Strategies for Retrieving Plagiarized Documents

Benno Stein
Faculty of Media, Media Systems
Bauhaus University Weimar
99421 Weimar, Germany
benno.stein@medien.uni-weimar.de

Sven Meyer zu Eissen
Faculty of Media, Media Systems
Bauhaus University Weimar
99421 Weimar, Germany
sven.meyer-zu-eissen@medien.uni-weimar.de

Martin Potthast
Faculty of Media, Media Systems
Bauhaus University Weimar
99421 Weimar, Germany
martin.potthast@medien.uni-weimar.de

ABSTRACT
For the identification of plagiarized passages in large document collections we present retrieval strategies which rely on stochastic sampling and chunk indexes. Using the entire Wikipedia corpus we compile n-gram indexes and compare them to a new kind of fingerprint index in a plagiarism analysis use case. Our index provides an analysis speed-up by factor 1.5 and is an order of magnitude smaller, while being equivalent in terms of precision and recall.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Retrieval models, search process; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing—Abstracting methods, Indexing methods

General Terms: Theory, Performance

Keywords: plagiarism analysis, hash-based indexing, fuzzy-fingerprinting

1. INTRODUCTION
In the generic plagiarism analysis situation we ask the following question:

“Did the author of a document \(d_q \) commit a plagiarism offense?”

Approaches for computer-based plagiarism analysis break down this question into manageable parts:

“Given a collection \(D \) of documents, does \(d_q \) contain a passage \(p_0 \) for which one can find a document \(d_e \in D \) that contains a passage \(p_e \) such that under some retrieval model \(\mathcal{R} \) the similarity \(\phi_{\mathcal{R}} \) between \(p_0 \) and \(p_e \) is close to 1?”

The respective algorithms require the collection \(D \) stored in a preprocessed form, typically as a tailored chunk index \(D \). A chunk index is an inverted file whose vocabulary (the left-hand side of the mapping) contains larger portions of the document, such as n-grams, shingles, or other multi-term features. Based on such an index, we propose to organize the retrieval of plagiarized documents as a three-stage process (cf. Figure 1):

1. **Heuristic Retrieval**. Samples of the suspicious document \(d_q \) are extracted and looked-up in a chunk index. The set of matching samples indicates postlists, which in turn refer to candidate documents with possibly plagiarized passages.

2. **Detailed Analysis**. The possibly plagiarized passages in each candidate document are compared to the matching passages in \(d_q \). This analysis happens under a “stronger” retrieval model \(\mathcal{R} \), which is the vector space model along with cosine similarity here.

3. **Knowledge-based Post-processing**. It is analyzed whether identical passages have been properly quoted, and hence establish no plagiarism offense.

In this paper we concentrate on the first step: We present a new kind of chunk index, based on so-called fuzzy-fingerprints, and compare it to a standard n-gram index with respect to storage requirements and retrieval efficiency. In our analysis we have indexed the entire Wikipedia corpus\(^1\), for which we achieve a storage reduction by a factor \(\geq 10 \) and a retrieval speed-up by factor 1.5.

Related Work. Research on automated plagiarism analysis focuses mainly on Step 2 in Figure 1, using technologies from the field of near-duplicate detection [1, 5]. New similarity hashing techniques from [4, 6] have not yet been considered for plagiarism analysis, despite their promising retrieval properties. Contributions related to tailored indexes for near-duplicate detection come from [1, 3]. The former introduce an index based on the so-called SPEX algorithm which allows for the identification of duplicate chunks within a closed document collection but cannot be employed to open retrieval situations. The latter develop a variant of an inverted file index where duplicate text-passages are indexed only once, achieving size reductions of 30%.

2. RETRIEVAL MODEL
In the plagiarism analysis use case, a comparison of a document \(d_q \) against a collection \(D \) is a problem of inherently quadratic runtime at the passage level: n-gram by n-gram of \(d_q \) must be looked-up in an inverted file index \(D \) of \(D \). A small value for \(n \) leads to a large set of candidate documents implying a high post-processing effort, a large value for \(n \) minimizes the chance of detecting a plagiarized passage that has been slightly modified. Experience has shown that useful values for \(n \) are between 3 and 5 [5].

\(^1\) A Wikipedia snapshot from November 4th, 2006 was indexed.
Lower Bounds for Sample Extraction. Given an upper bound for the plagiarized portion \(p \) of \(d_q \), a lower bound for the number of \(n \)-grams to be extracted can be stated such that plagiarized passages are covered with high probability.

Suppose that a chunk is drawn uniformly at random from \(d_q \), and let \(X \) be the random variable that has value 1 if the chunk belongs to a plagiarized passage, and 0 otherwise. Then \(X \) has a Bernoulli distribution with parameter \(p \). If the experiment is repeated \(r \) times with \(X_1, \ldots, X_r \) denoting the respective outcomes, the variable \(S_r = \sum_{i=1}^{r} X_i \) has a binomial distribution, and the probability that \(S_r \) takes value \(k \) is \(P(S_r = k) = \binom{r}{k} p^k (1-p)^{r-k} \). We can determine a value for \(r \) such that the equation \(P(S_r > k) \geq \alpha \) holds for a given \(k \) at a desired confidence threshold \(\alpha \):

\[
P(S_r > k) \geq \alpha \iff 1 - P(S_r \leq k) \geq \alpha \iff P(S_r \leq k) \leq 1 - \alpha \iff \sum_{i=1}^{k} \binom{r}{k} p^k (1-p)^{r-k} \leq 1 - \alpha \]
\[
(1)
\]

e^{-\frac{kr}{p} + \frac{(r-k)^2}{2p}} \leq 1 - \alpha
\]

(2)

Remarks. (1) \(k \) defines the number of plagiarized passages that are discovered in \(d_q \). (2) In general holds \(r \geq \frac{\ln(1-\alpha)}{\ln(1-p)} \) since the expected value \(E(S_r) = rp \). (3) The last implication results from the Chernoﬀ Inequality applied to the binomial distribution; it is used to derive a closed form for a lower bound of \(r \).

3. ANALYSIS WITH WIKIPEDIA

For analysis purposes we have compiled three index sets that were derived in different manners. The first set stores fuzzy-fingerprints (FF) extracted from the 345000 Wikipedia articles. The second set was created from the English version of the National Corpus, and the third one from the English version of the British National Corpus.

Table 1: Characteristics of the Wikipedia chunk indexes.

<table>
<thead>
<tr>
<th>Chunk index type</th>
<th>Avg. postlist length</th>
<th>Size</th>
<th>Size ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{FF}, (l = 40), (\gamma = 0.8)</td>
<td>1.17 entries</td>
<td>0.35 GB</td>
<td>0.07</td>
</tr>
<tr>
<td>D_{4-gram}</td>
<td>2.43 entries</td>
<td>3.42 GB</td>
<td>0.65</td>
</tr>
<tr>
<td>D_{8-gram}</td>
<td>1.44 entries</td>
<td>5.25 GB</td>
<td>1</td>
</tr>
</tbody>
</table>

Index Data Structure. Since the Wikipedia collection is known in advance we designed a space efficient inverted file structure based on minimal perfect hashing. The data structure implements a hash table \(T \) with \(|T| \) storage positions. A particular hash function \(h : U \rightarrow |T| \) is used to map the universe of chunks, \(U \), perfectly onto a minimum number of storage positions, say, \(|T| = |U| \). \(h \) can be constructed in \(O(|U|) \) time and space and requires additional storage of size 4.6 *: \(|U|\) bytes \[2\]. The overall sizes of the compiled indexes are shown in Table 1. Note that \(D_{FF} \) needs only a small fraction of the storage of the \(n \)-gram indexes. Also note that postlist compression based on a gap statistic evaluation cannot significantly change these relations.

Runtime Analysis. To compare the runtime performance we analyzed custom-built documents that contained plagiarized passages from Wikipedia articles. The documents’ lengths ranged from 50 to 300 pages, the plagiarized portion \(p \) ranged from 0.1% to 6.5%. As determined by Equation 1 for \(\alpha = 0.9 \) and \(k = 1 \), between \(r = 150 \ldots 3500 \) chunks (size \(l = 40 \)) and 4-grams were randomly extracted from the test documents and looked-up in the indexes \(D_{FF} \) and \(D_{4-gram} \) respectively. For each document the average number of result documents per query was recorded, whereas common 4-grams (occurring in more than 10 documents) were discarded. The left plot in figure 3 shows the averaged number of returned documents depending on the plagiarized portion \(p \); the retrieval based on \(D_{FF} \) outperforms the 4-gram index by factor 1.5. Note that the result set size determines the true plagiarism analysis effort, since each result document must be loaded and compared in detail. The right plot shows precision and recall at certain similarity thresholds for fuzzy-fingerprinting. Note that at similarities above 0.8 we achieve a reasonable recall performance.

![Figure 3: Runtime performance of the chunk indexes measured in the number of retrieval results to be post-processed.](Image)

4. REFERENCES

