
Selective Refinement Of Progressive Meshes Using Vertex Hierarchies

Yigang Wanga, Bernd Fröhlichb and Martin Göbelc

a,cFraunhofer-Institut für Medienkommunication, Germany
bBauhaus-Universität Weimar, Germany

yigang.wang@imk.fraunhofer.de

ABSTRACT
This paper presents a general method for selectively refining or coarsening progressive meshes. Our method works for
arbitrary meshes, deals with non-manifolds, and allows the change of manifold and genus properties of the mesh. We
introduce new definitions for edge contraction and expansion operations, which make solely use of the vertex hierarchy.
These definitions in conjunction with their legal conditions lead to many provable properties of the refinement process.
In addition, we propose a locally re-stripping method to dynamically generate the strips during selective refinements,
which efficiently forms strips for meshes coarsening or refining process.
Keywords: Selective refinement, Level-of-detail, Mesh simplification, Triangle strips, Progressive meshes.

1. INTRODUCTION
The PM approach represents an arbitrary mesh through
a sequence of transformations operating on a base mesh
(coarsest resolution). Almost all simplification methods,
e.g. [1]-[5], allow the generation of such PM
representations. Among them, the method based on
quadric metrics and edge collapses gives a good
balance between speed and accuracy. By introducing
new definitions of the transformations and
dependencies, the PM representations are developed
into selective refinement method [6]. However,
previous methods for selectively refining progressive
meshes based on edge collapse mostly correspond to
simplification that keeps the topological type, and
cannot deal with meshes’ topological changes such as a
genus change of the surface or changes of the manifold
property. For simplification with topological type kept,
if the original model is topologically complex, the
simplified base mesh may still have numerous triangles.
As the result, some small pieces and neglectable gaps
still exist whereas the model has been greatly simplified
(refer to [11]). Popovic and Hoppe [11] propose a
simplification that can change the topological type of
the original mesh. Unfortunately, their method is time-
intensive, needs tens of hours to process a medium
complex model. Garland [4] presents a much fast
simplification method that can deal with the case where
the transformation changes the topological type of the
original mesh by introducing virtual edges. However,
no selective refinement method corresponding to such
general simplification has been presented.

Another issue is that the underlying theory for
selective refinement of progressive meshes is not yet
fully developed. Hoppe [6] proposes a method without
proofed theoretical background. Xia et al [8] and J.El-
Sana et al [10] also propose dependencies conditions

for selective refinement, however, these definitions and
conditions cannot be used for our general case where
meshes may be non-manifold or topological type may
change.

Triangle strips are a widely used hardware
supported mechanism to compactly represent and
efficiently render triangle meshes. Hoppe[7] propose a
method to re-strip the whole mesh each time when the
mesh changed. As the cost of re-stripping highly
depends on the complexity of the model, the re-
stripping process may greatly compromise the frame
rate if the mesh is very complex. El-Sana et al. [12]
propose a data structure, skip strips, that efficiently
maintains triangle strips during refinement. However,
their method is not equally efficient when mesh become
coarser, because edge collapse usually causes strips to
be split into small ones (Figure 7).

In this paper we address these problems and present
a new framework for selectively refining and
coarsening progressive meshes. Our method is based on
a vertex hierarchy and deals properly with non-
manifold meshes and complex topological changes. The
vertex hierarchy is given through the edge contraction
operations of the simplification process [4], which
generates the progressive mesh representation. In the
paper, we first present new definitions of contraction
and expansion, which, in contrast to the definitions in
previous work [6][7], can properly represent changes of
topological type even for non-manifold meshes.
Second, we present legalities for selective refinement,
which have a set of formally proofed properties. These
properties form the theoretical basis for our selective
refinement algorithm. In particular interesting is, that
only faces from the original simplification process are
used to form adaptive meshes, which guarantees a
certain mesh quality consistent with the original

137

simplification process.
To the problem of stripping, we propose a locally

re-stripping method, which only re-strips newly
changed faces. Obviously, it is faster than entirely re-
stripping method like Hoppe’s. Moreover, it can equally
efficiently generate strips whenever mesh becomes
coarser or finer (Figure 7).

2. RELATED WORK
Xia and Varshney [8] use ecol/vsplit transformations to
create a simplification hierarchy that allows real-time
selective refinement. Hoppe [6] proposes an approach
that forms the vertex hierarchy by an unconstrained,
geometrically optimized sequence of vsplit
transformations. However, these methods keep the
topological type, not deal with non-manifold meshes,
even their definitions of the vsplit/ecol cannot represent
topological type change.

Garland’s method [4] is most closely related to our
method. Recent version of qslim can make non-
manifold changes. However, it is just a simplification
process. In this paper, we present its inverse process,
selective refinement algorithm, mainly based on his
work.

J. El-Sana and A. Varshney [10] propose implicit
dependencies for view-dependent simplification, which
is the most compact representation of the dependencies
for view-dependent simplification. However, their
method is same as Xia’s, cannot deal with generic non-
manifold cases.

3. CONTRACTION AND EXPANSION

The expansion of a vertex sv (Figure 1) generates two

new vertices pv and qv . In a topological sense, pv can

be considered identical to sv , and only qv is a new

vertex. All the directed edges surrounding sv stay
unchanged. Each of these edges corresponds to a
neighbor face of sv . The expansion turns some of these

faces into neighbor faces of pv , the others into

neighbor faces of qv . The corresponding edge sets for

these two face sets are denoted as pE and qE
respectively. In addition, the expansion also generates
some new faces, which share the vertices pv and qv .

We denote all the directed edges that connect pv and a

third vertex (except pv and qv) on new faces as a set

dE . For instances, in Figure 1,

 },{ 5443 vvvvE p = ,

 },{ 2110 vvvvEq = and },{ 2 popd vvvvE = .

According to these notations, we give the following
definitions.
Definition 1.
 An expansion(sv , pv , qv , pE , qE , dE) makes the
following transformations.
a) Replace sv by pv , and add vertex qv .

b) For each face that contains sv and an edge from

pE , remap sv to pv .

c) For each face that contains sv and an edge from

qE , remap sv to qv .

d) Add new faces that contain qv and an edge from

dE .
 expansion

 contraction
v1

v0

v5

v4

v3

v2

vp

vq v0

v4

v1

v2

v3 v5

vs

Figure 1: An expansion and its inverse, a contraction.

Definition 2.
 A contraction(sv , pv , qv , pE , qE , dE) makes the
following transformations.
a) Remove all the faces containing qv and an edge

from dE .

b) For each face that contains qv and an edge from

qE , remap qv to sv .

c) For each face that contains pv and an edge from

pE , remap pv to sv .

d) Replace pv with sv , and remove qv .
Obviously, an expansion is the inverse of a contraction.
In a simplification process, an arbitrary mesh *M is
decimated through a sequence of n edge contractions,

110 ,,, −nccc  into the base mesh nM . The
simplification process can be represented in the
following way:

138

ncc MMMM n→→= −10 10* 
Such process can be reversed, because each contraction
has an inverse. The base mesh nM can be transformed
into the mesh *M through a sequence of n edge

expansions, 021 ,,, eee nn −− , where 1−= ii ce . The
tuple
)},,,(,{ 021 eeeM nn

n −−

is a PM representation of *M . For each expansion, an
old vertex is split into two new vertices, which can be
looked as a parent-child relationship. The vertices of a
PM representation form a vertex hierarchy. (Figure 2).

For our application the mesh needs to vary locally
and incrementally among the different resolutions. The
transformations are in general performed in a different
order than the original PM sequence, and they include
both contraction and expansion. There are
transformation sequences, which do not result in a valid
mesh. We want our transformation sequences to
produce valid meshes, and also require that any mesh is
consistent with the local modifications from the original
simplification process to ensure the same quality for the
faces.

v4 v5

v1

v10 v11 v12 v13

v6

v16 v17

v7

v2

v14 v15

v8 v9

v3
M0

M*

Figure 2: A vertex hierarchy (vertex forest) corresponds to a
PM representation. In the vertex hierarchy, the root nodes are
the vertices of the coarsest mesh, and the leaf nodes are the
vertices of the finest mesh.

Contraction and expansion transformations must obey
some legality conditions to make each modification
valid and consistent with the PM generation stage. Let
tuple
)},,,(,{ 021 eeeM nn

n −−

be a progressive mesh with 1−= ii ec . A selective
refining or coarsening process can be represented by

 110 0 +→→= ktktn PPPMP k .

kt is a legal contraction or expansion. The actual mesh
in this process is in general different from in the meshes
created during the PM generation stage. The vertices on
the current mesh are called front vertices. We denote the
set of front vertices as F . If a vertex is on the current

mesh, it is called active vertex, otherwise it is called
inactive vertex. We call all the faces lying on the current
mesh active faces.
Legality conditions for expansion and contraction
transformations:
An expansion(sv , pv , qv , pE , qE , dE) is legal if

sv is active, and all the vertices contained in pE , qE
and dE are active.

A contraction(sv , pv , qv , pE , qE , dE) is legal if

pv and qv are active, all the vertices contained in pE

, qE , and dE are active, and

num()(pvN) + num()(qvN)

= num(pE) + 2 num(dE) + num(qE)

)(vN represents a set of neighboring faces of a vertex
v . num(X) is the number of elements in a set X. This

condition assures that the number of neighboring faces
of the vertices pv and qv on the current mesh is equal
to the number of neighboring faces during the
contraction operation of the original simplification
process. Note that each edge in pE , qE , and dE
correspond to a face, and the sets of neighboring faces
of pv and qv overlap.
Properties
a) Each local modification in the selective refining

process is exactly the same (or the corresponding
inverse) as in the original simplification process.

b) If Fv ∈0 and the activity of vertex
1v is a

necessary condition for the legality of the expansion
of 0v , then 1v must be on F or below F in the
vertex hierarchy.

c) If Fv ∈0 , and the activity of vertex 1v is a
necessary condition for the legality of the
contraction of 0v , then 1v must be on F or above
F in the vertex hierarchy.

d) If there is a vertex in F , which is not a leaf node,
there must exist a vertex Fv ∈0 , whose expansion
is legal.

e) If there is a vertex in F , which is not a root node,
there must exist a vertex Fv ∈0 , whose
contraction is legal.

These properties have been formally proved by us.
Property 1 ensures that our selective refining or

139

coarsening process is consistent with the original
simplification process. Properties 2 and 3 make the
recursive refining and coarsening feasible. Properties 4
and 5 ensure that the refining (coarsening) process is
able to reach the finest (coarsest) mesh.

Note that our legalities are mostly similar as Xia’s
[8], the apparent difference lies in the legality of
contraction. This results from the generality of our
selective refinement, which may change the mesh’s
topological type or deal with non-manifold mesh. Only
neighboring vertices cannot guarantee that the
neighboring faces are same as that in simplification
stage because the neighbors of a vertex may include
more than one separate part.

For manifold mesh with topological type kept,
Hoppe’s legal conditions [6] allow more flexible
contraction or expansion operations than ours.
However, local modifications may occur in his method,
which are different from the original simplification
process. This might not be desirable for certain
application domains. In particular, the quality of newly
generated faces may not be equivalent to those created
during the simplification process. In addition,
unexpected cases may happen, such as normal flipping
etc. In our method, we keep the local modifications
completely consistent with the original simplification
process, so the quality of the mesh can be kept.
Moreover, our definitions of the expansion and
contraction are more general than his, which can
express the contraction of any edge in the mesh, even
virtual edges, which are used for topology
simplification [4].

4. SELECTIVE REFINING OR
COARSENING

Our application, the interactive visualization of geo-
scientific data, requires the rendering of high resolution
polygonal surfaces. A typical surface consists of
approximately 500000 triangles and there are often a
few of these surfaces of interest. It is clear that these
surfaces need to be drastically simplified to achieve
high frame rates. Users are often interested in local
details in certain regions of the model. In our system,
they locally refine their model in these regions until
they are satisfied with the resolution. Our users specify
the region of interest by positioning a sphere with
adjustable radius in the region of interest. The vertices
inside the sphere are expanded or contracted.

We use Garland’s simplification method (qslim) [4]
to create the PM representation for arbitrary meshes.
Our method creates a vertex hierarchy and all the
expansion transformations defined in Section 3 from
this PM representation (note: contraction and expansion

have the same parameters). According to our definitions
in section 3, the legality of transformations for a certain
vertex on the mesh can be easily checked.

The coarsening process happens in two ways, either
“naturally” or “forced”. The natural contraction
contracts a selected vertex if its contraction is legal. The
forced contraction works recursively until the selected
vertex is legally contracted. The vertices required for
the legality of the contraction are made active by
recursively contracting their children. The expansion
transformation works in a similar way. The properties
(2) –(5) provide the theoretical background for these
recursive methods. They guarantee that the recursive
process cannot be trapped in a dead lock.

5. LOCAL RE-STRIPPING
Our local Re-Stripping process mainly includes two
stages, collecting newly changed faces and re-stripping
these faces. During a serial of contractions or
expansions, the mesh contains two kinds of strips, one
kind of strips has not changed, and the other kind of
strips has changed as some faces are added or removed,
our algorithm incrementally collects the faces whose
strips have changed. After the serial of transformations
and before the resulted model are sent to the rendering
pipeline, our algorithm re-strips the collected faces.

Collecting newly changed faces. This process is
done incrementally. Obviously, a transformation at least
influences the strips that correspond to newly added
(removed) faces and their neighbors. In order to make
the re-stripped faces as less as possible, we only
consider such strips. Note that the collected faces must
be kept on the current mesh, if some faces are deleted,
the corresponding faces in the collected face arrays also
should be deleted.

Re-stripping the local part of the mesh. Our re-
stripping method is similar as the method in [13],
except that our algorithm deals with the part of the
mesh instead of the whole model. The algorithm first
chooses the seed triangle with the least number of
neighbors as the starting triangle of a strip, and then
greedily extends the strip as possible as it can. If there
are more than two triangles that can append to the strip,
the algorithm always choose the one with less
neighbors.

6. RESULTS
The progressive mesh representations are generated
using the qslim simplification software[4]. We have
integrated the proposed algorithm into our virtual
environment framework Avango (Previously called
Avocado)[9]. The generation of adaptive meshes
happens in a separate process and the results are passed

140

on into the rendering process. This approach avoids that
the graphics pipeline stalls while we are updating our
meshes. In our application, users manually specify the
area of interest and specify if the mesh should be
refined or coarsened.

We demonstrate our method is able to selectively
refine a model that is topologically simplified in Figure
5. The change of topological type can simplify the
topology of the original model, however, it usually
cause the mesh to become non-manifold. All such cases
are considered in our method, so our method is very
general, allow any pair of vertices contract.

Figure 6 shows some pictures from a sequence of
refining and coarsening operations. For each refine or
coarsening operation all the affected vertices are forced
to contract. The images clearly show that for these
cases the mesh around the selected area also needs to
adapt to make the contraction or refinement of the
selected vertices legal.

 Empty triangle

v0 v1

v0

v1

v0

v0 v0

v0

Figure 3: Without re-stripping, contracting v0 and v1 usually
causes an existed strip to be split into small ones or generates
swap faces in the strip.

vd

v1 v0 v0

vd vd

New face

Empty triangle

Figure 4: Without re-stripping, expanding v0 usually
generates swap faces in the existed strips.

We compare our locally re-stripping method with the
method proposed in [12], the results of a model through
a same sequence of contraction operations are shown in
Figure 7. It shows that our stripping method is much
better than the method in [12] in case the mesh is
contracted. The method in [12] can efficiently form
strips when the model becomes finer, however, it
cannot form strips in same efficiency way when the
model becomes coarser. The main reason is that old
strips they try to re-use often need to be split into small
ones if a contraction happens (see Figure 3). On the
contrary, our method abandons changed old strips, and
re-strips them. Experiments show that our stripping

method form equally efficient strips whenever the
model are refined or coarsened. In addition, our method
generates strips without swapping faces, there are no
extra empty triangles for OpenGL rendering [14]. In
contrast, the method in [12] often generate strips with
swapping faces, bring extra empty triangles for
OpenGL rendering (see Figure 3 and 4). From our
experiments, the swapped triangles in their method
usually occupy 30-40%, or even more, this greatly
compromises the performance of their algorithm
sometimes.

7. CONCLUSIONS
In this paper, we have carefully studied the theoretical
background of locally and incrementally refining or
coarsening progressive meshes. We present new
definitions of contraction, expansion, and their
preconditions. These definitions result in proofed
properties of the refinement process and provide a
sound basis for our method. We can deal with any
transformations for manifold or non-manifold meshes,
and even with transformations that introduce complex
topology changes. In addition, our method keeps the
refining or coarsening process exactly consistent with
the original simplification process, so that the properties
of locally refined meshes is mostly determined by the
original simplification process.

Our second contribution is that we propose a locally
re-stripping method, which equally efficiently generates
strips whenever the model is refined or coarsened.

REFERENCES
1. Hugues Hoppe. Progressive Meshes. Computer

Graphics(SIGGRAPH'96 proceedings), pages 99-
108, 1996.

2. P.S.Heckbert and M.Garland, Survey of Polygonal
Surface Simplification Algorithms. Tech.report,
Carnegie Mellon University, 1997.

3. M.,Garland and P.S.Heckbert. Surface
Simplification Using Quadric Error Metrics.
Computer Graphics(SIGGRAPH'96 Proceedings),
pages 209-216, 1996.

4. Michael Garland. Quadric-Based Polygonal Surface
Simplification.Ph.D.Dissertation.
http://graphics.cs.uiuc.edu/~garland/CMU/thesis/.

5. Hugues Hoppe. New Quadric Metric for
Simplifying Meshes with Appearance Attributes.
IEEE Visulization'99 proceedings.

6. Hugues Hoppe. View-Dependent Refinement of
Progressive meshes. Computer Graphics
(SIGGRAPH’97), pages 189-198, August 1997.

7. Hugues Hoppe, Smooth View-Dependent Level-of-
detail Control and its Applications to Terrain

141

Rendering. Proceedings of IEEE Visualization’98,
pages 35-42, October 1998.

8. J. C. Xia and A. Varshney, Dynamic view-dependent
simplification for polygonal models. In
Visualization’96 Proceedings (1996), IEEE, pages
327-334.

9. H. Tramberend, Avocado: A Distributed Virtual
Reality Framework. Proceedings of VR’99
Conference, Houston, Texas, pages 14-21, March
1999.

10. J.EI-Sana and A. Varshney, Generalized View-
Dependent Simplification, in the proceedings of
EUROGRAPHICS’99.

11. Jovan Popovic and Hugues Hoppe, Progressive
Simplicial Complexes, SIGGRAPH’97, page 217-
224.

12. J. El-Sana, E. Azanli, A. Varshney, “Skip Strips:
Maintaining Triangle Strips for View-dependent
Rendering”, In IEEE Visualization 1999, pages131-
138.

13. K. Akeley, P. Haeberli, and D. Burns, tomesh.c : C
Program on SGI Developer’s Toolbox CD, 1990.

14. F.Evans, S.Skiena and A.Varshney, “Optimizing
Triangle Strips for Fast Rendering”, in IEEE
Visualization’96 Proceedings.

Figure 5: A sequence of refining operations that change the mesh’s topological type, the connected parts become separated when the
mesh become finer.

(a) (b) (c)

(d) (e) (f)

Figure 6: A sequence of refining and coarsening operations from our geo-scientific application showing a complex subsurface
structure. The parts drawn in red correspond to the areas of interest. (a-c) A sequence of refinement operations starting from the
coarsest mesh. (d) another area is additionally refined. (e-f) The density of the mesh is reduced. (f) shows the effect of forced
contractions in the vicinity of the area of interest.

142

(a) (b) (c)

Figure 7: Comparing our local re-stripping method with the method in [12]. (a) The finest model is stripped using the method in [13].
The models in (b) and (c) are obtained by the model in (a) changed through a same sequence of contractions. The strips in (b) are
generated by our implemented method as skip strips in [12], while the strips in (c) are produced by our local re-stripping method.

143

