On Saipting in Distributed Virtual Environments

JanP. Springer

Henrik Tramberend

BerndFrohlich

IMK.VE
GemanNational ResearclCentr for Information Techndogy

Abstract

This pgperpresetstoals ard techriquesto support script-
ing interfacesin distributed virtual environmerts. Our
man contribution is the introduction of a shaed name
spacewhich allows scriptsto accessharedobjectsin re-
mote execuion contexts asif they werelocal. Thisgreatly
simgifies the development of sciipted distributed appli-
cations. We successflly apdied our conceptsto migrate
a geo=sciertific apgication to support distributed explo-
ration of large datasets.

Intr oduction

Various virtual environmert systems(e.g DIVE [1], Light-
ning [2], Avango [3]) provide scripting language bindings
for rapid prototyping support ard flexible application de-
velopmert. In these systems mast of the application and
interactionsemanticsareimplementedusing the scriging
interface. Distributed virtual ervironment systemspro-
vide support for efficient and trarspaent daa distribu-
tion. However, developing distributedapplication senan-
tics remainsoften consideralle work. Since scripting has
become avaluable tod for standalone application devel-
opment, it is promising to use it in a similar way for the
distributed case.

In this paperwe de<ribe an approad for transgren
scriping support in distributed virtual ervironment ap-
plications. Our work is basd on Avango[3], a frame-
work for distributed virtual ervironmert apgications.
Avango adieves data distribution by transprert repli-
cation and syrnchronization of objectsshaed anong the
paticipants in a distributed application. Avango has a

conmplete language binding to the interpreted language
ScHEME[4]. Applications in Avango aretypically a col-
lection of SCHEME scripts, which createand manipulate
Avango objects and define relatiorships between them.
The key componert of our distributed scripting suypport
is a shaed nane space Each participantin a distributed
apgication canadd symbols to a distributed synbd ta-
ble. Theseglobal symbds are then automatically added
to the local namespaceof all participantsin a distributed
apgication. This keepsthe name spacesfor all par
ticiparts synctronized ard allows scripts to accesdis-
tributed Avango objectsasif they were local.

Reantly we extended a stard-done geo-sciertific ap-
plication prototype[5] to work for the distributed case.
The application prototype allows uses to explore large
seismicvolumes,conplex sutsurfacestructures, andmul-
tivariatewell logs of physicalpropertiesdown abore hdle.
Since typical datasets are in the rarge of hundreds of
megabytesto several gigahytes, the datais usually pre-
distributed and loadedfrom local diskswhenjoining the
distributed application We control the navigation ard
mary interadion activities through the Cubic Mouse [6], a
cube-shgedphysicalprop representimg aseismic volume.
Additiondly, a virtual tools-basedapproachfor defining
different interaction modesis used.Both interadion con
ceptsmalke heavy useof the scripting interffaceand we
descrile their implementation for thedistributed case.

The main contribution of our work is the introduc-
tion of a shaed nane spacefor sciipting interfacesin
distributed virtual ervironments. We alsoreport on the
lessans learred from migrating a geo-sciettific apgica-
tion to support distributed exploration of large datasets.
Themostintereging result of our work is thatour concept
malkes the developmentof distributedapplicationsusing a

scripting language basicallyassimpe asthe developmert
of standalone apgications.

Avango

Avango [3] is a progranming framework for distributed,
interactive virtual ervironment agplications. It providesa
shaed scere graph, based on IRIS|Performer [7], access
ble from all processesforming a distributed application.
Objects in Avango are field-cortaines, represerting ob-
ject stateinformation as a colledion of fields, similar to
Inventor [8]. These objects support a genelic streaning
interfacefor storing and retrieving an objectard its state
to and from a stream. This is the basicbuil ding block for
objectdistribution.

Avango’s intemal network distribution layer provides
total ordeling of messageandasharedgroup abstragon.
A sharedgroup canbe seerasa hamedmulti-cast addess
whereary process knowing thenameof agroup mayjoin.
Attaching to a non-existert group will auomatically cre-
atethe group andjoin the process.

While objects in Avango are implemented using the
C++ programming language[9], Avango alsofeatuesa
scriping ernvironment usedfor custonizing the runtime
ervironmert (e.g setupof input and output devices)and
developing applications. The scripgting ervironmert hasa
complete binding to the Avango C++ API usingtheinter
pretedlanguage SCHEME [4].

Stand-alone Application Development

Applicationsin Avango aredevelopedby using the script-
ing interface. Seefigure 1 for a “simple” apgdication
script in Avango. In this exanple an avDCS! is created
ard pas®dto a chessboard making function, which is
omitted here for brevity. Adding the chess-root to
av- scene-root, a DCS predefired by the runtime en-
vironmert, actually createsa link to the scere root and
makestheboardvisible.

Avango’s schene interpreteris availade in a shell-like
command line executian ervironmert. Loadirg the script
in figure 1 into the sctemeinterpreterexecuesthe script
ard brings up the chessboard on the output device.

1 DCS standsfor dynamic coordinae sysem, i.e. a transformaton
matix.

(define chess-root (av-make-instance-by-nanme

"avDCS"))

| oads chess pieces and chess board
;; add theminto "chess-root"
(add- pi eces chess-root)

;; add chess board into the scene
(av-add- 1val ue av-scene-root ’'Children
chess-root)

Figure 1: A “simple” standalone Avango scripting appli-
cation

Distrib uted Application Development

In figure 2 on the following pagewe show a refinedver-
sion of the stand-alore script from figure 1. Note that
we only hadto charge the chessboad’s root node type
from avDCS to avNet DCS. An avNet DCS is a specializa-
tion of anavDCS exterding it to distribute all of its child
nodesto the sharedgroup it is attacked to. The actual
joining or creationof the shaedgroup takesplaceby set-
ting the G oupNane field to a non-empy string value. If
theshaedgroup with thatnameexiststheavNet DCS joins
thatgroup otherwisethe group is created. Any participat-
ing processin the sharedgroup will “see”thetreeof child
nodesbelow its own avNet DCS. The avNet DCS canbe
sea asasewice respasiblefor sending to the participat-
ing procesgsaswell as for listening to changesfrom the
paticipating processes.The avNet DCS is the first scene
grgph elemert, which is implicitly sharedamamg al par-
ticipating proces®s in the shaed group. Also, viewed
from outside the shared group it represerts the group's
sharedresourcesasawhole.

Starting multiple instarcesof the sciipt from figure 2
onthe following page doesnot make red sensehowever.
The result would be that ead client loads a chessboard
anddistributesit. In theend therewould beasmary chess
boards as thereare participating processes. To have only
one chesshoard seenby dl clients we will have to start
the sciipt from figure 2 on the next pageonly once and
for ary other client we will usethe sciipt from figure 3
on the following page. Note tha the script in figure 3 on
the next page does not have ary code to createa chess
board by itself. The joining procesgsimport the shaed

(define chess-root (av-make-instance-by-nanme

"avNet DCS"))

| oads chess pieces and chess board
add theminto "chess-root"
(add- pi eces chess-root)

add chess board into the scene
(av-add- 1lval ue av-scene-root 'Children
chess-root)

createl/join group

(av-set-val ue chess-root 'GroupName "dchess")

Figure 2: Distributed version of the “simple” Avango
scripting apgdication from figure 1 on the page
before.

(define chess-root (av-make-instance-by-nanme

"avNet DCS"))

"Children
chess-root)

(av-add- 1val ue av-scene-root

create/join group

(av-set-val ue chess-root 'GroupName "dchess")

andstateinformation through globd variabes. To allow
apgicationsto shae global variables,we have introduced
a shared hanme space concept into Avango. The shaed
nanme spaceusedin Avango is implementedasa map or
symbol tableassociting avariade nane with its memory
object, more preciselythe memay locationof an Avango
object, in the processlocal address space.Adding or re-
moving a symbol from the mgp or charging the memory
object of a symbol will postthe new stateof the mapto
the participantsin the shaed group. On reception of a
symbol tablea client executesa local sciipt which looks
up ary symbad to be definedin its own scriging runtime
ervironment. If the symbd is not found, it is createdard
setto the value of its associted (local) menory object. If
thesymbol alreadyexists it is updated.Sincethe memory
objectsin themapare Avango objectstheinternd evalua-
tion meclanismkeeys their statescorsistent.

Figure 3: Client version of the Avango apgi cation script
fromfigure 2.

scenegraphsimpy by creating anavNet DCS andsetting
the G- oupNane field.

The distribution concep behind the avNet DCS abstrac-
tion is not limited to client/server applications. It is pos-
sible and feasibleto create resoucesat each client site
ard distribute theseanong the shaed group. Evenin a
client/sewver application the server doesnaot have to be the
group creata. The first participaing processcreateshe
group ard the following patticiparts just join the group.
It doesnat matterto the distribution concept which client
(or sewer) introduceswhat to the group.

Today, sharedscere graphs area comman corcept. In
scripting ervironmertsit is also necessaryo sharetheac-
tud scripts for theapgicationlogic in suchaway that the
statesand cortext informatian for thesesciipts are shared
aswell. Many scripting languages represet the context

(require 'gdefine)

create a non-shared variabl e
(define local-dcs (av-make-instance-by-nanme
"avDCS"))

create a shared variable
(gdefine 'shared-dcs (av-make-instance-by-name
"avDCS"))

Figure 4: Defining local and global variadesin Avango.

Creating a shaed variable in the scriging erviron-
mert works basically the sameway local variale creation
works. We defined a wrapper araund an actual def i ne,
calledgdef i ne, thatstoresthe nane andthe menory ob-
jectof the definitioninto the (procesdocal) synbad table,
aftercreatirg thelocal varialle itself. Figure 4 shavs the
creation of a local anda shaed variade. Note that the
syntaxfor creatirg a shaed Avango objectremainssimi-
lar to the syntaxfor creatirg alocd Avango objed.?

Distri buted Interaction

Avango swpportsavarety of conrcefgsfor interaction The

2 In the exampke we hawe to write the nameof the shaed variable as
' shared- dcs to prevent the SCHEME interpreter from evaluaing it.
gdef i ne isimplemened only as a function (smpe)

most conmonly usedcorcep is the virtual tods based
approach[10]. Virtual tools can be usedto navigatein

the ervironment, but here we focuson how virtual tools
interact with shaed virtual objectsin a distributed scere

graph In addtion to thevirtual tools basedapproad an
evert driven interaction mectanismcan be used,which

is triggeredby field charges in Avango objects. These
objectsmay represent input devicesor arhitrary objectsin

the scenegrgph.

Virtu al Tools

Avango’sapproachto virtual todsis basednthreediffer-
ert entities:virtual tods, mediata's, and interactian oper
atas.

Virtual tools definethe basic interaction mode andthey
aretheinterfacefromtherealworld into thevirtual world.
They allow users to perfform specific tasks lik e rotating,
scaling or charging the cdor of Avango objects. Tools
aretypically attacledto input deviceslik e tracked wands,
which contain 6DOF sersorsand other inputs from the
red world like buttons or patentiometes. Virtual todls are
local entities, becaiseinput devices are local resairces
Ead active tool has anindividual graphical cursor, which
follows the correspnding input device. Cursorsare geo-
metric objectsrepresentig the active tool (e.g. a pointing
ray emarating from the tip of the tracked wand). These
cursor represetiations are distributed as a simple avatar
shaving what remote usersare doing.

Mediators are attacked to Avango objectsin the scere
graph and specify at which level in the scere hierarcty
aninteractionmay take place. Mediatars alsoprovide the
interfaceto the scere graph through which aninteraction
occurs and they carly object specificinteraction informa-
tion. Mediatas are distributed with the Avango object
they areattacledto. This allowsthe same interacticmsfor
thelocal ervironmert, wherethe virtual objectand its me-
diator werecreated aswell asfor remde ervironmerts.

Interaction operators implemert the interaction func-
tionality. They taketod s and medators asther operands.
Interadion operatas are temparaty objects. They arein-
stantiatedfor eachinteradion ard discarded aftemwvards.
A two-dimersional matiix defines for eachpair of tool
ard mediato type a defaut interaction operata type if
there is ary. In our cumert implemertation interaction
operdors are local objectsto avoid network lateng for

the actualinteradion.

Oneof the mostcommonly usedmedatorsis a script
medator, which referencesa SCHEME script by nane.
For examgde when the user holds a pointing tool ard
clicks on an object with an attachedscript mediata, an
appopriateinteraction operata is instantiategdwhich ex-
ecuteshe script referercedby the mediator.

Scriptin g Int eractions

Our interaction concept allows a variety of appoaches
for sciipting interadions. Before describng the problems
andpossble solutionsfor the distributed casewe will ex-
plain how common standalone apgications approachthe
issue In the following we will distinguish between two
kindsof SCHEME varialles. SCHEME valiablesrefererc-
ing SCHEME datastructuresand SCHEME variallesrefer
encirg Avango objects.

(define global-variable ' ())

(define (callback-with-arguments data)

; work with "gl obal -variable" and "data"

Figure 5: Scrigting interactionin a stard-alore apgica-
tion.

Figure 5 shows a callback sciipt skeletsn commonly
usedin stard-alore Avango applications. Sucha script
usually deperds on the given argumert, an Avango ob-
ject, and global SCHEME variades Using such types
of sciipts in a distributed application will not work, be-
causeSCHEME variades and SCHEME structures exist
only in the run time environment of the SCHEME inter
preter. Avango knows nothing abaut those SCHEME vari-
ablesard SCHEME structures. Therefreit camat provide
adistribution mecharism for them

A general soluion for distributing SCHEME strue-
tures would requre developing conceptsfor distributed
scripting languages which is beyond our scqe. In-
stead, we chosethe solution to usedifferen progranming
paradigns which avoid accessing global SCHEME struc-
tures from within a script executian contexts.

A first alterrative apgroachis exenvplified in figure 6.
Here a script recevesits “exeaution context” with its ar
guments. The supplied mediata contains a Par aneter
field, a list of referencesto Avango objeds. The obvi-

(define (callback-with-parameter-mediator m

extract the paranmeters fromthe mediator
(let (
(paraml (car (av-get-value m 'Params)))
(param2 (cadr (av-get-value m ’'Params)))
)

(begin
;; work with extracted paraneters
)

)

)

(define (callback-no-arguments)

(if (bound? shared-variable)
(begin
;7 work with "shared-variabl e”
)
)
)

(define (callback-with-arguments data)

(i f (bound? shared-variable)
(begin
7 work with
)

)

)

"shared-variabl e" and "data"

Figure 6: Scripting interaction using the callback and
callback dataapproachin a distributedapplica-
tion.

ous problem with this approachis thatthe ordering of the
paametersin the argument does matter This meansthe
implemerior of the script andthe userof the script must
ageeon the order ard the typesof the paranetersgiven
to the sciipt.

The abose mertioned approach may fail for problems
where we wart to accessa shaed Avango object from
within the local SCHEME environment of a client appli-
cation. For example,our SCHEME scripts often usehooks
into the scere graphto manipulate Avango objects, but
Avango distributes the scere grgph aronymously. The
hooks canbeaddedto our synmbal table, whichintroduces
them to thelocal addessspaceof theclients.

Figure 7 shows two scripts working on shaed vari-
ables One advantag of this approad is the support
for “legacy code” The script logic as well as the
argument convertion of scrigs in stand-alore applica-
tions ard distributed apdicatiors are similar. The only
“real” charge is the addition of a “logical null pointer
check”, (if (bound? shared-variable) ...), to en-
sure the prerequisitesfor the script arefulfilled.

Figure 7: Scrigting interadion using the shaed vaiiable
appoachin adistributed apdi cation

A Distrib uted Geo-Scientific Applica-
tion

We are working with a consortium of oil and gascompa-
niesand software verdors for this domain to explore VR
techrology for this apgication area. Our mission within
the consatium is to develop a visualization prototype,
which allows consatium memtersto explore andmanip-
ulateconplex datasetsin avirtual ervironment. Expetts
in oil andgascompaniesareoften distributedall overthe
world, sothereis alarge potertial for distributeddecision
making supported through VR techrology. After devel-
oping a standalone visudization prototype[5], we have
extended our systemto work for the distributed case.

First, we descibe the basicfeatuesof our standalone
visualizatio prototype. Thenwe explain how we apgdied
the conceptsfor the distribution descriledin the previous
sedionsto this particdar case. We neel to enphasize that
our systemhasbeendevelopedfor only afew participat-
ing sites, typically two or three Our ideasandcorcefs
by no means scalefor a larger number of participants,
whichis really not a problem for this application doman.
Typically there areonly two sites connected,which work
togetheron a single dataset and discusssome isswesin
detail.

The Stand-alone Demorstr ator

The seismiccube is the centrd datastrudure for mostex-
ploration and interpretationtasks. Subsufacestructures
like horizons and faults are defined relative to the seis
mic cube ard typically displayed as paygonal models
The traditioral way of representiig the seismic volumeis
through three orthogonal slices called cross-lire, in-line
ard time slice.

crossline

faults

Figure 8: A typical oil exploration data set containng
sutsurfacestructures wells, and seismicslices.

Figure 8 shows a typical oil exploration daa set. The
subsurface modd corsists of two main structures: hori-
zons ard fauts. Horizons sepaatetwo earthlayers, and
fauts are breaksin therocks,where one sideismovedrel-
ative to the other. Horizonsaretypically horizontd while
fadts are inclined. Three orthogonal slicing planesare

time slice is horizontal and the cross-line slice is pepen
dicular to bath.

We developed the Cubic Mouse [6] for navigating in
the seismic volume ard for positioning the three slices.
This cube-shapdl, tracked input device, shownin figure9,
mimics the shape of the seismiccube. The Cubic Mouse
is tracked with a 6DOF sersor and the orientatian of the
seismic cube follows in sync, effectively placingthe seis-
mic cubke in the usets hard. Rotatirg the Cubic Mouse
rotates the seismiccube Moving the Cubic Mouse moves
the seismic cube in the same direction. Sincethe other
structureslik e horizons, faults,and wells aredefired rel-
ative to the seismiccube, they move with it.

Figure 9: The Cubic Mouse device.

As one canseein figure 9 the Cubic Mouse hasthree

usedto visualize the seignic volume. Thein-line slice is dliding rods passing through it. Each of theserods posi-
typically pemperdicular to the main faut direction The tionsone of thetradtional seismicslices The slicesare

alignedwith the facesof the Cubic Mouse and stay in sync
asit moves, so the rods are always pemperdicular to the
slices.

Thereis atotal of six buttonson thetop face of the Cu-
bic Mouse. Thesinde button is usedasa clutch allowing
usesto detat the Cubic Mouse from the model. Two but-
tons in andher corne control the sizeof themocdel. The
threebuttonsin athird corner are not used.

In sunmay theCubic Mouse is usedto position orient,
ard scalethe model aswell asfor moving threeorthogo-
nd crosssectiorsthroughtheseisnic volume. In addtion

to the Cubic Mouse avirtual tools basedapproachis used.

A tracked ward is usedto pick up differenttools from a
virtual todl-bar to perfform differenttasks. The following
virtual tools are avail able:

— Theleve-of-detail tool allowsusergo toggle thedis-
playedlevel of detail betweernlow andhigh for hori-
zon and fault surfaces

— The drag tool is usedto drag around suifacesand
drop them off in anew location.

— The sraptod is similar to the drag todl, but whena
suifaceis releasedt snapsbad to its original loca-
tion.

— Theinformationtool shavs the name andpasition of
anobjectwhenpainting to it.

— Thesdlicing tool attactesasdlicing planeto thetracked
wand This slicing plare canbe moved through the
seignic datasetby moving thewand

— Thevolumerencering tool attahesavolumerender
ing lensto the trackkedwand

Most of the geo-scientific application was developed
using Avango’s scripting language SCHEME. Only afew
nodetypeshadto be addedto implemen new functional-
ity like volume rerdeiing for large volumesard the dis-
play of multi-attribute dataalong well patts.

The Distri buted Demonstrator

The size of our data sets, which cortain volumetiic
seignic dataand polygonal datafor horizon ard faut
suifaces, are typicdly in the rarge of a few hundred

megabytesto severd gigabytes. Our setup is laid out to
work with pre-distributed data setsto avoid long startyp
times. The adual scene graph is loadedby one of the
apgications and distributedthrough Avango’s previously
descriteddistribution mechanism

The Cubic Mouse controlstheposition, orientatian, and
size of the model in the stard-done versio. For the dis-
tributed casewe have two or more Cubic Mouse devices
involved, which would patentially control the mocel.
Since the modd belongs to the shaed scere graph, we
coud only allow one siteto contral the position and ori-
entation of the model ata time. We found this to be too
restrictve and dedded for an approachwhetre eachsite
maycontral the modelindividually with the option to syn
chronize and stayin sync with any other site atary time.
Werealizecdthis concepi by transforming the Cubic Mouse
cortrolled mation of the modelinto anequvalert motion
of the viewer relative to the model. The percevedresult
for thelocd viewer is exactly thesame.

The Cubic Mouse also controls the three orthogonal
seismic sectims within the modd. Thesedlices effec-
tively bdong to the model andthey are shaedresouces.
Thecontrol of thedlicesis anexanple of an evert driven
interaction mechanismin Avango. Moving one of therods
triggersa SCHEME script, which movestheslice. For the
stard-alore implemenation the resoluion of a rod was
gererally sufficient to avoid clutching. Moving arod from
stop to stopwould move thecorespanding slicefromone
endto the other end of the dataset. The position of the
rods are usedasabsolue inputs. With the distributedver
sion we cannot exped the rods of different Cubic Mouse
devicesto bein exactly the same position, which would
causehe slicesto jump whencontrol is pas&dfrom one
site to arother. To avoid theseproblemsaltogetherwe de-
cidedto moveto arelative control modefor therods atthe
experse of occasioml clutching. Moving arod movesthe
correspmding slice relative to its previous position The
buttons atthe ends of eachrod sene asa clutch. Pressng
the button andpulling or pushingthe rod doesnot affect
the corregponding slice. The relative approach hasalso
theadwantagethatit doesnot requre ary synchronization
mechanismlik e distributedlocks.

Anothercaseof alocal resouceis the input from each
rod of the Cubic Mouse affecting the stateof a shaed ob-
jectin thescenegraph. Thismeanshatclient sites which
have only receiveda copy of theoriginal scere graph from

thesenerneedto getaccesso the nodein thescenegraph
that is affected by therod. Thesehooks into the scere
graph are conveniertly provided by our shared synbad
tade. Since the shared symbol table adds thesehooks
into the locd namespae of ead client site,the SCHEME
scripts for controlling the interaction on the sener and
the client site as well asfor the non-distributed case are
exactly thesanme.

The level-of-detail tool interactswith a SCHEME medi-
ata allowing uses to toggle the displayed level of detail
betweenlow ard highresolution for horizonand faut sur
faces. The SCHEME script refererced by the mediato is
execuedwhen the userpaints to a sufaceandclicks the
button on the tracked ward. The script removesthe low
resdution version of the suifacefrom the scere graphand
addsthe high resolution versian and vice versadepgendng
onthecurrentstate. Thestandaloneimplementation used
a global SCHEME mapto store referercesto the low and
high resolution versiors of thesurfacesfor the script to be
alle to accesghis necessaryevaluation context informa-
tion. Since we curertly do not provide a meclansmto
distribute“pure’ SCHEME objectslik ethis map we hadto
resaot to adifferent sdution. We coud have implemented
this mapasanAvango node, which would have been dis-
tributed with the scene graph Clients would thenuse the
shaed namespaceto get accesgo the map. We dedded
for arotheroption, whichbundlesthe SCHEME script with
therequireddataasa sort of SCHEME objectin the serse
of object-orientation For this purpose we exterded the
script mediato to maintainreferencesto thelow and high
resdution Avango nodesof thesurfaces.Theserefererces
aredistributedwith the mediators making themavailabe
for SCHEME sciipts evaluatedat the client sites

These are two representatie examges which shav
how we extended script basedinteraction to the dis-
tributed case. Similar approacteswere usedto make the
othertoodls availablefor the distributed case.

Conclusion

We have presentedools andtechriquesto support script-
ing interfaces in distributed virtual ervironments. A
shaednamespaceallows conveniert accessor scrips to
shaedobjects. Theseconceptshave beensuccessflly ap-
pliedto migrateageo-scierific applicationto support dis-

tributed exploration of large datasets We found that our
scripts from the stard-alone casegererally require mini-
mal chargesto work for thedistributed case.

For our developmert we usedan extensionto SCHEME,
which provides a framework for quasi object-aiented
scripting. This extersion greatly helped us to structure
our distributed apgdication. However, inherently object-
oriented scriging languages,like PYTHON, might be a
betteralterrative to the SCHEME extension which only
mimics objed-orientatian.

We have testedour geo=sciertific application only in
ervironmentswith 10 MBit to 100MBit Ethemetconnec-
tions andlow latercy neworks. As a next stepwe plan
to install the distributed prototype at two officesof anaoil
conpary, which are locatedin Europe and the US. This
will give usfurther insight into how usalili ty is affected
by networks with lower bardwidth and higher lateng.

From our experierce it would have often beencornve-
niert to be able to distribute “pure” Scherre objects di-
rectly without explicitly going through the Avango shaed
object distribution mecharism. Corceptsfrom parallel
programming languageslike LINDA could be a solution
for this problem. Thesecorceptsneedto be evaluated
with resgect to their conpatihility with the interactve
realtime requrementsof virtual reality apgications.

Acknowledgments

This work waspartially sugported by the VRGeocorsor-
tium. We would lik e to thark the menbers of the corsor-
tium for their valuale feechack during consortium meet-
ings. We also thark the VE group at GMD for their sup
port.

References

[1] C. Catlssonand O. Hagsad, “DIVE: A Multi
User Virtual Reality Systent, in Proceedings of
IEEE Virtual Reality Annual International Sympo-
sium (VRAIS '93), pp. 394400, IEEE, Septl18-
22 1993.

[2] R. Blach, J. Landater, A. Rosch and A. Siman,
“A Highly Flexible Virtual Redity Systend, Future

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

Generation Computer Systems, Special Issue on Vir-
tual Environments, vol. 14, no. 3-4, pp. 167-178,
1998.

H. Trambeerd, “Avocad: A Distributed Virtual
Reality Framework,” in Proceedings |IEEE Virtual
Reality '99 Conference (L. Rosenblum, P. As-
theimer ard D. Teichmam, eck.), pp. 14-21, IEEE
Conputer Sciety, Mar. 13-17 1999.

W. Clinger and J. Rees “Revised® Report on the
Algorithmic Language Schene; Techical Memo
AIM-848b, MassachsettsInstitute of Tecimology,
Artificial Intelligene Laboratory, Nov.2 1991.
originally publishedin SGPLAN Notices 21 (12)
December 1986.

B. Frohlich, S. Barass B. Zemer, and M. Gobel,
“Exploring Geo-Scientific Datain Virtual Environ-
ments; in IEEE Misualization '99, pp. 169-174,
Oct.1999.

B. Frohlich ard J. Plate,“The Cubic Mouse: A New
Device for ThreeDimensioral Input,” in Proceed-
ings of CHI '2000, ACM, Apr.1-6 2000.

J. Ronhf and J. Helman, “I RIS Performer: A High
Peformarce Multiprocessingroolkit for 3D Gragh-
ics; in Proceedings of SGGRAPH '94 (A. Glassrer,
ed), pp. 381-395, ACM, July24-29 1994.

P. S. Strawss, “IRIS Inventa: A 3D Graphcs
Toolkit,” in Proceedings of the 8th Annual Con-
ference on Object-Oriented Programming Systems,
Languages and Applications (A. Paecke, ed),
pp. 192200, ACM, Seq. 26-Oct.1 1993

B. Strowstrup The C++ Programming Language.
Readng, MA, USA: Addison-Wesley, 3rded, 1998.

H. Trambkererd, F. Hasenbink, and B. Frohlich,
“Tods, Mediators, ard Interaction Opemtors: A
Corcep for Interactionin Virtual Environments); in
Proceedings of 3. International Immersive Projec-
tion Technology Workshop, pp. 77-79, Centerof the
Fraunhofer SocietyStutgart IZS,May 10-11 1999.

