Approaches for Intrinsic and External Plagiarism Detection

Notebook for PAN at CLEF 2011

Gabriel Oberreuter Gallardo
goberreu@ing.uchile.cl
University of Chile - September 2011

Group members: Gastón L’Huillier, Sebastián Ríos and Juan D. Velásquez
Who are we?

- Group of students, professionals and professors from University of Chile
- We work on studying plagiarism in academia
- www.docode.cl
Who we are

Docode Engine

DOCODE Engine
Integration of document copy detection algorithms, collecting and indexing documents, queuing large scale copy detection petitions.

Docode ASP

Application Service DOCODE
Web application for DOCODE, design of document copy detection reporting tools, software engineering, features and requirement analysis.

Docode Impact

DOCODE Impact Analysis
Surveys and interviews in schools, social analysis of copy and paste phenomenon, evaluation of the impact of such tools in education.
Index

1. Where we were @2010
2. External Plagiarism Detection
3. Intrinsic Plagiarism Detection
4. Results @PAN2011
5. Conclusions
Where we were @2010
Where we were @2010

- Focused on external plagiarism detection.
- No cross-lingual consideration.
- Based on word bi-grams and word tri-grams.
- Selecting *samples* for each document in order to reduce compute time.
External Comparison between 2 documents
Where we were @2010

External Comparison between 2 documents
Monolingual
Based on word bi-grams and word tri-grams.
No intrinsic detection

Acceptable precision, detecting half of cases and good granularity.

Comparison computed on two eight-core Servers, each with 6 GB of RAM.
Java Implementation.
Reducing Search Space: ~20 Hours.
Finding Plagiarized Passages: ~12 Hours.
External Plagiarism Detection
External Plagiarism Detection

From 2010 experience, we decided to focus on:

- Better precision
- Better recall
- Reduce processing time

External detector @2011

- Uses word 4-grams, removing SW for search space reduction
- Uses word 3-grams for exhaustive search
External Plagiarism Detection

Some results on 2010 PAN Corpus (includes intrinsic and external plagiarism):

<table>
<thead>
<tr>
<th>Algorithm Version</th>
<th>Overall</th>
<th>Recall</th>
<th>Precision</th>
<th>Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0.61</td>
<td>0.48</td>
<td>0.85</td>
<td>1.001</td>
</tr>
<tr>
<td>2011</td>
<td>0.73</td>
<td>0.6</td>
<td>0.94</td>
<td>1.001</td>
</tr>
</tbody>
</table>

- Dual core notebook with 4GB RAM.
- Java Implementation.
- Reducing Search Space: ~2 Hours. (0.3% promising doc pairs)
- Exhaustive Search: ~1 Hour.
Intrinsic Plagiarism Detection
Intrinsic Plagiarism Detection

Given a document, determine whether one of its paragraphs belong to the average writing style.
Intrinsic Plagiarism Detection

Following Stamatatos’ (2009) approach:

- Divide the document in partitions
- Compare each partition’s *writing style characterization* against the whole document’s style
- If a partition deviates from the mean value past some threshold, flag it

<table>
<thead>
<tr>
<th>Rank</th>
<th>Overall score</th>
<th>F-measure</th>
<th>Precision</th>
<th>Recall</th>
<th>Granularity</th>
<th>Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2462</td>
<td>0.3086</td>
<td>0.2321</td>
<td>0.4607</td>
<td>1.3839</td>
<td>E. Stamatatos University of the Aegean, Greece</td>
</tr>
<tr>
<td>2</td>
<td>0.1955</td>
<td>0.1956</td>
<td>0.1091</td>
<td>0.9437</td>
<td>1.0007</td>
<td>B. Hagbi and M. Koppel Bar Ilan University, Israel</td>
</tr>
<tr>
<td>3</td>
<td>0.1766</td>
<td>0.2286</td>
<td>0.1968</td>
<td>0.2724</td>
<td>1.4524</td>
<td>M. Granitzer, M. Muhr, M. Zechner, and R. Kern Know-Center Graz, Austria</td>
</tr>
<tr>
<td>4</td>
<td>0.1219</td>
<td>0.1750</td>
<td>0.1036</td>
<td>0.5630</td>
<td>1.7049</td>
<td>L. M. Seaward and S. Matwin University of Ottawa, Canada</td>
</tr>
</tbody>
</table>
Intrinsic Plagiarism Detection

On the characterization of writing style…

If some of the words used on the document are author-specific, one can think that those words could be concentrated on the paragraphs (or more general, on the segments) that the mentioned author wrote.
Intrinsic Plagiarism Detection

Fundamentals:

- Divide document in partitions of equal length
- Word Frequencies
- No stopword removal
- Only chars from a-z
Comparing the partitions against the whole document…

Algorithm 1 Intrinsic plagiarism evaluation

Require: C, v, m, δ

1: for $c \in C$ do
2: $d_c \leftarrow 0$
3: build v_c using term frequencies on segment c
4: for word $w \in v_c$ do
5: $d_c \leftarrow d_c + \frac{\mid freq(w,v) - freq(w,v_c)\mid}{\mid freq(w,v) + freq(w,v_c)\mid}$
6: end for
7: end for
8: style $\leftarrow \frac{1}{|C|} \sum_{c \in C} d_c$
9: for $c \in C$ do
10: if $d_c < style - \delta$ then
11: Mark segment c as outlier and potential plagiarized passage.
12: end if
13: end for
Example 1: Document written by single author
Example 2: Document written by multiple authors
Some results on 2009 PAN Intrinsic Corpus:

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Recall</th>
<th>Precision</th>
<th>Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamatatos</td>
<td>0.25</td>
<td>0.46</td>
<td>0.23</td>
<td>1.38</td>
</tr>
<tr>
<td>Oberreuter</td>
<td>0.34</td>
<td>0.31</td>
<td>0.39</td>
<td>1.01</td>
</tr>
</tbody>
</table>

- Dual core notebook with 4GB RAM.
- Java Implementation.
- Run under 10 minutes (~6,000 documents).
Results @PAN2011
External Plagiarism Detection Performance

- Ranked third after Grman&Ravas (0.56) and Grozea&Popescu (0.42)
- Overall good precision, but low recall for obfuscated plagiarism and simulated plagiarism
Results @PAN2011

Intrinsic Plagiarism Detection Performance

- Ranked first with a good recall-precision balance
- Overall score of 0.32, with better results with medium- and long-length documents

<table>
<thead>
<tr>
<th></th>
<th>plagDet</th>
<th>Recall</th>
<th>Precision</th>
<th>Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>overall</td>
<td>0.3254817</td>
<td>0.3397965</td>
<td>0.3123243</td>
<td>1.0000000</td>
</tr>
<tr>
<td>doc-length-long</td>
<td>0.3787308</td>
<td>0.3828166</td>
<td>0.3747313</td>
<td>1.0000000</td>
</tr>
<tr>
<td>doc-length-medium</td>
<td>0.4001631</td>
<td>0.3660643</td>
<td>0.4412672</td>
<td>1.0000000</td>
</tr>
<tr>
<td>doc-length-short</td>
<td>0.2811900</td>
<td>0.2479395</td>
<td>0.3247399</td>
<td>1.0000000</td>
</tr>
<tr>
<td>translated-obfuscation</td>
<td>0.3131128</td>
<td>0.2789482</td>
<td>0.3568141</td>
<td>1.0000000</td>
</tr>
<tr>
<td>translated-manual-obfuscation</td>
<td>0.1095166</td>
<td>0.1276579</td>
<td>0.0958898</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>
Conclusions

- Word tri-grams and word 4-grams can be used effectively as tokens for external plagiarism detection.
- The effectiveness of the approach is strongly correlated to the ability to detect those dense coincidence zones.
- When no sources are available, the use of words appear to be a good starting point to model the writing style present in documents.
- Best result in self-information task, but the scores are overall still too low.