
and
F(pi’") = F(pi).
Taking the limit in (2.40) gives’(p%,) = .
2.) Inthe second case whekg (4,,) — oo for n — oo, then

kw(M,00),0n 0,6,
pM< % _pM+1—>pM+l forn — oo (242)

sincek = 0 is fixed and by an application of Theorem 2.5. Hence Proposition 2.5
yields weak subsequential convergence in this case.

The proof is complete. O

Note, that in the proof of Theorem 2.6 the case thaiV, §,,) — oo asn — oo will
not occur due to (2.15) and (2.16).
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3. The Piezoelectric Parameter Curve |ldentification Problen

We formulate the inverse problem of identifying the material parametetesurom
time dependend electrical or mechanical measurements with the folloanagnpter-
to-solution map? which in its most general form is given by

F: D(F) - Xpar —  Yieas
(cP e e”) — °(t), te[0,T], (3.2)

where(cf, e, &%) are parameter curves depending on the physical field quantities elec-
tric field and mechanical strain. In order to reduce the complexity of coatipns and

the representation of the Fréchet derivativeFoénd its adjoint we consider only the
dependency of the 33 components@nde® on Es;= (0,0, ¢>|3)T and assume that the
constant material parameters are sufficiently precisely known, g apfying means
suggested in [6] or by performing simulation-based material parantstification

for the linear case, see [8,14]. The parameter-to-solution mapesdund specifies in
case of electric charge measurements to

FiD(F) € (H05) — L2(0.T)
(€33,€33) + /rﬁ(t)%dr

= /r(93(¢\3)Bu(’5)—€§(¢\3)V¢(t))-ﬁdr,

(3.2)
where the paifu, ¢) solves
2
p%—tl; _BT (cEBu+ e3(¢>|3)TV¢) = 0 InQx[0,T]
V- (esl¢p)Bu—ei(9p)Ve) = 0 inQx[0.7], (33

combined with the boundary and initial conditions

N7 (cEBu + e3(¢‘3)TV¢) - 0 ondQx[0,T]
¢ = 0 onl,x][0T]
o = ¢° onl,x[0,T]
(es(ép)Bu—e5(ép)Ve) @ = 0 onl,x[0.7]
u(,0) = ug onQ
u(,0) = up onQ (3.4)
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and the tensorss(v), €5 (v) andc” are defined as

0 0 0 0 €15
e3('U) = 0 0 0 ei5 O

o O

i cfz cfg 0 0 0
w0 0 1y cfl cfg 0 0 0
B cﬂ cfg c\% 0 0 0
€3 (U) = 0 enn 0 andc” =
0 0 exv) 0 0 0 ¢& 0 o0
Faslt 0 0 0 0 c& 0
0 0 0 0 0 Cge
(3.5)
The derivatives of the terms in (3.5) are defined as
0O 0 0O 0 O 0
esv):=[ 00 0 00 0]andsfw):=[0 0 0
0 0 ei(v) 0 0 O 0 0 55 (v)

The choice of a second order Sobolev space as a pre-image spaatvated by the
continuous differentiability of the parameter curves that is required darymg out

Newton’s method in forward computations. Since we only have measuntsrof zero
order derivatives available, i.e. electric charge or mechanical desplants and not
any values of higher order derivatives with respect to time (velocityelacation or

electric current) the data space is

Y = L?[0,T]. (3.6)

For the sought-after quantities, the parameter curves, as already naehtee assume
spaces

D(F) =X C (H*(¢3,9p3))° (3.7)

in order to obtainC* curves bySobolev's embedding theoreifhe operatoi” actually
maps intoC?[0, T]. So we have a difference in the regularity of these spaces which
corresponds to an ill-posedness of twice numerical differentiation ®pdrameter
curves reconstruction, see e.g. Example 1.1 and 1.6 in [2].

3.1. The Adjoint Operator

The following is devoted to the computation of the adjoint operator of the lzesdr
problem.
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Proposition 3.1. The adjoint operatotF”’ (ess, £55)* of the linearization off’ defined
in (3.2) is given by

(F(eas, €33)"[2]) (V) (3.8)

/T/ OO\ — o) ( (Bu)sZ3 —~¢>|3(Bl7)3 ) Q.
o Ja b132)3

where® is defined by

®(a) = %\/g(u la)e~ 1l (3.9)

The valueg, Z) are here obtained by solving the adjoint set of differential equations
piy — BT (c"B7 + e3(¢p3)"VZ) = 00nQ x [0,7]
-V ((83(¢\3) + €3(¢j3)dj3) BT + e3(¢j3)Bujs

— (€5 (¢\3)¢|3+€3 ?3))V = 00onQ x [0,7]

= z(t) onl.x][0,T]

NT( PBF + es(¢ys)’ 'V ) = 0 ondQ x [0,7]
2
Z = 0 onl,x[0,T]

((ea(913) + e(013)¢13)BT + e4(¢13)Buja

—(€§/(¢|3)¢\3+€§(¢|3))V2)-ﬁ = 0 onl, x[0,7]
o(,t=T)=0(,t=T) = 0 onQ. (3.10)

By the analytic formula of the adjoint the smoothing character of the adjothsa the
ill-posedness of the linearized problem can be quantified by the followirggehe

Proposition 3.2. Assume that the solution operatr. z — (7, Z) of the adjoint equa-
tion in (3.10) is bounded in its norm, i.e.

Sl (k17 (0,1)) = (17 (0,712 1 (@)))* x (B (0,3 HE (@) *))+ < OO (3.11)

If further u, ¢ € C>°([0, 7] x Q), then the operatoF” (ess, £3;)* can be extended to a
continuous linear operator fror#7°[0, T])* to (H?(R))? for anyo < (0,3/2).
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Proof. For anyz € L?[0,7] ando € (1, 3) we have

||F” (€33, £33) " [2] ] (rr2(m) 2

/R (1+u?)?

2
dw

2
dw

e~ 1713 3713 dQdt

- Bu)sz 3 — Bv
e*1¢\3w(]:(p)(w) ( u)3z\3 ~¢\3( U)3 dQ dt
13213
e v [ (Bu)s?j —~¢\3(Bl7)3 40 dt
13213
2
(ST R—
+/(l+w> ( )
2
/ i (212311 0772202 - 1€ (B3l [Fro (0,712
e \ 1+ w? 1311(7 7 (10,7];L%(Q))) He ([0,T;,L4(Q))
+2||(B1~))3||(2H<T([O,T];L2(Q)))* ||87i¢‘3w¢\3||§{U([0,T];L2(Q))
+2||5|3||(2Ha([o,T];L2(Q)))* ||87i¢‘3w¢\3||§{a([0,T];L2(Q))) dw. (3.12)
We now analyze single components of (3.12), where
2l ooy < |2l oo rymg (@)~ and

(BBl (zre o2y < Nollime (o183 @) (3.13)

The values in (3.13) are, by our assumption on the solution operatoreddjoint
equation, bounded by some constant tirfjeg ;- (jo,r)))-- The terms in (3.12) with

norms inH7 ([0, T], L?(Q)) including the funC'[IOI’E_w\:"“’ can be estimated with the
help of the following interpolation inequality

Vu e HZ[O’ T] : ||U||H"[OT < ||U| H10T ||U| (]7-1;[::-)71*]’ (314)

which is a Nirenberg-Gagliardo type interpolation inequality [3,17]. Nowfitst and
second time derivatives oi*i¢\3“¢|3 are

d ) d d
e iP3w _ —ig3w .2
76 s = e (_’¢3wa¢|3+ §¢|3)
dz —iw —i|aw 2.3 d 2 . d 2
72° Vg3 = e 0n <_w 93 (E%) — Bigpaw (g 0p)

2 2
_|_e*i¢\3‘*’ —ig wd_¢ _|_d_¢
|3 dtZ 13 dtZ 3] -

(3.15)
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Thus withu and¢ € C*

(1 :wz)z |le™ ¢ 3| 11(0,77:L20)
= o((m) e lmomotery
ol el(e2) o))

0 <T1w2>2_”. (3.16)

We can argue analogously fio¢ = %12 (Bu)3| |(zo10,7);22(0))- Finally this gives together
with (3.12)

1 2—0o
S\ *
17 x5 e < Cllllaneomy- [ (1522)

The integral here ovek remains finite as long as < 3/2. SinceL?[0, T is dense in
(H°[0,T]) it follows that F”(ess, £35)* can be extended to a continuous linear operator
mapping from( [0, T])* to (H?(R))? for anyo € (0,3/2). m

This allows for the interpretation of the adjoint operator being smoothingdrfrcg.
As it is similarly shown in [7]

|| (es3, 5?3) [s]| |H<’[O,T]

(F/(833, €§3) [SL Z)Lz[O,T]

= sup
ey I[2[|( £ [0,77)*
’F/ . S \*
_ Sup(s (e33,€33) [Z])(HZ(R))z
2€Y ||Z||(HU[O,T])*

< [|F(e33,€58) | (mre 0,17) — (2 (2] 18] (r2(ry 2

foranys € X ando € (0,3/2). Hence, the rangR (F”(ess, £35)) of the linearization
of the forward operatof’ is nonclosed irt” which shows even the ill-posedness of the
linearized problem.

3.2. Numerical Results

In this section numerical identification results using synthetically generatedhdll be
presented. The main intention of this section is to test the iterative multileveltaigo
described in detail in Algorithm 2.1. The discretization of the parameteresuis
implemented with cubic splines. The refinement of discretization when doamg
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level N to level N + 1 is done by bisection of each subinterval. The coarsest level
always consists of three grid points only. For the implementation of the stopping

rule a term including information about the size of the discretization intertregjata
error and appropriate scaling factors is evaluated according to

1
||F(ehs,e55%) — 4°]| < Culcad + 2

)- (3.17)

The discretization error may be estimated byinf [|f — || (@) < ch* || f]| a0
for any splineS of orderk with uniform knots and ‘widtrh [24].

2.5

- Initial guess
t| - - - Result of fi
— Exact curv

N

=
ul

[y

0.5

Electric ChargegnC)

0 01 0.2 0.3
Time (ms)

Figure 3: Charge response with constant (initial guess, dotted) arich@ampermit-
tivity (exact and fitted data, solid and dashed).

In a first step we report on reconstructing just the permittivity as a fumatiothe
electric field. As initial guess we use a constant function with the value obltairtbe
small signal case, see Figures 5-6. As excitation a special signal wilckarge and
zero derivative for = 0 is chosen. The electric charge serves as measurements, see
Figure 3
Figure 4 shows the development of the residual during the multilevelitigofor
different choices of the damping parametdy. Along the abscissa the accumulated
inner iteration index is plotted, vertical lines show a transition between two |eVisés
horizontal line shows the quantity,d. As we see, both the steepest descent and mini-
mal error variant behave rather similarly and proceed (by coincégjendhe next finer
level after the same amount of inner iterations. Two different typesimdtions have
been reconstructed, see Figures 5-6, which are assumed to begfiiysiasonable.
Results of the simultaneous reconstruction of the two parameter degs are
given in Figure 8. The reconstruction seems to be robust with respeatdis in the
data. However, in particular for lower field intensities one sees less saggsicon-
struction results which might be due to the fact that the material paranmetetsily
influence each other.

Concerning computation times the following can be observed: During tttdevel
algorithm the computation of the discretized adjoint problem is performégdéhe
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1.2 ‘ ‘ ‘ ‘ : — :
- - -Minimal error
—— Steepest descent
1 Landweber ||

\. Level2 Level3

Level 1

1 2 3 4 6 7 8 9 10

5
Cumulative iteration step

Figure 4: Development of residual norm for different choices aluring reconstruc-
tion of the permittivity (for the curve in Figure 6) with one percent data noise

-9

x 10
8.4 | —— Exact data ]
— 09 i
S 82 0 0/o noise ]
S - --1% noise
o8 8| - - 2% noise R
SH I 3 % noise
2 7.8} iti
g 7 Initial guess
g 7.6
[
& 74¢ |
7.2¢ |
, i
6.8¢ ‘ ‘ ‘ o

20 40 60 80
Electric field intensity (V/mm)

Figure 5: Reconstruction of a linear parameter curve with differentuamsoof data
noise.
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X107

Permittivity £55(|3)
~
[e2]

A —— Exact data
----2 % noise
---1% noise
——0 % noise
““““ 3 % noise

- Initial guess

10 .40 60 80
Electric field intensity (V/mm)

Figure 6: Reconstruction of a parabolic parameter curve with differeaunts of data

noise.

10

™~ —— 0 % noise NS
ne 9.2 - Js
W Initial guess X
ol | - - 1% noise \\
68 3 % noise \\
' — Exact \
8.6 |---2% noise
8.4 : ‘
35 70

Electric field intensity (V/mm)

105

Figure 7: Simultaneously reconstructed parameter curvesgggres), with different

amounts of data noise.
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17

16.5¢

161

15.5¢

Exact
Initial guess ||

3 % noise
--19% noise
---29% noise
——0 % noise

€33

15¢

14.5¢

14

35 70 105
Electric field intensity (V/mm)

Figure 8: Simultaneously reconstructed parameter curvesebgigs), with different
amounts of data noise.

projection of the solution onto the current level. So the computing time onleaeh
for the adjoint problem is nearly the same. And since it is a linear problesrsdtu-
tion is distinctly less expensive than that for a single forward solve whichdanear
PDE. Nevertheless, the multilevel strategy pays off concerning congptitives since
information at different levels are taken into account which decre&searkably the
over-all number of modified Landweber iterations compared to a syrategre one
immediately starts on some fine and fixed level. Table 1 tries to quantify tresvabs
tions. The values listed stem from the reconstruction of the curve in Figwith@®ne
per cent data noise. Here, first we counted the number of minimaliggrations and
the CPU time on each level, where the iterative multilevel algorithm passedifive
ferent levels to reach a prescribed residual of 0.1e-09. Thensterted the algorithm
on that level (level 4), which guarantees the same resolution of thénséargguanti-
ties, hold the number of nodes fixed, and counted the required nurhiberadions and
CPU-time, see last row in Table 1.

Level Number of Nodes Number of Iterations CPU time | Residual

0 3 1 37.0s 1.6e-09

1 5 1 38.3s 0.31e-09

2 9 4 153.1s | 0.28e-09

3 17 3 112.2s | 0.12e-09

4 33 2 81.9s | 0.102e-09
fixed level: 33 28 1090.0 s | 0.101e-09

Table 1. Number of iterations and computing times on different levels.
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3.3. Conclusions and Outlook

The proposed iterative multilevel algorithm can be applied to any arbitranytifd

cation or more general to any nonlinear inverse problem where disatietiz of the
sought-for quantity are involved. Regarding just the numerics the clodittee mod-
ified Landweber iterations has turned out to be be a powerful algorithentaan
optimal steering of the step-length parameter. Of course, the inner itesatimht be
substituted by any other regularizing iterative method, e.g. inexact New&thods or
others discussed e.g. in [9].

The application, parameter curve identification in nonlinear piezoelectigigther
problem oriented. Here, an open task is the identification from real woelalsore-
ments. It is open yet, if the functional dependencies can be reducetktorotwo
unknowns as it is done in this work and how appropriate measuremesistodde
conducted in order to mask interactions with other tensor entries.
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