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Abstract
We present a new interpolatory subdivision scheme for triangle meshes. Instead of splitting each edge and per-
forming a 1-to-4 split for every triangle we compute a new vertex for every triangle and retriangulate the old and
the new vertices. Using this refinement operator the number of triangles only triples in each step. New vertices
are computed with a Butterfly like scheme. In order to obtain overall smooth surfaces special rules are necessary
in the neighborhood of extraordinary vertices. The scheme is suitable for adaptive refinement by using an easy
forward strategy. No temporary triangles are produced here which allows simpler data structures and makes the
scheme easy to implement.

1. Introduction

Subdivision allows to generate smooth surfaces from a given
control mesh M0. With this coarse mesh a sequence of re-
fined meshes M1, . . . ,Mn can be computed. In the limit this
sequence of meshes converges to a continuous smooth sur-
face. Each refinement step can be divided into two different
aspects. First, a topological operation is performed. There-
fore new vertices are added to the mesh and the triangles
are split. Then the geometry of the mesh is changed by a
smoothing operation. In order to converge to a smooth limit
surface M∞ the subdivision scheme has to satisfy certain
necessary and sufficient conditions 1, 12, 11.

In a subdivision mesh Mi+1 two different kinds of ver-
tices can be distinguished. These are even vertices corre-
sponding to the vertices of the mesh Mi and odd ver-
tices which are newly inserted. Subdivision schemes can
be classified in approximating 3, 4, 10 and interpolating 6, 15, 8

schemes. In an approximating scheme the positions of the
even vertices of Mi+1 are local averages of the vertices of
Mi. In general, approximating schemes produce smoother
surfaces. But for many applications it is mandatory that the
position of the vertices in the control mesh is not changed.
Therefore interpolating schemes have to be used.

The most popular splitting operation for triangular meshes
is a 1-to-4 split. A new vertex for every edge of the original
mesh is computed and the vertices are triangulated so that
one triangle of the mesh is split into four triangles of the

refined mesh. This splitting operation is for example used
in the Butterfly scheme 6 and in the Loop scheme 10. In 9, 7 a
new splitting operator was introduced. Here the refinement is
done by a combination of vertex insertion and edge flipping.

In this paper we present a new subdivision scheme which
uses this vertex insertion and edge flipping operator for the
refinement of the mesh. This operation has the advantage
that only three new triangles are generated out of one trian-
gle in the coarser mesh. Therefore more different refinement
levels can be computed within a prescribed mesh complex-
ity.

Since the subdivision scheme is interpolatory, only the po-
sitions of new vertices have to be computed. As for other
subdivision schemes we have to distinguish between topo-
logically regular settings where all vertices of a triangles
have valence 6 (this is the number of adjacent edges of a ver-
tex) and topologically irregular settings. In this case extraor-
dinary vertices (i.e. vertices with valence �= 6). In the regular
case for the computation of a new vertex a 12-neighborhood
is needed. With the rule presented in this paper smooth sur-
faces over a regular triangular mesh can be generated. To
avoid unwanted artifacts like creases and cusps in topolog-
ically irregular settings we modify this rule for vertices not
having valence 6.

The paper is organized as follows. In Section 2 we give
a short overview of well known interpolatory subdivision
schemes, especially the Butterfly scheme. In Section 3 the
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splitting operator for uniform and adaptive subdivision is ex-
plained and in Section 4 the rules for the computation of
new vertices are presented. The refinement of boundaries is
shown in Section 5. In Section 6 we show examples pro-
duced with our new subdivision scheme. Finally, in Section
7 we give a conclusion.

2. Interpolatory Subdivision Schemes

The most famous interpolatory subdivision scheme for tri-
angular meshes is the Butterfly scheme 6. This scheme is a
generalization of the 4 point subdivision scheme for curves 5.
The Butterfly scheme leads to smooth surfaces over topo-
logically regular triangular meshes where all vertices have
valence 6. In the Butterfly scheme a 8 point stencil is used
to compute a new vertex, arranged in a configuration which
this scheme is named after (cf. Figure 1).
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Figure 1: Stencil of the Butterfly scheme.

The position for a new edge point qk+1 is
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with a tension parameter w, normally set to 1
16 . Instead of

a three dimensional mesh we now think of a scalar valued
function over a three directional grid. When the function val-
ues are constant along one of these directions then the But-
terfly scheme reduces to the 4 point scheme

qk+1 = (
1
2

+w)(pk
i + pk

i+1)−w(pk
i−1 + pk

i+2) (2)

along the other two directions. In the next section we will
use this idea to construct an interpolatory rule for the

√
3-

subdivision scheme.

The Butterfly scheme has got the advantage that it pro-
vides local rules to compute new vertex positions. No global
set of equations has to be solved. But it exhibits unwanted ar-
tifacts in the neighborhood of extraordinary vertices with va-
lences not equal to 6. Zorin et al. 16 have developed modified
rules for these cases. With the modified Butterfly scheme
overall C1 continuous surfaces can be computed. A gener-
alization of the 4 point scheme for subdividing quadrilateral
meshes with arbitrary topology was proposed by Kobbelt 8.

3.
√

3-Subdivision

In this section we present the splitting operator used for our
subdivision scheme. This operator was introduced in 7 for an
approximatory subdivision scheme. We also show how this
splitting operator can be used for adaptive subdivision.

3.1. Uniform Refinement

As described in the introduction the subdivision scheme pre-
sented in this paper does not use the normal 1-to-4 splitting
operator where the mesh is refined by inserting one new ver-
tex per edge. In our scheme in the middle of every triangle
t j of a mesh Mk a new vertex qj is computed. This vertex
is connected to the old vertices of the triangle. To achieve
a regular mesh structure, all old edges of the mesh are now
flipped. This means that an edge between two triangles tj1
and t j2 is removed and an edge between the new vertices pj1
and pj2 is inserted. This process is illustrated in Figure 2.

After two steps of the scheme every triangle is divided
into 9 and every edge is split into 3. This property leads
to the name

√
3-Subdivision. All vertices inserted into the

mesh have valence 6 and the valence of old vertices is not
changed. Therefore the number of extraordinary vertices is
constant during the refinement process. The special kind of
mesh topology obtained by applying the refinement operator
uniformly is called subdivision connectivity.

Using this splitting operator the number of triangles in the
mesh grows only by factor 3 in every refinement step instead
of factor 4 with the normal 1-to-4 split. This slower growth
of the mesh size allows the computation of more refinement
levels until a prescribed mesh complexity is reached.

3.2. Adaptive Refinement

Uniform subdivision triples the number of triangles in the
mesh. This leads to an exponential growth of the mesh with
the number of refinement steps. To avoid this problem the
technique of adaptive refinement is used. Here only triangles
are split which do not satisfy a prescribed flatness criterion.
This means that in areas of high local curvature more re-
finement levels are computed than in rather flat areas of the
mesh.

When using the normal 1-to-4 split of triangles problems
occur where different refinement levels of the mesh meet.
Holes can be produced when one edge is split into a triangle
but not in the neighboring one. This has to be fixed with the
so-called red-green triangulation 2, 14, 13.

Green splits bisect a given triangle and are only tempo-
rary. If a green split triangle has to be further refined the
split will be removed and a normal red split will be applied
to the original triangle. This makes the data structures of the
triangle mesh more complicated.

The problem of holes does not occur with the
√

3-
subdivision scheme because no edges are split. A technique
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Figure 2: Splitting of the mesh. One new vertex per triangle is computed, this vertex is connected with the vertices of the triangle
and the edges between old vertices are flipped. After two refinement steps every triangle is split into 9 new triangles.

Figure 3: Holes in the mesh has to be fixed by using a red-
green triangulation.

for the adaptive refinement with the vertex insertion and
edge flipping operation used to refine the mesh was intro-
duced in 9, 7. This technique can also be applied to the inter-
polating version of the

√
3-subdivision scheme.

Figure 4: Forward adaptive refinement.

A triangle is subdivided by inserting a vertex into a trian-
gle and connecting this new vertex to the old vertices of the
triangle. If a neighboring triangle is already refined the edge
between the triangles is removed and a new edge between
the face points of both triangles is inserted, i.e. the old edge
will be flipped . This process is illustrated in Figure 4. A tri-
angle can only be further refined if it has been generated by
an edge flipping operation.

To compute a new face point all stencil vertices have to be
collected. If some of them are missing they have to be pro-
duced recursively by refining triangles in the neighborhood.

By this approach a balancing of the mesh is achieved. In fact,
it is not possible that triangles with a level difference greater
than one are neighbors.

4. Stationary subdivision rules

In this section we introduce the smoothing rules of the new
interpolatory

√
3-subdivision scheme for the computation of

new vertices. Here we have to distinguish between topolog-
ically regular and irregular settings.

4.1. Regular meshes

In 9, 7 this splitting operator was used for an approximatory
subdivision scheme. Two rules were used, one for the com-
putation of a new vertex as the average of the vertex posi-
tions of a triangle and a second for the new position of the
already existing vertices.

In our scheme we want to develop rules for an interpola-
tory subdivision scheme. Hence, we only need one rule for
the computation of a new vertex. The stencil of the subdivi-
sion scheme has to be symmetric and should be as small as
possible. We suggest the stencil shown in Figure 5 defining
a 12-neighborhood around the triangle.

Because of the symmetry of the shown stencil the rule
must have the form

qk+1 = a(pk
1 + pk

2 + pk
3)+b(pk

4 + pk
5 + pk

6)

+c(pk
7 + pk

8 + pk
9 + pk

10 + pk
11 + pk

12).
(3)

We think again of a scalar valued function over a three
directional grid with constant function values along one of
the directions. In contrast to the Butterfly scheme we do not
insert the midpoint between two of the grid lines. The new
vertex divides the distance between two lines with a ratio
of 2 to 1. Therefore the weights along the other directions
cannot be reduced to the normal 4 point scheme.

For the construction of the weights in the one dimen-
sional case we have to solve the interpolation problem for
four given points f (0), f (1), f (2), f (3). These four points
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Figure 5: Stencil for the computation of a new vertex.

uniquely define a cubic interpolation polynomial p3(x). By
evaluating this polynomial at the position x = 5

3 the weights
for a subdivision scheme can be computed. We get

p(
5
3
) = − 4

81
f (0)+

10
27

f (1)+
20
27

f (2)− 5
81

f (3). (4)

We want our subdivision scheme to be a generalization of
this equation. Hence, we compute the weights ,a,b,c so that

− 4
81

= 2c (5)

10
27
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27

= 2a +2c (7)

− 5
81

= b +2c. (8)

These equations have the solution a = 32
81 , b = − 1

81 and c =
− 2

81 and consequently the scheme is
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12).
(9)

Another way of finding these weights is to compute a
bicubic interpolation polynomial for the 12 points of the
stencil in a regular setting. Evaluating this polynom at the
midpoint of the central triangle leads to the same formula.

It is obvious that this scheme leads to a C0 continuous
surface because the sum of the weights 3a+3b+6c is 1. We
do not want to give a mathematical rigorous proof of the C1

continuity of the scheme for a regular mesh here.

The analysis of the subdivision matrix we will present in
the following provides a necessary condition for the conver-
gence of the subdivision scheme to a C1 continuous surface.

The subdivision matrix S describes how a certain region of
the mesh Mi is mapped to a "scaled" region in the mesh
Mi+1. In our case the smallest region which is mapped to a
corresponding region in a finer level is a 37-neighborhood of
a given vertex. The coefficients of S are determined by the
weights from equation 9.

For the applied refinement operator it is not possible to
directly use this 37×37 matrix. This is because of a 30◦ ro-
tation being performed when splitting the triangles. There-
fore we subdivide the mesh twice leading to a 60◦ rotation
which is corrected by resorting the vertices. This is done by
multiplying the matrix with a permutation matrix R. So we
have to analyze the matrix

S̃ = RSS (10)

The behavior of the subdivision scheme is specified by the
leading eigenvalues of the matrix S̃. From 12 it is known that
S̃ can only be a convergent subdivision scheme leading to a
C1 continuous surface if the leading eigenvalues are

λ0 = 1,λ1 = λ2 =
1
3

(11)

and |λi| < 1
3 for i = 3, . . .36. This condition is satisfied for

the presented scheme.

4.2. Modifications for extraordinary vertices

The subdivision rule presented above leads to a smooth sur-
face for topologically regular settings. But it can easily be
shown that this rule is not sufficient to achieve smoothness
also for the case of extraordinary vertices. The same problem
also occurs for the Butterfly scheme. So special rules have to
be applied for the subdivision near extraordinary vertices 15.
This will be explained in the following.

For the computation of special rules for irregular settings
we consider the mesh not as vertices in the R3 but as a planar
region with height values for every vertex. First we study the
case for the computation of a new vertex in a triangle where
one vertex has valence k �= 6 and the others have valence 6.
This configuration is illustrated in Figure 6.

We set up the subdivision rules by examining the nec-
essary conditions for a convergent subdivision scheme as
found in 12. In order to keep the subdivision rules as simple
as possible we only use the vertices in the 1-neighborhood
of pk for the computation of the new vertex qk+1. So a new
vertex is computed as

qk+1 = αpk +
n−1

∑
i=0

αi pk
i (12)

For the given configuration we can build the local subdi-
vision matrix S. If the valence of the vertex pk is n, this is a
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Figure 6: One vertex in the triangle has valence k �= 6, the
others have valence 6.

(n +1)× (n +1) matrix. For n = 5 the matrix S is given by

S =




1 0 0 0 0 0 0
α α0 α1 α2 α3 α4 α5
α α5 α0 α1 α2 α3 α4
α α4 α5 α0 α1 α2 α3
α α3 α4 α5 α0 α1 α2
α α2 α3 α4 α5 α0 α1
α α1 α2 α3 α4 α5 α1




(13)

As in the regular case we cannot directly use this matrix
for the analysis of the subdivision scheme but have to take
a matrix S̃ = RSS. Again, this matrix represents two refine-
ment steps of our scheme. With the help of a sophisticated
eigen analysis of S̃ we find that for a vertex p with valence
n ≥ 5 the weights for such a double step are

α̃ =
8
9

(14)

α̃n
i =

1
9 + 2

3 cos( 2πi
n )+ 2

9 cos( 4πi
n )

n
, (15)

for n = 3 we have to use α̃ = 8
9 , α̃3

0 = 7
27 , α̃3

1 = α̃3
2 = −2

27 and

for n = 4 we take α̃ = 8
9 , α̃4

0 = 7
36 , α̃4

1 = α̃4
3 = 1

27 , α̃n
2 = −5

36 .

With these weights the leading eigenvalues of S̃ for n ≥ 5
are

λ0 = 1,λ1 = λ2 =
1
3
,λ3 = λ4 = λ5 =

1
9
. (16)

For the subdivision algorithm we now need to find the
weights of the matrix S, which is a suitable square root of
S2. The square root is determined by an eigenvector analysis
of S2. For the implementation of the subdivision scheme we
have precomputed the weight coefficients to make the algo-
rithm faster.

After one subdivision step there are only triangles with
at least two regular vertices and at most one irregular vertex
with valence n �= 6. In this case the face point in such a trian-
gle is computed with the modified rule. If all vertices of the
triangle have valence 6 the normal regular rule is applied.
Only in the coarsest level of the mesh triangles with two or
more irregular vertices may exist. In this case we compute
the face point of the triangle for every irregular vertex and
take the average as the resulting new vertex.

5. Boundaries

When meshes with boundaries are subdivided two problems
occur. First, there has to be a special subdivision rule to com-
pute a smooth boundary curve. Second, for the computation
of new vertices in triangles which have at least one vertex
on the boundary of the mesh not all stencil points for the
subdivision rule exist.

5.1. Subdividing the boundary polygon

With the normal 1-to-4 split edges on the boundary curve
have to be split in two parts. For the butterfly scheme the
interpolatory 4-point scheme is used. In our case a boundary
edge is only divided in every second refinement step and split
into three parts (cf. Fig. 7). Hence, two vertices have to be
inserted. Therefore we cannot use the normal 4-point scheme
and have to find a modification.

Figure 7: Subdividing boundary triangles.

For the computation of new boundary vertices no inner
vertices of the mesh should be used. The advantage is that
two different meshes with a common boundary polygon can
be divided separately and the subdivided meshes still share
a common boundary curve. This enables the generation of
cusps and creases.

For the splitting of a boundary edge into three parts we
can use equation (4) resulting in a modified 4 point scheme
where two vertices are inserted in one step. The subdivision
rules are

pk+1
3i−1 = − 4

81
pk

i−2 +
10
27

pk
i−1 +

20
27

pk
i − 5

81
pk

i+1 (17)

pk+1
3i = pk

i (18)

pk+1
3i+1 = − 5

81
pk

i−1 +
20
27

pk
i +

10
27

pk
i+1 − 4

81
pk

i+2 (19)

and the configuration of the stencil points can be found in
Fig. 8.

These subdivision rules lead to a C1 continuous boundary
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Figure 10: Subdividing a simple diamond model with a valence 12 vertex (left), subdivided with the modified Butterfly scheme
(middle) and the interpolatory

√
3-subdivision scheme.

Figure 11: Adaptive subdivision of the cat model. From left to right: original data set and adaptive refined meshes allowing a
dihedral angle of 20◦ and of 10◦.
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