Chapter ML:III

III. Decision Trees

- Decision Trees Basics
- Impurity Functions
- Decision Tree Algorithms
- Decision Tree Pruning
Decision Tree Pruning

Overfitting

Definition 10 (Overfitting)

Let D be a set of examples and let H be a hypothesis space. The hypothesis $h \in H$ is considered to overfit D if an $h' \in H$ with the following property exists:

$$Err(h, D) < Err(h', D) \text{ and } Err^*(h) > Err^*(h'),$$

where $Err^*(h)$ denotes the true misclassification rate of h, while $Err(h, D)$ denotes the error of h on the example set D.

Decision Tree Pruning

Overfitting

Definition 10 (Overfitting)

Let D be a set of examples and let H be a hypothesis space. The hypothesis $h \in H$ is considered to overfit D if an $h' \in H$ with the following property exists:

$$\text{Err}(h, D) < \text{Err}(h', D) \quad \text{and} \quad \text{Err}^*(h) > \text{Err}^*(h'),$$

where $\text{Err}^*(h)$ denotes the **true misclassification rate** of h, while $\text{Err}(h, D)$ denotes the error of h on the example set D.

Reasons for overfitting are often rooted in the example set D:

- D is noisy
- D is biased and hence non-representative
- D is too small and hence pretends unrealistic data properties
Let \(D_{tr} \subset D \) be the training set. Then \(Err^*(h) \) can be estimated with a test set \(D_{ts} \subset D \) where \(D_{ts} \cap D_{tr} = \emptyset \) (holdout estimation). The hypothesis \(h \in H \) is considered to overfit \(D \) if an \(h' \in H \) with the following property exists:

\[
Err(h, D_{tr}) < Err(h', D_{tr}) \quad \text{and} \quad Err(h, D_{ts}) > Err(h', D_{ts})
\]
Let $D_{tr} \subset D$ be the training set. Then $\text{Err}^*(h)$ can be estimated with a test set $D_{ts} \subset D$ where $D_{ts} \cap D_{tr} = \emptyset$ (holdout estimation). The hypothesis $h \in H$ is considered to overfit D if an $h' \in H$ with the following property exists:

$$\text{Err}(h, D_{tr}) < \text{Err}(h', D_{tr}) \text{ and } \text{Err}(h, D_{ts}) > \text{Err}(h', D_{ts})$$

![Accuracy vs Size of Tree Graph](image-url) [Mitchell 1997]
Remarks:

- Accuracy is the percentage of correctly classified examples.
- When does $\text{Err}(T, D_{tr})$ of a decision tree T become zero?
- The training error $\text{Err}(T, D_{tr})$ of a decision tree T is a monotonically decreasing function in the size of T. See the following Lemma.
Lemma 10
Let t be a node in a decision tree T. Then, for each induced splitting $D(t_1), \ldots, D(t_s)$ of a set of examples $D(t)$ holds:

$$Err_{cost}(t, D(t)) \geq \sum_{i \in \{1, \ldots, s\}} Err_{cost}(t_i, D(t_i))$$

The equality is given in the case that all nodes t, t_1, \ldots, t_s represent the same class.
Decision Tree Pruning

Overfitting (continued)

Proof (sketch)

\[
\text{Err}_{\text{cost}}(t, D(t)) = \min_{c' \in C} \sum_{c \in C} p(c \mid t) \cdot p(t) \cdot \text{cost}(c' \mid c)
\]

\[
= \sum_{c \in C} p(c, t) \cdot \text{cost}(\text{label}(t) \mid c)
\]

\[
= \sum_{c \in C} (p(c, t_1) + \ldots + p(c, t_{k_s})) \cdot \text{cost}(\text{label}(t) \mid c)
\]

\[
= \sum_{i \in \{1, \ldots, k_s\}} \sum_{c \in C} (p(c, t_i) \cdot \text{cost}(\text{label}(t) \mid c)
\]

\[
\text{Err}_{\text{cost}}(t, D(t)) - \sum_{i \in \{1, \ldots, k_s\}} \text{Err}_{\text{cost}}(t_i, D(t_i)) =
\]

\[
\sum_{i \in \{1, \ldots, k_s\}} \left(\sum_{c \in C} p(c, t_i) \cdot \text{cost}(\text{label}(t) \mid c) - \min_{c' \in C} \sum_{c \in C} p(c, t_i) \cdot \text{cost}(c' \mid c) \right)
\]

The summands on the right equation side are greater than or equal to zero.
Remarks:

- The lemma does also hold if the misclassification rate is used as performance measure.
- The algorithm template for the construction of decision trees, DT-construct, prefers larger trees, entailing a more fine-grained partitioning of D. A consequence of this behavior is a tendency to overfitting.
Decision Tree Pruning

Overfitting (continued)

Approaches to counter overfitting:

1. **Stopping** of the decision tree construction process *during training*.

2. **Pruning** of a decision tree *after training*:
 - Partitioning of D into three sets for training, validation, and test:
 - (a) reduced error pruning
 - (b) minimal cost complexity pruning
 - (c) rule post pruning
 - statistical tests such as χ^2 to assess generalization capability
 - heuristic pruning
Decision Tree Pruning
Stopping

Possible criteria for stopping [splitting criteria]:

1. Size of $D(t)$.
 $D(t)$ will not be partitioned further if the number of examples, $|D(t)|$, is below a certain threshold.

2. Purity of $D(t)$.
 $D(t)$ will not be partitioned further if all induced splittings yield no significant impurity reduction $\Delta \iota$.

Problems:

ad 1) A threshold that is too small results in oversized decision trees.

ad 1) A threshold that is too large omits useful splittings.

ad 2) $\Delta \iota$ cannot be extrapolated with regard to the tree height.
Decision Tree Pruning

The pruning principle:

1. Construct a sufficiently large decision tree T_{max}.
2. Prune T_{max}, starting from the leaf nodes towards the tree root.

Each leaf node t of T_{max} fulfills one or more of the following conditions:

- $D(t)$ is sufficiently small. Typically, $|D(t)| \leq 5$.
- $D(t)$ is comprised of examples of only one class.
- $D(t)$ is comprised of examples with identical feature vectors.
Definition 11 (Decision Tree Pruning)

Given a decision tree T and an inner (non-root, non-leaf) node t. Then pruning of T wrt. t is the deletion of all successor nodes of t in T. The pruned tree is denoted as $T \setminus T_t$. The node t becomes a leaf node in $T \setminus T_t$.

Illustration:

![Decision Tree Pruning Diagram]
Definition 12 (Pruning-Induced Ordering)

Let T' and T be two decision trees. Then $T' \preceq T$ denotes the fact that T' is the result of a (possibly repeated) pruning applied to T. The relation \preceq forms a partial ordering on the set of all trees.
Definition 12 (Pruning-Induced Ordering)

Let T' and T be two decision trees. Then $T' \preceq T$ denotes the fact that T' is the result of a (possibly repeated) pruning applied to T. The relation \preceq forms a partial ordering on the set of all trees.

Problems when assessing pruning candidates:

- Pruned decision trees may not stand in the \preceq-relation.
- Starting with T_{max}, promising candidates may not result from locally optimum pruning decisions (greedy strategy).
- Its monotony disqualifies $Err(T, D_{tr})$ as an estimator for $Err^*(T)$. [Lemma]
Definition 12 (Pruning-Induced Ordering)

Let T' and T be two decision trees. Then $T' \preceq T$ denotes the fact that T' is the result of a (possibly repeated) pruning applied to T. The relation \preceq forms a partial ordering on the set of all trees.

Problems when assessing pruning candidates:

- Pruned decision trees may not stand in the \preceq-relation.
- Starting with T_{max}, promising candidates may not result from locally optimum pruning decisions (greedy strategy).
- Its monotony disqualifies $Err(T, D_{tr})$ as an estimator for $Err^*(T)$. [Lemma]

Control pruning with validation set D_{vd}, where $D_{vd} \cap D_{tr} = \emptyset$, $D_{vd} \cap D_{ts} = \emptyset$:

1. $D_{tr} \subset D$ for decision tree construction.
2. $D_{vd} \subset D$ for overfitting analysis during pruning.
3. $D_{ts} \subset D$ for decision tree evaluation after pruning.
Reduced error pruning for decision tree T_{max} and validation set D_{vd}:

1. $T = T_{\text{max}}$

2. Choose an inner node t in T.

3. Tentative pruning of T wrt. t: $T' = T \setminus T_t$.

 Based on $D(t)$ assign class to t. \([\text{DT-construct}]\)

4. If $Err(T', D_{vd}) \leq Err(T, D_{vd})$ then accept pruning: $T = T'$.

5. Continue with Step 2 until all inner nodes of T are tested.
Decision Tree Pruning
Pruning: Reduced Error Pruning

Reduced error pruning for decision tree T_{max} and validation set D_{vd}:

1. $T = T_{max}$
2. Choose an inner node t in T.
3. Tentative pruning of T wrt. t: $T' = T \setminus T_t$.
 Based on $D(t)$ assign class to t. [DT-construct]
4. If $Err(T', D_{vd}) \leq Err(T, D_{vd})$ then accept pruning: $T = T'$.
5. Continue with Step 2 until all inner nodes of T are tested.

Problem:

If D is small, its partitioning into three sets for training, validation, and test will discard valuable information for decision tree construction.

Improvement: rule post pruning
Pruning: Reduced Error Pruning (continued)

On training data D_{tr}
On validation data D_{vd} (during pruning)
On test data D_{ts}

T_{max}

Accuracy vs. Size of tree (number of nodes)

[Mitchell 1997]
Decision Tree Pruning

Extensions

- consideration of the misclassification cost introduced by a splitting
- “surrogate splittings” for insufficiently covered feature domains
- splittings based on (linear) combinations of features
- regression trees