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ABSTRACT
This paper presents a general method for selectively refining or coarsening progressive meshes. Our method works for 
arbitrary meshes, deals with non-manifolds, and allows the change of manifold and genus properties of the mesh. We 
introduce new definitions for edge contraction and expansion operations, which make solely use of the vertex hierarchy. 
These definitions in conjunction with their legal conditions lead to many provable properties of the refinement process. 
In addition, we propose a locally re-stripping method to dynamically generate the strips during selective refinements, 
which efficiently forms strips for meshes coarsening or refining process.
Keywords:  Selective refinement, Level-of-detail, Mesh simplification, Triangle strips, Progressive meshes.

1. INTRODUCTION
The PM approach represents an arbitrary mesh through 
a sequence of transformations operating on a base mesh 
(coarsest resolution). Almost all simplification methods, 
e.g.  [1]-[5],  allow  the  generation  of  such  PM 
representations.  Among  them,  the  method  based  on 
quadric  metrics  and  edge  collapses  gives  a  good 
balance  between speed  and  accuracy.  By introducing 
new  definitions  of  the  transformations  and 
dependencies,  the  PM  representations  are  developed 
into  selective  refinement  method  [6].  However, 
previous  methods  for  selectively  refining  progressive 
meshes based on edge  collapse mostly  correspond to 
simplification  that  keeps  the  topological  type,  and 
cannot deal with meshes’ topological changes such as a 
genus change of the surface or changes of the manifold 
property. For simplification with topological type kept, 
if  the  original  model  is  topologically  complex,  the 
simplified base mesh may still have numerous triangles. 
As the result, some small pieces and neglectable gaps 
still exist whereas the model has been greatly simplified 
(refer  to  [11]).  Popovic  and  Hoppe  [11]  propose  a 
simplification that can change the topological type of 
the original mesh. Unfortunately, their method is time-
intensive,  needs  tens  of  hours  to  process  a  medium 
complex  model.  Garland  [4]  presents  a  much  fast 
simplification method that can deal with the case where 
the transformation changes the topological type of the 
original  mesh by introducing virtual  edges.  However, 
no selective refinement method corresponding to such 
general simplification has been presented. 

Another  issue  is  that  the  underlying  theory  for 
selective refinement of  progressive meshes is  not  yet 
fully developed. Hoppe [6] proposes a method without 
proofed theoretical background. Xia et al [8] and J.El-
Sana et  al  [10]  also propose dependencies  conditions 

for selective refinement, however, these definitions and 
conditions cannot be used for our general case where 
meshes may be non-manifold or topological type may 
change.

Triangle  strips  are  a  widely  used  hardware 
supported  mechanism  to  compactly  represent  and 
efficiently render triangle meshes. Hoppe[7] propose a 
method to re-strip the whole mesh each time when the 
mesh  changed.  As  the  cost  of  re-stripping  highly 
depends  on  the  complexity  of  the  model,  the  re-
stripping  process  may  greatly  compromise  the  frame 
rate  if  the mesh is  very complex.  El-Sana et  al.  [12] 
propose  a  data  structure,  skip  strips,  that  efficiently 
maintains  triangle strips  during refinement.  However, 
their method is not equally efficient when mesh become 
coarser, because edge collapse usually causes strips to 
be split into small ones (Figure 7).  

In this paper we address these problems and present 
a  new  framework  for  selectively  refining  and 
coarsening progressive meshes. Our method is based on 
a  vertex  hierarchy  and  deals  properly  with  non-
manifold meshes and complex topological changes. The 
vertex hierarchy is given through the edge contraction 
operations  of  the  simplification  process  [4],  which 
generates  the  progressive  mesh  representation.  In  the 
paper,  we first  present  new definitions of  contraction 
and expansion, which, in contrast to the definitions in 
previous work [6][7], can properly represent changes of 
topological  type  even  for  non-manifold  meshes. 
Second, we present legalities for selective refinement, 
which have a set of formally proofed properties. These 
properties  form the theoretical  basis for our  selective 
refinement algorithm. In particular  interesting is,  that 
only faces from the original simplification process are 
used  to  form  adaptive  meshes,  which  guarantees  a 
certain  mesh  quality  consistent  with  the  original 
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simplification process. 
To the problem of stripping, we propose a locally 

re-stripping  method,  which  only  re-strips  newly 
changed faces. Obviously, it is faster than entirely re-
stripping method like Hoppe’s. Moreover, it can equally 
efficiently  generate  strips  whenever  mesh  becomes 
coarser or finer (Figure 7).

2. RELATED WORK
Xia and Varshney [8] use ecol/vsplit transformations to 
create a simplification hierarchy that allows real-time 
selective refinement. Hoppe [6] proposes an approach 
that  forms  the  vertex  hierarchy  by  an  unconstrained, 
geometrically  optimized  sequence  of  vsplit 
transformations.  However,  these  methods  keep  the 
topological  type,  not  deal  with non-manifold meshes, 
even their definitions of the vsplit/ecol cannot represent 
topological type change. 

Garland’s method [4] is most closely related to our 
method.  Recent  version  of  qslim can  make  non-
manifold changes. However, it  is just a simplification 
process.  In this paper, we present  its  inverse process, 
selective  refinement  algorithm,  mainly  based  on  his 
work. 

J.  El-Sana and A. Varshney [10] propose implicit 
dependencies for view-dependent simplification, which 
is the most compact representation of the dependencies 
for  view-dependent  simplification.  However,  their 
method is same as Xia’s, cannot deal with generic non-
manifold cases.

3. CONTRACTION AND EXPANSION

The expansion of a vertex sv  (Figure 1) generates two 

new vertices pv and qv . In a topological sense, pv can 

be considered identical to  sv ,  and only  qv  is a new 

vertex.  All  the  directed  edges  surrounding  sv  stay 
unchanged.  Each  of  these  edges  corresponds  to  a 
neighbor face of sv . The expansion turns some of these 

faces  into  neighbor  faces  of  pv ,  the  others  into 

neighbor faces of qv . The corresponding edge sets for 

these  two  face  sets  are  denoted  as  pE  and  qE
respectively. In addition, the expansion also generates 
some new faces, which share the vertices  pv  and qv . 

We denote all the directed edges that connect pv  and a 

third vertex (except pv  and qv ) on new faces as a set 

dE . For instances, in Figure 1,

 },{ 5443 vvvvE p = ,

 },{ 2110 vvvvEq = and  },{ 2 popd vvvvE = . 

According  to  these  notations,  we  give  the  following 
definitions.
Definition 1.
 An  expansion( sv , pv , qv , pE , qE , dE )  makes  the 
following transformations. 
a) Replace sv  by pv , and add vertex qv .

b) For each face that contains  sv  and an edge from 

pE , remap sv  to pv . 

c) For each face that contains  sv  and an edge from 

qE , remap sv  to qv .

d) Add new faces that contain  qv  and an edge from 

dE .
  expansion 

 contraction 
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v4 
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Figure 1: An expansion and its inverse, a contraction.

Definition 2.
 A  contraction( sv , pv , qv , pE , qE , dE )  makes  the 
following transformations.
a) Remove all  the  faces  containing  qv  and an edge 

from dE .

b) For each face that contains  qv  and an edge from 

qE , remap qv  to sv .

c) For each face that contains  pv  and an edge from 

pE , remap pv  to sv .

d) Replace pv  with sv , and remove qv .
Obviously, an expansion is the inverse of a contraction. 
In a simplification process, an arbitrary mesh  *M  is 
decimated through a sequence of n  edge contractions, 

110 ,,, −nccc  into  the  base  mesh nM .  The 
simplification  process  can  be  represented  in  the 
following way: 
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ncc MMMM n→→= −10 10* 
Such process can be reversed, because each contraction 
has an inverse. The base mesh nM can be transformed 
into  the  mesh  *M through  a  sequence  of  n edge 

expansions,  021 ,,, eee nn −− ,  where  1−= ii ce .  The 
tuple
 )},,,(,{ 021 eeeM nn

n −−  

is a PM representation of *M . For each expansion, an 
old vertex is split into two new vertices, which can be 
looked as a parent-child relationship. The vertices of a 
PM representation form a vertex hierarchy. (Figure 2). 

For our application the mesh needs to vary locally 
and incrementally among the different resolutions. The 
transformations are in general performed in a different 
order than the original PM sequence, and they include 
both  contraction  and  expansion.  There  are 
transformation sequences, which do not result in a valid 
mesh.  We  want  our  transformation  sequences  to 
produce valid meshes, and also require that any mesh is 
consistent with the local modifications from the original 
simplification process to ensure the same quality for the 
faces.

v4 v5

v1

v10 v11 v12 v13

v6

v16 v17

v7

v2

v14 v15

v8 v9

v3
M0

M*

Figure 2: A vertex hierarchy (vertex forest) corresponds to a 
PM representation. In the vertex hierarchy, the root nodes are 
the vertices of the coarsest mesh, and the leaf nodes are the 
vertices of the finest mesh.

Contraction and expansion transformations must obey 
some  legality  conditions  to  make  each  modification 
valid and consistent with the PM generation stage. Let 
tuple
 )},,,(,{ 021 eeeM nn

n −−  

be  a  progressive  mesh  with  1−= ii ec .  A  selective 
refining or coarsening process can be represented by

 110 0 +→→= ktktn PPPMP k  .

kt  is a legal contraction or expansion. The actual mesh 
in this process is in general different from in the meshes 
created during the PM generation stage. The vertices on 
the current mesh are called front vertices. We denote the 
set of front vertices as F . If a vertex is on the current 

mesh,  it  is  called  active vertex,  otherwise it  is  called 
inactive vertex. We call all the faces lying on the current 
mesh active faces.
Legality  conditions  for  expansion  and  contraction 
transformations:  
An expansion( sv , pv , qv , pE , qE , dE ) is legal if 

sv  is active, and all the vertices contained in pE , qE
and dE  are active.

A contraction( sv , pv , qv , pE , qE , dE ) is legal if

pv  and qv  are active, all the vertices contained in pE

, qE , and dE  are active, and 

num( )( pvN ) + num( )( qvN )

= num( pE ) + 2 num( dE ) + num( qE )

)(vN  represents a set of neighboring faces of a vertex 
v .  num(X) is the number of elements in a set  X. This 

condition assures that the number of neighboring faces 
of the vertices pv  and qv  on the current mesh is equal 
to  the  number  of  neighboring  faces  during  the 
contraction  operation  of  the  original  simplification 
process.  Note  that  each  edge  in pE ,  qE ,  and  dE  
correspond to a face, and the sets of neighboring faces 
of pv  and qv  overlap.
Properties 
a) Each  local  modification  in  the  selective  refining 

process  is  exactly the same (or  the corresponding 
inverse) as in the original simplification process. 

b) If  Fv ∈0 and  the  activity  of  vertex  
1v  is  a 

necessary condition for the legality of the expansion 
of 0v , then 1v  must be on F  or below F  in the 
vertex hierarchy.

c) If  Fv ∈0 ,  and  the  activity  of  vertex  1v  is  a 
necessary  condition  for  the  legality  of  the 
contraction of 0v , then 1v  must be on F or above 
F  in the vertex hierarchy.

d) If there is a vertex in F , which is not a leaf node, 
there must exist a vertex Fv ∈0 , whose expansion 
is legal.

e) If there is a vertex in F , which is not a root node, 
there  must  exist  a  vertex  Fv ∈0 ,  whose 
contraction is legal. 

These  properties  have  been  formally  proved  by  us. 
Property  1  ensures  that  our  selective  refining  or 
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coarsening  process  is  consistent  with  the  original 
simplification  process.  Properties  2  and  3  make  the 
recursive refining and coarsening feasible. Properties 4 
and 5 ensure that  the refining (coarsening) process is 
able to reach the finest (coarsest) mesh.

Note that our legalities are mostly similar as Xia’s 
[8],  the  apparent  difference  lies  in  the  legality  of 
contraction.  This  results  from  the  generality  of  our 
selective  refinement,  which  may  change  the  mesh’s 
topological type or deal with non-manifold mesh. Only 
neighboring  vertices  cannot  guarantee  that  the 
neighboring  faces  are  same  as  that  in  simplification 
stage  because  the  neighbors  of  a  vertex may include 
more than one separate part.

For  manifold  mesh  with  topological  type  kept, 
Hoppe’s  legal  conditions  [6]  allow  more  flexible 
contraction  or  expansion  operations  than  ours. 
However, local modifications may occur in his method, 
which  are  different  from  the  original  simplification 
process.  This  might  not  be  desirable  for  certain 
application domains. In particular, the quality of newly 
generated faces may not be equivalent to those created 
during  the  simplification  process.  In  addition, 
unexpected cases may happen, such as normal flipping 
etc.  In  our  method,  we  keep  the  local  modifications 
completely  consistent  with  the  original  simplification 
process,  so  the  quality  of  the  mesh  can  be  kept. 
Moreover,  our  definitions  of  the  expansion  and 
contraction  are  more  general  than  his,  which  can 
express the contraction of any edge in the mesh, even 
virtual  edges,  which  are  used  for  topology 
simplification [4].

4. SELECTIVE REFINING OR 
COARSENING

Our  application,  the  interactive  visualization  of  geo-
scientific data, requires the rendering of high resolution 
polygonal  surfaces.  A  typical  surface  consists  of 
approximately 500000 triangles  and there are often a 
few of these surfaces of interest. It is clear that these 
surfaces  need  to  be  drastically  simplified  to  achieve 
high  frame  rates.  Users  are  often  interested  in  local 
details in certain regions of the model. In our system, 
they  locally  refine  their  model  in  these  regions  until 
they are satisfied with the resolution. Our users specify 
the  region  of  interest  by  positioning  a  sphere  with 
adjustable radius in the region of interest. The vertices 
inside the sphere are expanded or contracted.

We use Garland’s simplification method (qslim) [4] 
to  create  the PM representation for  arbitrary meshes. 
Our  method  creates  a  vertex  hierarchy  and  all  the 
expansion  transformations  defined  in  Section  3  from 
this PM representation (note: contraction and expansion 

have the same parameters). According to our definitions 
in section 3, the legality of transformations for a certain 
vertex on the mesh can be easily checked.

The coarsening process happens in two ways, either 
“naturally”  or  “forced”.  The  natural  contraction 
contracts a selected vertex if its contraction is legal. The 
forced contraction works recursively until the selected 
vertex is  legally contracted.  The vertices required for 
the  legality  of  the  contraction  are  made  active  by 
recursively  contracting  their  children.  The  expansion 
transformation works in a similar way. The properties 
(2)  –(5)  provide  the  theoretical  background for  these 
recursive  methods.  They  guarantee  that  the  recursive 
process cannot be trapped in a dead lock.

5. LOCAL RE-STRIPPING
Our  local  Re-Stripping  process  mainly  includes  two 
stages, collecting newly changed faces and re-stripping 
these  faces.  During  a  serial  of  contractions  or 
expansions, the mesh contains two kinds of strips, one 
kind of strips has not  changed, and the other kind of 
strips has changed as some faces are added or removed, 
our  algorithm incrementally  collects  the  faces  whose 
strips have changed. After the serial of transformations 
and before the resulted model are sent to the rendering 
pipeline, our algorithm re-strips the collected faces.

Collecting  newly  changed faces.  This  process  is 
done incrementally. Obviously, a transformation at least 
influences  the  strips  that  correspond  to  newly  added 
(removed) faces and their neighbors. In order to make 
the  re-stripped  faces  as  less  as  possible,  we  only 
consider such strips. Note that the collected faces must 
be kept on the current mesh, if some faces are deleted, 
the corresponding faces in the collected face arrays also 
should be deleted.

Re-stripping the local part of the mesh.  Our re-
stripping  method  is  similar  as  the  method  in  [13], 
except  that  our  algorithm deals  with  the  part  of  the 
mesh instead of the whole model. The algorithm first 
chooses  the  seed  triangle  with  the  least  number  of 
neighbors as  the starting triangle of a  strip,  and then 
greedily extends the strip as possible as it can. If there 
are more than two triangles that can append to the strip, 
the  algorithm  always  choose  the  one  with  less 
neighbors.

6. RESULTS
The  progressive  mesh  representations  are  generated 
using  the  qslim  simplification  software[4].  We  have 
integrated  the  proposed  algorithm  into  our  virtual 
environment  framework  Avango  (  Previously  called 
Avocado)[9].  The  generation  of  adaptive  meshes 
happens in a separate process and the results are passed 
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on into the rendering process. This approach avoids that 
the graphics pipeline stalls while we are updating our 
meshes. In our application, users manually specify the 
area  of  interest  and  specify  if  the  mesh  should  be 
refined or coarsened. 

We demonstrate our  method is  able to selectively 
refine a model that is topologically simplified in Figure 
5.  The  change  of  topological  type  can  simplify  the 
topology  of  the  original  model,  however,  it  usually 
cause the mesh to become non-manifold. All such cases 
are considered in our method, so our method is  very 
general, allow any pair of vertices contract. 

Figure 6 shows some pictures from a sequence of 
refining and coarsening operations. For each refine or 
coarsening operation all the affected vertices are forced 
to  contract.  The  images  clearly  show  that  for  these 
cases the mesh around the selected area also needs to 
adapt  to  make  the  contraction  or  refinement  of  the 
selected vertices legal.

 Empty triangle 

v0 v1 

v0 

v1 

v0 

v0 v0 

v0 

Figure 3:  Without re-stripping, contracting v0  and v1  usually 
causes an existed strip to be split into small ones or generates 
swap faces in the strip.
 

vd 

v1 v0 v0 

vd vd 

New face 

Empty triangle 

Figure  4:  Without  re-stripping,  expanding  v0 usually 
generates swap faces in the existed strips. 

We compare our  locally re-stripping method with the 
method proposed in [12], the results of a model through 
a same sequence of contraction operations are shown in 
Figure 7. It shows that our stripping method is much 
better  than  the  method  in  [12]  in  case  the  mesh  is 
contracted.  The  method  in  [12]  can  efficiently  form 
strips  when  the  model  becomes  finer,  however,  it 
cannot  form strips  in  same  efficiency  way when the 
model  becomes  coarser.  The  main  reason  is  that  old 
strips they try to re-use often need to be split into small 
ones  if  a  contraction happens (see Figure  3).  On the 
contrary, our method abandons changed old strips, and 
re-strips  them.  Experiments  show  that  our  stripping 

method  form  equally  efficient  strips  whenever  the 
model are refined or coarsened. In addition, our method 
generates  strips  without  swapping faces,  there  are no 
extra  empty  triangles  for  OpenGL rendering  [14].  In 
contrast, the method in [12] often generate strips with 
swapping  faces,  bring  extra  empty  triangles  for 
OpenGL rendering  (see  Figure  3  and  4).  From  our 
experiments,  the  swapped  triangles  in  their  method 
usually  occupy  30-40%,  or  even  more,  this  greatly 
compromises  the  performance  of  their  algorithm 
sometimes.

7. CONCLUSIONS
In this paper, we have carefully studied the theoretical 
background  of  locally  and  incrementally  refining  or 
coarsening  progressive  meshes.  We  present  new 
definitions  of  contraction,  expansion,  and  their 
preconditions.  These  definitions  result  in  proofed 
properties  of  the  refinement  process  and  provide  a 
sound  basis  for  our  method.  We  can  deal  with  any 
transformations for manifold or non-manifold meshes, 
and even with transformations that introduce complex 
topology changes.  In  addition,  our  method keeps  the 
refining or coarsening process exactly consistent  with 
the original simplification process, so that the properties 
of locally refined meshes is mostly determined by the 
original simplification process.

Our second contribution is that we propose a locally 
re-stripping method, which equally efficiently generates 
strips whenever the model is refined or coarsened. 
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Figure 5: A sequence of refining operations that change the mesh’s topological type, the connected parts become separated when the 
mesh become finer.

         
(a)                                                          (b)                                                           (c)

             
(d)                                                                     (e)                                                        (f)

Figure 6: A sequence of  refining and  coarsening operations  from our  geo-scientific  application  showing a  complex subsurface 
structure. The parts drawn in red correspond to the areas of interest. (a-c) A sequence of refinement operations starting from the 
coarsest  mesh. (d) another area is additionally refined. (e-f)  The density of the mesh is reduced. (f  ) shows the effect of forced 
contractions in the vicinity of the area of interest.
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(a)                                                      (b)                                                    (c)

Figure 7: Comparing our local re-stripping method with the method in [12]. (a) The finest model is stripped using the method in [13]. 
The models in (b) and (c) are obtained by the model in (a) changed through a same sequence of contractions. The strips in (b) are 
generated by our implemented method as skip strips in [12], while the strips in (c) are produced by our local re-stripping method.
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