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ABSTRACT

System response and thus interactivity is strictly tied to the frame
rate in most virtual reality systems. For complex scenes either the
visual quality needs to be sacrificed (e. g. by using a lower level of
detail) or the system becomes non-interactive. We suggest that for
standard manipulation tasks in virtual environments parting from
such a single-frame rate approach is beneficial.

Multi-frame rate rendering uses two (or more) graphics cards to
render the interactive parts of the scene on one card and the rest
on the other. The results are optically or digitally combined in
a single image displayed to the user. This approach significantly
improves the interaction fidelity for medium and large scenes without
compromising visual quality. We provide a detailed motivation and
an overview of our approach. We argue that modern virtual reality
system benefit greatly from multi-frame rate rendering.
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1 MOTIVATION

The interactive and high-quality visualization of large models and
scenes is still a challenging problem even though the capabilities of
graphics processing units (GPU) have been dramatically improved
over the past years. Unfortunately the expectations on visual quality
have increased even more, which in general affects the interactivity
or interaction fidelity of applications. These two qualities seem
to be at opposite ends of a continuum. Visual quality is mainly
dependent on the scene complexity (e. g. the number of primitives),
the rendering method, the illumination and shading model, and the
display resolution. While all of these factors might also improve
interaction fidelity, they often lead to low frame rates if excellent
visual quality is desired.

Interaction fidelity describes how users perceive their interactive
input being incorporated into the image generation process. In con-
trast to high-quality imagery shown in movies, computer graphics
used in visualization and simulation contexts is expected to be inter-
active. Users want to be able to manipulate the elements of the 3D
world and perceive these changes immediately on the display.

Incorporating interaction responses into an image is not a very
time consuming process, i. e. usually the computational resources
required are low compared to the resources involved for generating
high-quality imagery. For interaction it is more important to mini-
mize the time from real-world sensor acquisition to incorporating
the resulting changes into the image. Conventional single-frame rate
systems exhibit a tightly coupled visualization and interaction archi-
tecture, i. e. sensor data is evaluated as part of the visualization loop.
In such systems interaction response is limited by the time it takes
to render an image. Earlier research found a dependency between
the frame rate of an application and the corresponding interaction

fidelity. For sufficient interaction fidelity it is recommended that the
frame rate should be ≥ 6 Hz [Airey et al. 1990], > 7 Hz [Pausch
1991], or > 10 Hz [Card et al. 1991; McKenna and Zeltzer 1992;
Bryson 1993]; these values are mostly rules of thumb derived from
experience or extrapolated from 2D GUI experiments.

More formal studies investigated the interaction-fidelity to frame-
rate relationship for task performance in VR applications [Tharp
et al. 1992; Ware and Balakrishnan 1994; Reddy 1997; Watson et al.
1998]. They all arrive at the conclusion that sufficient interaction
fidelity in a single-frame rate system requires a frame rate above
10 Hz. Tharp et al. [1992] and Reddy [1997] found that for frame
rates above 20 Hz and 15 Hz, respectively, no dramatic performance
improvement can be seen, though both agree that the higher the
frame rate the better the task performance. Watson et al. [1998]
focused on studying system response for (open-loop) grasp and
(closed-loop) placement tasks [Wickens 1992]. They found that
open-loop tasks (e. g. grasping) seem to be less sensitive to system
responsiveness than closed-loop tasks (e. g. placement) because the
latter require continuous visual feedback for appropriate control.
They describe system response as the time elapsed from a user’s
action to the display of that action. In contrast, frame time is the
time an image is presented on the display while system latency
describes the age of a sample presented in the image. Frame time
and system latency are the two main influences on system response.
The relationship between these entities is depicted in figure 1.

The age of a sample displayed in an image consists mainly of
the time it takes to process the data from a sensor and sending it to
the application. This sensor data latency is typically constant for a
certain setup (e. g. a tracking system). Once the sensor data arrives
at the application it is incorporated into the application state (e. g.
matrices of a scene graph). Based on the modified application state a
new frame is rendered. Rendering time is typically equal or similar
to the time an image is displayed—the frame time. In low frame rate
applications system response and system latency are thus dominated
by frame time. System latency affects how well the response on the
display is connected to the action of the user. The frame time also
contributes to this perception of action and reaction, but additionally
affects the smoothness of object movements and view changes.

From the above discussion it can be concluded that improving the
frame time for the interactive parts of a scene will result in signifi-
cantly improved interaction fidelity. Closed loop tasks such as place-
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Figure 1: System response, system latency, and frame time relationship (after
Watson et al. [1998]).
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ment tasks are particularly affected by overall system responsiveness.
Because grasping and placement are common manipulations in VR
applications we concluded that parting from the single-frame rate
approach for image generation might be beneficial. In a single-
frame rate system interactive frame rates can only be guaranteed
by controlling parameters affecting visual quality. Our goal was
to achieve frame rates sufficient for interaction with the 3D world
while also supporting high-quality visualization methods exhibiting
very low frame rates. For this approach two requirements must be
fulfilled. First, it must be possible to designate parts of the scene’s
content as relevant to the current interaction. This might be inferred
automatically (e. g. by interest prediction) or explicitly by state
changes with respect to the interaction framework used (e. g. objects
must be selected before being manipulated). Second, scene parts
relevant for the interaction will be rendered on a dedicated GPU. By
assuming that usually only small parts of the scene are relevant to
the current interaction this should allow for sufficiently high frame
rates of interaction responses to the user, i. e. minimizing the time
for system response. The rest of the scene is rendered on a separate
GPU as well but typically with much lower frame rates. Both of
these graphics sub-systems are assumed to run asynchronously, i. e.
they are not expected to be synchronized in any way. Finally, the
partial images must be combined in some way for displaying the
complete scene to the user.

2 MULTI-FRAME RATE SYSTEMS

Before actually explaining multi-frame rate methods in more detail
some related work trying to move beyond single-frame rate systems
will be discussed.

Bishop et al. [1994] propose a frameless rendering technique
that allows smooth updates of an image from a scene. Instead of
using a double-buffered approach, where the new image is being
generated while the previous one is shown on the display, they
propose per-pixel computation based on the most recent user input
and immediately updating individual pixels on the display. The
resulting images would converge eventually to a high-quality image
once user motion stops. During input changes the image display
may become blurry since intermediate images contain pixels from
different temporal samplings. Watson et al. [2002] and later Dayal
et al. [2005] follow up on this work by introducing a visual error
metric, consisting of a spatial and a temporal error controlling the
image refinement. All of the proposed techniques are practically
limited to ray-tracing render systems.

Woolley et al. [2003] introduce the concept of interruptible render-
ing. A single image-space error measure is used to unify the spatial
error caused by rendering coarse representations and the temporal
error caused by rendering delay. A progressively refined rendering
of a coarse image into the back buffer is used. During this process
the temporal error is monitored and once it exceeds the spatial error,
further refinement is stopped and the image is displayed. Their ren-
dering system uses LOD-based techniques combined with real-time
ray tracing.

It is interesting to note that these approaches, as well as many
others that follow a single-frame rate approach, will trade visual
quality for interaction fidelity in some way. The conceptually inter-
esting approach of frameless rendering still trades visual quality for
interactivity, but the granularity of the update is on a per-pixel level.
We argue that updating on a per-object level is much more efficient
since typically only few objects are affected by an interaction in a
virtual environment. We will see that multi-frame rate rendering
also trades interactivity for visual quality in the form of artifacts,
which fortunately can be mostly hidden.

2.1 Multi-Frame Rate Display
The multi-frame rate image generation process produces more than
one image (e. g. one for the non-interactive scene parts and one for

the interactive objects). Basically two methods exist for display-
ing the combined result on a single display: optical superposition
and digital composition [Springer et al. 2007]. In both cases it is
assumed that the images are produced by multiple asynchronously
running image generators.

By using two completely overlapping projection devices the par-
tial images from the asynchronous image generation processes can
be combined in an easy way. The rendering processes must be
configured to output images for identical view projection setups.
Also, the projectors should be precisely calibrated, geometrically as
well as optically, for the images to be perceived as one by the user.
Unfortunately, since the images are merged by optical blending,
no correct depth occlusion can be produced. While this may not
be a problem for system control elements such as menus, objects
in the scene are difficult to manipulate without correct occlusion.
Nevertheless, for simple interaction schemes that do not rely on
depth-correct occlusion optical superposition is easy to accomplish
on a current PC system using a dual-GPU setup. This method is also
related and was inspired by Computer Graphics Optique [Majumder
and Welch 2001].

Digital composition involves merging of multiple images, which
are then displayed using a single graphics output. In contrast to
optical superposition this approach supports not only projection-
based systems but also conventional monitor displays or HMDs.
The mechanism as such is straightforward. Every time the slow
rendering process finishes a frame the color and depth information
of that image is transferred to the fast rendering process. There it is
used at the beginning of each frame to setup the frame buffer. Then
the scene parts relevant to user interaction are rendered afterward.
Since the depth information from the slow image’s content is already
available correct depth occlusion is guaranteed.

2.2 Multi-Frame Rate Rendering

Multi-frame rate rendering is the process of producing images for
a multi-frame rate display. Independently of the chosen display
method, optical superposition or digital composition, the scene must
be divided somehow in parts relevant for the interaction and the
rest. This division however is not static. User interaction may affect
any object in the scene, i. e. objects must able to migrate from one
rendering process to the other upon request. Also, when combining
resulting images from the divided scene parts the displayed image
should be as much as possible similar to rendering the whole scene
in a single process.

An easy way to divide the scene for the participating render
processes would be the use of object lists. User input may affect any
object by selection and release. Once an object is selected it has to
migrate to the object list relevant for interaction and upon release it is
migrated back to the object list containing the rest of the scene. This
allows for implementations running in a single process on the same
host machine as well as in distributed setups. However, most of the
current infrastructure for visualization and VR systems is build upon
a scene graph API. Springer et al. [2007] describe a mechanism
where the assignment of an object to a render process is achieved by
comparing node masks on objects and traversal masks on the render
traversal process. Scene graphs are used to describe the structure
of a scene [Clark 1976]. As such they do not prescribe a particular
render method. The standard method in a scene graph environment
for creating images is to traverse the graph and accumulate necessary
information for a low-level rendering API (e. g. OpenGL). During
traversal the traversal mask of the render process is tested against the
node mask of each scene graph node visited, usually by a bit-wise
AND operation, and upon evaluating to true the traversal descends
further down. If the test evaluates to false the node and its sub-
graph are excluded from further consideration. By assigning disjoint
traversal masks for the fast and slow render processes changes to
node masks, describing selection and release, will automatically
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assign objects to the appropriate render process. Again, this object
migration method is also suitable for both single process as well
as distributed rendering setups provided the changes in the scene
graph are communicated across the participating cluster nodes by
the scene graph API (e. g. OpenSG [Reiners 2002]) or VR system
(e. g. Avango [Tramberend 2003]).

Multi-frame rate rendering by optical-superposition display sim-
ply uses the described object migration method for deciding to which
render process each object currently belongs to. Each render process
then produces its own image and the final image composition is
achieved by overlapping the images of two projectors.

In the case of a digital composition display for multi-frame rate
rendering the color and depth information from the slow render
process must be transferred to the fast render process. This may be
achieved in several ways: by network transfer between nodes in a
graphics cluster, by local network device transfer between processes
on the same host but running on different graphics devices, or by
host memory transfer between either processes or within the same
process [Springer et al. 2008]. Also, Springer et al. [2008] note that
reading and writing of frame buffer sized image data from current
graphics devices is at least one magnitude faster than transferring
the same data on current Gigabit network configurations. Even
faster transfer times can be expected if the image data could be
transferred from one graphics device to the other over a dedicated
link. Unfortunately this support does not yet exist.

2.3 Temporal Artifacts

The image creation by multiple asynchronously running render pro-
cesses may create artifacts in the final image that can be perceived
by the user. The problem is a result of combining different tempo-
ral samplings of a scene through the participating render processes.
For example popping artifacts may occur during object migration
[Springer et al. 2008]. Depending on frame rate differences as well
as the latency between the slow and the fast render processes the
situation can be dealt with in several ways. Springer et al. [2008] de-
scribe a solution for ray-based selection. Instead of migrating objects
upon actual selection or release an over status similar to 2D GUIs
is used. Upon intersecting an object the migration of that object is
triggered by node mask changes. The same process is executed in
reverse once the object is no longer intersected by the ray. Entering
or leaving an object with the selection ray does not actually select or
release the object but changes only its status as being relevant for
interaction, i. e. its render process assignment. Because it usually
takes some time from the enter event to the actual selection, this time
is in almost all cases sufficient to update the render processes, trans-
fer the slow image content to the fast render process and incorporate
it. This heuristic works well up to where the update rate differences
between the render processes become very large. To ensure con-
sistency between the participating render processes Springer et al.
[2008] also describe a state management approach that additionally
sends the object identification of all objects contained in the current
image from the slow rendering process. This information is used
in the fast render process to decide if a certain object encountered
during render traversal must be included in the final image or not.
This state management also works in a conservative setup where
pressing a button would actually trigger the selection process. The
result of this simple state management is that temporal artifacts from
object migration can be almost always avoided except for the case
where users change from over status to selection and object move-
ment so quickly that the new image from the slow render process
has not yet arrived. In this case the object might be shown twice
for a short amount of time. It is important to note that there is still
no synchronization between the render processes necessary, which
would inevitably stall the rendering and could potentially degrade
system responsiveness and therefore interaction fidelity.

Object manipulation may also trigger changes that affect the scene

as a whole (e. g. viewpoint changes or changing light parameters).
Certain global effects can be properly handled within the multi-
frame rate framework. For example changes in lighting parameters
can be evaluated in the fast render process if the slow render process
transfers the necessary information for final lighting instead of an
already finished image. Springer et al. [2008] describe a variant of
deferred shading [Deering et al. 1988; Hargreaves and Harris 2004]
where the slow render process generates per-pixel information for
normal, depth, material, etc. The fast render process combines this
information with the lighting stage allowing fast user interactions
with lights (e. g. re-positioning lights by manipulating a proxy
geometry as well as changing lighting parameters or even an object’s
material). Since the original rendering information (color and depth)
from the slow process is replaced by more parameters (normal, depth,
material) more bandwidth is necessary for buffer transfer. Current
network technology, such as Gigabit Ethernet, will introduce too
much lag to the buffer transfer, so this method is practically limited
to standalone multi-GPU setups. Also, computational load is shifted
from the slow to the fast render process which may lead to an
increase of frame time for rendering the interaction-related image.
At the expense of one additional buffer to be transferred, containing
an image of the fully shaded scene by any non-interactive light, this
computational shift can be re-balanced by the application as needed.

3 DISCUSSION AND FUTURE WORK

Systems based on multi-frame rate rendering and display purposely
create a highly unbalanced load on the image generators to improve
the interactivity of object manipulations while maintaining most of
the overall visual quality.

A user study by Springer et al. [2007] compared task performance
for a 3D placement task for single-frame rate rendering at 10 Hz
and 30 Hz with multi-frame rate rendering at 10/30 Hz, i. e.10 Hz
for the slow and 30 Hz for the fast render process. It showed that
task performance for multi-frame rate rendering using digital com-
position was almost as good as single-frame rate rendering at 30 Hz.
While the single-frame rate setup also updated head-tracking data
at 30 Hz the multi-frame rate setup updated it at 10 Hz. Although
users noticed this lower update frequency it did not degrade their
task performance. This observation is in tune with the findings by
Watson et al. [1998]. On the other hand, multi-frame rate rendering
using optical superposition exhibited a significant lower task perfor-
mance than single-frame rate rendering at 10 Hz, which in turn has
a lower task performance than single-frame rate rendering at 30 Hz
as expected. This confirms that the missing depth occlusion of the
optical superposition display method poses a serious problem for
3D placement tasks.

Multi-frame rate systems can be build from a variety of existing
technology. By using known features and behavior of existing scene
graph APIs multi-frame rate rendering is also supported for a variety
of hardware setups. It is also conceivable to combine multi-frame
rate rendering using digital composition with other techniques such
as cluster rendering. Here, either the fast or the slow render process,
or even both, may consist of a graphics cluster of their own. The
possibility of dynamically re-assigning graphics processors between
the sets of fast and slow clients may provide great potential to trade
interactivity for overall rendering performance on demand. Future
graphics hardware may provide control of frame buffer transfer be-
tween interconnected devices via dedicated links. The achievable
bandwidth would be far greater than using intermediate host mem-
ory. Even the use of a single graphics device is supported if GPUs
provide an efficient render task scheduling mechanism. In such an
interleaved mechanism the remaining time of a fast frame could be
used for rendering parts of the slow frame’s content. Over several
fast frames the slow frame’s image would emerge and be ready for
use on the GPU for the next fast frame. This approach enables the
use of multi-frame rate rendering on low-end graphics systems such
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as laptops, mobile phones, and PDAs.
There is a potential problem with our proposed approach with

respect to navigation. Decoupling the image generation rate from
the interaction response rate will inevitably create temporally incon-
sistent images. Due to potentially large differences in update rates
the partial images are created at different times and using different
states from the underlying data as well as user input. In setups
where no viewpoint changes occur this rarely leads to visible arti-
facts [Springer et al. 2008] but incorporating support for navigation
is difficult. Since the update rate for interaction happens in the fast
rendering process it is tempting to incorporate viewpoint changes
here as well. The problem with this approach is that the high-quality
image for the non-interactive scene parts will be then rendered from
a different perspective; even if users are willing to cope with that in
a monoscopic setup they will certainly not in a stereoscopic setup.
Coupling the navigation update to the image update for the non-
interactive scene parts is conservative but safe. Upon merging the
images the faster interaction update process will use the viewpoint
for generating the slower image for as long as no new image for
the non-interactive scene parts has been created. This way users
perceive a perspectively correct and coherent final image but with an
navigation update rate as good as the update rate for the slow image
part. One solution for the navigation problem is to predict viewpoint
changes and use depth-image warping, an image-based rendering
technique to generate new views from reference images considering
per-pixel color and depth information (e. g. [Mark et al. 1997]).

An interesting question that frequently emerges during discussion
concerns the relationship between the update rates of the slow and
fast render processes. We need to investigate if update ratios exist
that work better than others. Also, the influence of buffer-transfer
latency from the slow to the interactive render process needs to be
explored.

Multi-frame rate systems promise high visual quality and im-
proved interaction fidelity at the expense of a few, often impercep-
tible visual artifacts. We argue that multi-frame rate capabilities
should be built into most virtual reality systems to increase the ac-
ceptance of 3D user interfaces, which can now run at 30 Hz to 60 Hz
in most cases.
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