Word Semantic Similarity based on document title

Mohamed said Hamani saidhamani@hotmail.com
Ramdane Maamri rmaamri@yahoo.com

Presented by: Mohamed said Hamani
OUTLINE

- Approach Overview.
- Web search engine based approaches for measuring semantic similarity.
- Semantic similarity based on title approach.
- Experiments.
- Conclusion.
Approach overview

- The purpose of the paper is to measure semantic similarity between two given words based on page counts alone using a search engine as an interface and the Web as a live corpus.
- The approach exploits the titles of documents instead of the contents of documents.
Measuring the semantic similarity or dissimilarity (distance) between words is a process of quantifying the relatedness between the words using information sources [1].

Based on information sources existing work on determining word relatedness is broadly categorized into three major groups [2]: corpus-based, knowledge-based and hybrid methods.
The web as Live Corpus

- Semantic similarity between words changes over time and across domains. New words are constantly being created as well as new senses are assigned to existing words [3].
- Manually maintaining thesauri to capture these new words and senses is costly if not impossible [3].
- Web as a live corpus instead of a large corpus.
Web search engines

- Web search engines provide an efficient interface to access its massive store of information and return page counts and snippets for a given query.
- Page count of a query is an estimate of the number of pages that contain the query words returned from a search engine.
- Snippets, a brief window of text extracted by a search engine around the query term in a document, provide useful information related to the local context of the query term [4].
Example

Television - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Television
Television (TV) is a telecommunication medium for transmitting and receiving moving images that can be monochrome (black-and-white) or colored, with or ...
History of television - Television (disambiguation) - Philo Farnsworth - Television set

Television (band) - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Television_(band)
Television is an American rock band, formed in New York City in 1973 and credited as highly influential and seminal. Television was part of the 1970s New York ...

History of television - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/History_of_television
The history of television comprises the work of numerous engineers and ...

Television set - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Television_set
A television set (also called a television, TV set, TV, or "Telly" (UK)) is a device ...
Web search engine based approaches for measuring semantic similarity

- The web search engine based approaches for measuring semantic similarity between words can be categorized to:
 - Page counts based approaches [9, 11].
 - Snippets based approaches [12, 13].
 - Hybrid approaches [3, 4].
Page counts based approaches for measuring semantic similarity

- Page counts based approaches use the page counts alone returned from search engine as co-occurrence statistics to compute the semantic similarity between words.

- Drawback
 - Page counts alone methods ignore word positions in a page considering the document as a bag of words, whereas “co-occurrence should be considered in a specific context or in a window of limited sizes such 3 to 7 words before or after a target word” [7].
Page count based measures of word relatedness

- There is a relatively large number of co-occurrence measures in the literature such as:

\[
\text{Jaccard}(t_1, t_2) = \frac{\text{count}(t_1, t_2)}{\text{count}(t_1) + \text{count}(t_2) - \text{count}(t_1, t_2)}
\]

\[
\text{Dice}(t_1, t_2) = \frac{2 \times \text{count}(t_1, t_2)}{\text{count}(t_1) + \text{count}(t_2)}
\]

\[
\text{Simpson}(t_1, t_2) = \frac{\text{count}(t_1, t_2)}{\text{Min}(\text{count}(t_1), \text{count}(t_2))}
\]

\[
\text{Cosine}(t_1, t_2) = \frac{\text{count}(t_1, t_2)}{\sqrt{\text{count}(t_1) \times \text{count}(t_2)}}
\]

\[
\text{PMI}(t_1, t_2) = \log_2 \left(\frac{\text{count}(t_1, t_2) / N}{(\text{count}(t_1) / N) \times (\text{count}(t_2) / N)} \right)
\]

\[
\text{NGD}(t_1, t_2) = \frac{\text{Max}(\log(\text{count}(t_1)), \log(\text{count}(t_2))) - \log(\text{count}(t_1, t_2))}{\log(N) - \text{Min}(\text{count}(t_1), \text{count}(t_2))}
\]
The idea of our approach

- Our idea is to find an attribute that is good enough to describe the content of a document and short enough for the co-occurrence to be considered.

- Given terms t1, t2, the proposed approach will search for the terms t1 and t2 in the title of the document instead of the content of the document using search engine operators.

- Google provides the operator “intitle:” to search for a term in a document title and “inurl:” operator to search for a term in a document URL.

- The paper focus on document’s title and study the URL and document content as well.
Semantic similarity based on title approach

Given two terms t_1, t_2

1. Search in document titles for term t_1.

 Let $\text{count}(t_1)$, be the number of documents containing term t_1 in the title.

2. Search in document titles for term t_2.

 Let $\text{count}(t_2)$, be the number of documents containing term t_2 in the title.

3. Search in document titles for both terms t_1 and t_2.

 Let $\text{count}(t_1, t_2)$, be the number of documents containing both terms t_1 and t_2 in the title.

4. Compute scores using $\text{count}(t_1)$, $\text{count}(t_2)$ and $\text{count}(t_1,t_2)$. The resulting score is a measure of similarity.
Transformed page count based measures of word relatedness

- Given two terms t_1, t_2 and a similarity function $\text{Measure}(t_1, t_2) > 0$. The general transformation formula of $\text{Measure}(t_1, t_2)$ function to $T\text{Measure}(t_1, t_2)$ function is defined as:

$$T\text{Measure}(t_1, t_2) = \begin{cases} e^{\log_0(\text{Measure}(t_1, t_2))} & \text{Measure}(t_1, t_2) > 0 \\ 0 & \text{Measure}(t_1, t_2) = 0 \end{cases}$$

For instance the transformation of Jaccard to TJ jaccard is:

$$J\text{accard}(t_1, t_2) = \frac{\text{count}(t_1, t_2)}{\text{count}(t_1) + \text{count}(t_2) - \text{count}(t_1, t_2)}$$

$$TJ\text{accard}(t_1, t_2) = \begin{cases} e^{\log_0(\frac{\text{count}(t_1, t_2)}{\text{count}(t_1) + \text{count}(t_2) - \text{count}(t_1, t_2)})} & \text{count}(t_1, t_2) > 0 \\ 0 & \text{count}(t_1, t_2) = 0 \end{cases}$$
Experiments

- Evaluation of the most popular semantic similarity measures to three attributes.
 - The attributes are the URL of the document, title of the document and the content of the documents denoted respectively as “URL”, “Title” and “Doc”.
 - Two sets of prevalent human benchmark data are employed:
 - Miller and Charles (M&C) dataset [6].
 - The Pearson Product-moment Correlation Coefficient [10] is employed to calculate the consistency between similarity ratings.
Similarity correlations by attribute on R&G dataset

![Graph showing similarity correlations by attribute on R&G dataset](image)

Fig. 1. Similarity correlations by attribute on R&G dataset
Similarity correlations by attribute on M&C dataset

![Graph showing similarity correlations by attribute on M&C dataset](image-url)
Similarity correlations by attribute on M&C dataset for Measure and TMeasure

- Jaccard
- TJaccard
- Simpson
- TSimpson
- Dice
- TDice
- Cosine
- TCosine

Correlation values for each attribute are shown in the chart.
Conclusion

- Word semantic similarity based on document title using page counts alone approach, performs better than URL and document content.
- TMeasure performs always better than Measure.
- Our approach reached 71% and outperforms similarity measures defined over snippets alone 0.58 in [12] and 0.69 in [13] based on results reported in [4].
Thank You!
References

