
On Scripting in Distributed Virtual Environments

JanP. Springer HenrikTramberend BerndFröhlich

IMK.VE

GermanNational ResearchCenter for Information Technology

Abstract

This paperpresentstools and techniquesto support script-
ing interfacesin distributed virtual environments. Our
main contribution is the introduction of a shared name
space, whichallowsscripts to accesssharedobjectsin re-
moteexecution contextsasif they werelocal. Thisgreatly
simplifies the development of scripted distributedappli-
cations. We successfully applied our conceptsto migrate
a geo-scientific application to support distributedexplo-
ration of largedatasets.

Intr oduction

Variousvirtual environment systems(e.g. DIVE [1], Light-
ning [2], Avango [3]) provide scripting language bindings
for rapidprototyping support and flexible application de-
velopment. In these systemsmost of the application and
interactionsemanticsareimplementedusing thescripting
interface. Distributed virtual environment systemspro-
vide support for efficient and transparent data distribu-
tion. However, developing distributedapplicationseman-
tics remainsoftenconsiderable work. Since scripting has
become a valuable tool for stand-aloneapplication devel-
opment, it is promising to use it in a similar way for the
distributedcase.

In this paperwe describe an approach for transparent
scripting support in distributed virtual environment ap-
plications. Our work is based on Avango [3], a frame-
work for distributed virtual environment applications.
Avango achieves data distribution by transparent repli-
cation and synchronization of objectsshared among the
participants in a distributed application. Avango has a

complete language binding to the interpreted language
SCHEME [4]. Applications in Avango aretypically a col-
lection of SCHEME scripts, which createandmanipulate
Avango objects and define relationships between them.
The key component of our distributed scripting support
is a sharedname space. Each participant in a distributed
application canadd symbols to a distributedsymbol ta-
ble. Theseglobal symbols arethen automatically added
to the local namespaceof all participantsin a distributed
application. This keepsthe name spacesfor all par-
ticipants synchronized and allows scripts to accessdis-
tributed Avango objectsasif they were local.

Recently we extended a stand-alone geo-scientific ap-
plication prototype[5] to work for the distributed case.
The application prototype allows users to explore large
seismicvolumes,complex subsurfacestructures, andmul-
tivariatewell logsof physicalpropertiesdown aborehole.
Since typical datasets are in the range of hundredsof
megabytes to several gigabytes, the datais usually pre-
distributed and loadedfrom local diskswhen joining the
distributed appli cation. We control the navigation and
many interaction activities throughtheCubic Mouse [6], a
cube-shapedphysicalproprepresenting aseismic volume.
Additionally, a virtual tools-basedapproachfor defining
different interaction modesis used.Both interaction con-
ceptsmake heavy useof the scripting interfaceand we
describe their implementation for thedistributed case.

The main contribution of our work is the introduc-
tion of a shared name space for scripting interfacesin
distributed virtual environments. We also report on the
lessons learned from migrating a geo-scientific applica-
tion to support distributedexploration of large datasets.
Themostinteresting result of our work is thatour concept
makesthedevelopmentof distributedapplicationsusing a

scripting languagebasicallyassimple asthedevelopment
of stand-aloneapplications.

Avango

Avango [3] is a programming framework for distributed,
interactive virtual environment applications. It providesa
sharedscene graph, based on IRIS

�
Performer [7], accessi-

ble from all processesforming a distributed application.
Objects in Avango arefield-containers, representing ob-
ject stateinformation as a collection of fields, similar to
Inventor [8]. These objects support a generic streaming
interfacefor storing and retrieving an objectand its state
to and from a stream. This is thebasicbuilding block for
object distribution.

Avango’s internal network distribution layer provides
totalordering of messagesandasharedgroup abstraction.
A sharedgroupcanbeseenasanamedmulti-cast address
whereany processknowing thenameof agroup mayjoin.
Attaching to a non-existent group will automatically cre-
atethe group andjoin the process.

While objects in Avango are implementedusing the
C++ programming language[9], Avango also featuresa
scripting environment usedfor customizing the runtime
environment (e.g. setupof input and output devices)and
developing applications.Thescripting environment hasa
completebinding to theAvango C++ API usingtheinter-
pretedlanguage SCHEME [4].

Stand-aloneApplication Development

Applications in Avango aredevelopedby using thescript-
ing interface. Seefigure 1 for a “simple” application
script in Avango. In this example an avDCS1 is created
and passed to a chessboard making function, which is
omitted here for brevity. Adding the chess-root to
av-scene-root, a DCS predefined by the runtime en-
vironment, actually createsa link to the scene root and
makestheboardvisible.

Avango’s scheme interpreteris available in a shell-like
command line execution environment. Loading thescript
in figure 1 into the schemeinterpreterexecutesthescript
and bringsup the chessboard on theoutput device.

1 DCS stands for dynamic coordinate system, i.e. a transformation
matrix.

(define chess-root (av-make-instance-by-name
"avDCS"))

;; loads chess pieces and chess board
;; add them into "chess-root"
(add-pieces chess-root)

;; add chess board into the scene
(av-add-1value av-scene-root ’Children

chess-root)

Figure 1: A “simple” stand-aloneAvango scripting appli-
cation.

Distrib uted Application Development

In figure 2 on the following pagewe show a refinedver-
sion of the stand-alone script from figure 1. Note that
we only hadto change the chessboard’s root node type
from avDCS to avNetDCS. An avNetDCS is a specializa-
tion of anavDCS extending it to distribute all of its child
nodesto the sharedgroup it is attached to. The actual
joining or creationof thesharedgroup takesplaceby set-
ting the GroupName field to a non-empty string value. If
thesharedgroup with thatnameexiststheavNetDCS joins
thatgroup otherwisethegroup is created.Any participat-
ing process in thesharedgroup will “see” thetreeof child
nodesbelow its own avNetDCS. The avNetDCS can be
seen asaservice responsiblefor sending to theparticipat-
ing processesaswell as for listening to changesfrom the
participating processes.The avNetDCS is the first scene
graph element, which is implicitly sharedamong all par-
ticipating processes in the shared group. Also, viewed
from outside the shared group it represents the group’s
sharedresourcesasa whole.

Starting multiple instancesof the script from figure 2
on the following pagedoesnot makereal sense,however.
The result would be that each client loads a chessboard
anddistributesit. In theend therewould beasmany chess
boards as thereareparticipatingprocesses.To have only
one chessboard seenby all clients we will have to start
the script from figure 2 on the next pageonly once and
for any other client we will usethe script from figure 3
on the following page.Note that the script in figure 3 on
the next page does not have any code to createa chess
board by itself. The joining processesimport the shared

(define chess-root (av-make-instance-by-name
"avNetDCS"))

;; loads chess pieces and chess board
;; add them into "chess-root"
(add-pieces chess-root)

;; add chess board into the scene
(av-add-1value av-scene-root ’Children

chess-root)

;; create/join group
(av-set-value chess-root ’GroupName "dchess")

Figure 2: Distributed version of the “simple” Avango
scripting application from figure 1 on the page
before.

(define chess-root (av-make-instance-by-name
"avNetDCS"))

(av-add-1value av-scene-root ’Children
chess-root)

;; create/join group
(av-set-value chess-root ’GroupName "dchess")

Figure 3: Client version of the Avango appli cation script
from figure2.

scenegraphsimply by creatinganavNetDCS andsetting
theGroupName field.

The distribution concept behind theavNetDCS abstrac-
tion is not limited to client/server applications. It is pos-
sible and feasibleto create resourcesat each client site
and distribute theseamong the shared group. Even in a
client/server application theserverdoesnot haveto bethe
group creator. The first participating processcreatesthe
group and the following participants just join the group.
It doesnot matterto thedistribution concept which client
(or server) introduceswhat to the group.

Today, sharedscene graphs area common concept. In
scripting environments it is also necessaryto sharetheac-
tual scripts for theapplication logic in suchaway that the
statesand context information for thesescriptsare shared
aswell. Many scripting languages represent the context

andstateinformation through global variables. To allow
applications to shareglobalvariables,wehave introduced
a sharedname spaceconcept into Avango. The shared
name spaceusedin Avango is implementedasa map or
symbol tableassociating avariable namewith itsmemory
object,more preciselythememory locationof anAvango
object, in theprocesslocal address space.Adding or re-
moving a symbol from the map or changing the memory
object of a symbol will post the new stateof the map to
the participantsin the shared group. On reception of a
symbol tablea client executesa local script which looks
up any symbol to be defined in its own scripting runtime
environment. If thesymbol is not found, it is createdand
set to the value of its associated (local)memory object. If
thesymbol alreadyexists, it is updated.Sincethememory
objectsin themapareAvango objectstheinternal evalua-
tion mechanismkeeps their statesconsistent.

(require ’gdefine)

;; create a non-shared variable
(define local-dcs (av-make-instance-by-name

"avDCS"))

;; create a shared variable
(gdefine ’shared-dcs (av-make-instance-by-name

"avDCS"))

Figure 4: Defining local and global variablesin Avango.

Creating a shared variable in the scripting environ-
ment worksbasically thesamewaylocal variable creation
works. We defined a wrapper around an actual define,
calledgdefine, thatstoresthenameandthememory ob-
jectof thedefinition into the (processlocal)symbol table,
aftercreating thelocal variable itself. Figure 4 shows the
creation of a local anda shared variable. Note that the
syntaxfor creating a sharedAvango object remainssimi-
lar to thesyntaxfor creating a local Avango object.2

Distri buted Interaction

Avango supportsavariety of conceptsfor interaction. The
2 In the example we have to write the nameof the shared variable as
’shared-dcs to prevent the SCHEME interpreter from evaluating it.
gdefine is implemented only asa function (scope).

most commonly usedconcept is the virtual tools based
approach[10]. Virtual tools can be usedto navigate in
the environment, but here we focuson how virtual tools
interactwith shared virtual objects in a distributed scene
graph. In addition to thevirtual tools basedapproach an
event driven interaction mechanismcan be used,which
is triggeredby field changes in Avango objects. These
objectsmay represent input devicesor arbitrary objectsin
thescenegraph.

Virtu al Tools

Avango’sapproachto virtual toolsis basedonthreediffer-
ent entities:virtual tools,mediators,and interaction oper-
ators.

Virtual tools definethebasic interaction modeandthey
aretheinterfacefromtherealworld into thevirtual world.
They allow users to perform specific tasks like rotating,
scaling, or changing the color of Avango objects. Tools
aretypically attachedto input deviceslike tracked wands,
which contain 6DOF sensorsand other inputs from the
real world likebuttonsor potentiometers. Virtual tools are
local entities, becauseinput devicesare local resources.
Each active tool hasanindividual graphicalcursor, which
follows the corresponding input device. Cursorsare geo-
metric objectsrepresenting theactive tool (e.g. apointing
ray emanating from the tip of the tracked wand). These
cursor representations are distributed as a simple avatar
showing what remoteusersare doing.

Mediators areattached to Avango objectsin the scene
graphandspecify at which level in the scene hierarchy
aninteractionmay take place.Mediators alsoprovide the
interfaceto the scene graph through which aninteraction
occurs and they carry object specificinteraction informa-
tion. Mediators are distributed with the Avango object
they areattachedto. This allowsthesame interactionsfor
thelocalenvironment, wherethevirtualobjectand its me-
diator werecreated, aswell asfor remote environments.

Interaction operators implement the interaction func-
tionality. They taketoolsandmediatorsastheir operands.
Interaction operators are temporary objects. They arein-
stantiatedfor eachinteraction and discarded afterwards.
A two-dimensional matrix defines for eachpair of tool
and mediator type a default interaction operator type if
there is any. In our current implementation interaction
operators are local objects to avoid network latency for

theactual interaction.
Oneof the mostcommonly usedmediators is a script

mediator, which referencesa SCHEME script by name.
For example when the user holds a pointing tool and
clicks on an object with an attachedscript mediator, an
appropriateinteraction operator is instantiated, which ex-
ecutesthe script referencedby the mediator.

Scriptin g Int eractions

Our interaction concept allows a variety of approaches
for scripting interactions.Before describing the problems
andpossible solutionsfor the distributedcasewe will ex-
plainhow commonstand-aloneapplicationsapproachthe
issue. In the following we will distinguish between two
kindsof SCHEME variables. SCHEME variablesreferenc-
ing SCHEME datastructuresand SCHEME variablesrefer-
encing Avango objects.

(define global-variable ’())

(define (callback-with-arguments data)

;; work with "global-variable" and "data"
)

Figure 5: Scripting interaction in a stand-alone applica-
tion.

Figure 5 shows a callback script skeleton commonly
usedin stand-alone Avango applications. Sucha script
usually depends on the given argument, an Avango ob-
ject, and global SCHEME variables. Using such types
of scripts in a distributed application will not work, be-
causeSCHEME variables and SCHEME structures exist
only in the run time environment of the SCHEME inter-
preter. Avango knows nothing about thoseSCHEME vari-
ablesand SCHEME structures.Thereforeit cannot provide
a distribution mechanism for them.

A general solution for distributing SCHEME struc-
tures would require developing concepts for distributed
scripting languages, which is beyond our scope. In-
stead, wechosethesolution to usedifferent programming
paradigms which avoid accessing global SCHEME struc-
tures from within ascript execution contexts.

A first alternative approachis exemplified in figure 6.
Here a script receivesits “execution context” with its ar-
guments. The supplied mediator contains a Parameter
field, a list of referencesto Avango objects. The obvi-

(define (callback-with-parameter-mediator m)

;; extract the parameters from the mediator
(let (
(param1 (car (av-get-value m ’Params)))
(param2 (cadr (av-get-value m ’Params)))
)

(begin
;; work with extracted parameters

)
)

)

Figure 6: Scripting interaction using the callback and
callbackdataapproachin a distributedapplica-
tion.

ousproblem with this approachis thatthe orderingof the
parametersin the argument does matter. This meansthe
implementor of the script andthe userof thescript must
agreeon the order and the typesof the parametersgiven
to thescript.

The above mentioned approachmay fail for problems
where we want to accessa shared Avango object from
within the local SCHEME environment of a client appli-
cation. For example,our SCHEME scriptsoften usehooks
into the scene graph to manipulate Avango objects, but
Avango distributes the scene graph anonymously. The
hookscanbeaddedto our symbol table,whichintroduces
them to thelocaladdressspaceof theclients.

Figure 7 shows two scripts working on shared vari-
ables. One advantage of this approach is the support
for “legacy code.” The script logic as well as the
argument convention of scripts in stand-alone applica-
tions and distributed appli cations are similar. The only
“real” change is the addition of a “logical null pointer
check”, (if (bound? shared-variable) ...), to en-
sure theprerequisitesfor the script arefulfilled.

(define (callback-no-arguments)

(if (bound? shared-variable)
(begin
;; work with "shared-variable"

)
)

)

(define (callback-with-arguments data)

(if (bound? shared-variable)
(begin
;; work with "shared-variable" and "data"

)
)

)

Figure 7: Scripting interaction using the shared variable
approachin adistributedappli cation.

A Distrib uted Geo-Scientific Applica-
tion

We are working with a consortium of oil and gascompa-
niesand software vendors for this domain to explore VR
technology for this application area. Our mission within
the consortium is to develop a visualization prototype,
which allowsconsortium membersto exploreandmanip-
ulatecomplex datasetsin a virtual environment. Experts
in oil andgascompaniesareoften distributedall over the
world, sothereis a largepotential for distributeddecision
making supported through VR technology. Af ter devel-
oping a stand-alone visualization prototype[5], we have
extendedour systemto work for the distributedcase.

First, we describe thebasicfeaturesof our stand-alone
visualization prototype.Thenwe explain how weapplied
theconceptsfor thedistribution describedin the previous
sectionsto thisparticular case. Weneed to emphasizethat
our systemhasbeendevelopedfor only a few participat-
ing sites, typically two or three. Our ideasandconcepts
by no means scalefor a larger number of participants,
which is really not aproblemfor this application domain.
Typically there areonly two sitesconnected,which work
togetheron a single dataset anddiscusssome issues in
detail.

TheStand-aloneDemonstr ator

Theseismiccube is thecentral datastructure for mostex-
ploration and interpretationtasks. Subsurfacestructures
like horizons and faults are defined relative to the seis-
mic cube and typically displayed as polygonal models.
The traditional wayof representing theseismic volumeis
through threeorthogonal slicescalledcross-line, in-line
and time slice.

Figure 8: A typical oil exploration data set containing
subsurfacestructures, wells,and seismicslices.

Figure 8 shows a typical oil exploration data set. The
subsurface model consistsof two main structures: hori-
zons and faults. Horizons separatetwo earthlayers, and
faults arebreaksin therocks,whereonesideismovedrel-
ative to theother. Horizonsaretypically horizontal while
faults are inclined. Three orthogonal slicing planesare
usedto visualizetheseismic volume. The in-line slice is
typically perpendicular to the main fault direction. The

time slice is horizontal and the cross-line slice is perpen-
dicular to both.

We developed the Cubic Mouse [6] for navigating in
the seismic volume and for positioning the three slices.
Thiscube-shaped, tracked input device,shown in figure9,
mimics the shape of the seismiccube. The Cubic Mouse
is trackedwith a 6DOF sensor and the orientation of the
seismic cube follows in sync,effectively placingtheseis-
mic cube in the user’s hand. Rotating the Cubic Mouse
rotates the seismiccube. Moving the Cubic Mouse moves
the seismiccube in the same direction. Sincethe other
structureslike horizons, faults,and wells aredefinedrel-
ative to the seismiccube, they move with it.

Figure 9: The Cubic Mouse device.

As one canseein figure 9 the Cubic Mouse has three
sliding rods passing through it. Each of theserods posi-
tionsone of the traditional seismicslices. The slicesare

alignedwith thefacesof theCubic Mouse and stay in sync
as it moves,so the rods are always perpendicular to the
slices.

Thereis a totalof six buttonson thetop faceof theCu-
bic Mouse. Thesingle button is usedasa clutch allowing
usersto detach theCubic Mouse from themodel. Two but-
tons in anothercorner control the sizeof themodel. The
threebuttons in a third corner are not used.

In summary theCubic Mouse is usedto position, orient,
and scalethe model aswell asfor moving threeorthogo-
nal crosssectionsthroughtheseismic volume. In addition
to theCubic Mouse avirtual toolsbasedapproachis used.
A tracked wand is usedto pick up different tools from a
virtual tool-bar to perform different tasks.The following
virtual tools are available:

– Thelevel-of-detail tool allowsusersto togglethedis-
playedlevel of detail betweenlow andhigh for hori-
zon and fault surfaces.

– The drag tool is usedto drag around surfacesand
drop them off in anew location.

– The snaptool is similar to the drag tool, but whena
surfaceis releasedit snapsback to its original loca-
tion.

– Theinformationtool showsthenameandposition of
anobject whenpointing to it.

– Theslicing tool attachesaslicing planeto thetracked
wand. This slicing plane canbe moved through the
seismic datasetby moving thewand.

– Thevolumerendering tool attachesavolumerender-
ing lens to the trackedwand.

Most of the geo-scientific application was developed
using Avango’s scripting language SCHEME. Only a few
nodetypeshadto beaddedto implement new functional-
ity like volume rendering for large volumesand the dis-
play of multi-attributedataalong well paths.

TheDistri buted Demonstrator

The size of our data sets, which contain volumetric
seismic data and polygonal data for horizon and fault
surfaces,are typicall y in the range of a few hundred

megabytesto several gigabytes. Our setup is laid out to
work with pre-distributed datasetsto avoid long startup
times. The actual scene graph is loadedby one of the
applications and distributedthrough Avango’s previously
describeddistribution mechanism.

TheCubic Mouse controls theposition, orientation, and
size of the model in the stand-alone version. For thedis-
tributed casewe have two or more Cubic Mouse devices
involved, which would potentially control the model.
Since the model belongs to the shared scene graph, we
could only allow one site to control the position andori-
entation of the model at a time. We found this to be too
restrictive and decided for an approachwhere eachsite
maycontrol themodelindividually with theoption to syn-
chronize and stayin sync with any other site at any time.
Werealizedthis concept by transforming theCubic Mouse
controlledmotion of the model into anequivalent motion
of the viewer relative to the model. The perceivedresult
for thelocal viewer is exactly thesame.

The Cubic Mouse also controls the three orthogonal
seismic sections within the model. Theseslices effec-
tively belong to the model andthey are sharedresources.
Thecontrol of theslicesis anexample of an event driven
interactionmechanismin Avango. Moving oneof therods
triggersa SCHEME script, which movestheslice. For the
stand-alone implementation the resolution of a rod was
generallysufficient to avoid clutching. Moving arodfrom
stop to stopwould movethecorresponding slicefromone
endto the other endof the dataset. The position of the
rodsare usedasabsolute inputs.With the distributedver-
sion we cannot expect the rods of different Cubic Mouse
devicesto be in exactly the same position, which would
causethe slicesto jump whencontrol is passedfrom one
site to another. To avoid theseproblemsaltogetherwede-
cidedto moveto arelativecontrol modefor therodsatthe
expenseof occasional clutching. Moving arodmovesthe
corresponding slice relative to its previousposition. The
buttonsat the endsof eachrod serve asaclutch. Pressing
the button andpulling or pushingthe rod doesnot affect
the corresponding slice. The relative approachhasalso
theadvantagethatit doesnot require any synchronization
mechanismlike distributedlocks.

Anothercaseof a local resourceis the input from each
rod of the Cubic Mouse affecting the stateof a sharedob-
ject in thescenegraph. Thismeansthatclient siteswhich
haveonly receivedacopy of theoriginal scenegraph from

theserverneedto getaccessto thenodein thescenegraph
that is affected by the rod. Thesehooks into the scene
graph are conveniently provided by our shared symbol
table. Since the sharedsymbol table adds thesehooks
into the local namespaceof each client site,theSCHEME

scripts for controlling the interaction on the server and
the client site as well asfor the non-distributedcase are
exactly thesame.

The level-of-detail tool interactswith a SCHEME medi-
ator allowing users to toggle thedisplayed level of detail
betweenlow and highresolution for horizonand fault sur-
faces. The SCHEME script referencedby the mediator is
executedwhen theuserpoints to a surfaceandclicks the
button on the tracked wand. The script removesthe low
resolution version of thesurfacefromthescenegraphand
addsthehigh resolution version and viceversadepending
onthecurrentstate. Thestand-aloneimplementation used
a global SCHEME mapto store referencesto the low and
high resolution versionsof thesurfacesfor thescript to be
able to accessthis necessaryevaluationcontext informa-
tion. Since we currently do not provide a mechanism to
distribute“pure” SCHEME objectslikethismap, wehadto
resort to adifferent solution. Wecould have implemented
this mapasanAvango node,which would have been dis-
tributedwith the scenegraph. Clients would thenuse the
sharednamespaceto get accessto the map. We decided
for anotheroption, whichbundlestheSCHEME script with
therequireddataasa sort of SCHEME object in the sense
of object-orientation. For this purposewe extended the
script mediator to maintain referencesto thelow andhigh
resolution Avango nodesof thesurfaces.Thesereferences
aredistributedwith themediators making themavailable
for SCHEME scripts evaluatedat the client sites.

These are two representative examples which show
how we extended script based interaction to the dis-
tributedcase.Similar approacheswere usedto make the
other toolsavailablefor the distributedcase.

Conclusion

Wehavepresentedtoolsandtechniquesto support script-
ing interfaces in distributed virtual environments. A
sharednamespaceallowsconvenient accessfor scripts to
sharedobjects.Theseconceptshavebeensuccessfully ap-
pliedto migrateageo-scientific applicationto support dis-

tributed exploration of largedatasets. We found that our
scripts from the stand-alone casegenerally require mini-
mal changesto work for thedistributed case.

For our development weusedan extensionto SCHEME,
which provides a framework for quasi object-oriented
scripting. This extension greatly helped us to structure
our distributed application. However, inherently object-
oriented scripting languages,like PYTHON, might be a
betteralternative to the SCHEME extension, which only
mimicsobject-orientation.

We have testedour geo-scientific application only in
environmentswith 10MBit to 100MBit Ethernetconnec-
tions andlow latency networks. As a next stepwe plan
to install thedistributedprototypeat two officesof anoil
company, which are locatedin Europe and the US. This
will give us further insight into how usabili ty is affected
by networkswith lower bandwidth and higher latency.

From our experience it would have often beenconve-
nient to be able to distribute “pure” Scheme objectsdi-
rectlywithout explicitly going through theAvango shared
object distribution mechanism. Conceptsfrom parallel
programming languageslike L INDA could be a solution
for this problem. Theseconceptsneedto be evaluated
with respect to their compatibil ity with the interactive
real-time requirementsof virtual reality applications.

Acknowledgments

This work waspartially supportedby the VRGeoconsor-
tium. We would like to thank themembers of the consor-
tium for their valuable feedback during consortium meet-
ings. We also thank theVE groupat GMD for their sup-
port.

References

[1] C. Carlsson and O. Hagsand, “DIVE: A Multi
User Virtual Reality System,” in Proceedings of
IEEE Virtual Reality Annual International Sympo-
sium (VRAIS ’93), pp. 394–400, IEEE, Sept.18–
22 1993.

[2] R. Blach, J. Landauer, A. Rösch, and A. Simon,
“A Highly Flexible Virtual Reality System,” Future

Generation Computer Systems, Special Issue on Vir-
tual Environments, vol. 14, no. 3–4, pp. 167–178,
1998.

[3] H. Tramberend, “Avocado: A Distributed Virtual
Reality Framework,” in Proceedings IEEE Virtual
Reality ’99 Conference (L. Rosenblum, P. As-
theimer, and D. Teichmann, eds.), pp. 14–21, IEEE
Computer Society, Mar.13–17 1999.

[4] W. Clinger and J. Rees, “Revised4 Report on the
Algorithmic Language Scheme,” Technical Memo
AIM-848b, MassachusettsInstituteof Technology,
Artificial Intell igence Laboratory, Nov. 2 1991.
originally published in SIGPLAN Notices 21 (12)
December 1986.

[5] B. Fröhlich, S. Barass, B. Zehner, and M. Göbel,
“Exploring Geo-Scientific Datain Virtual Environ-
ments,” in IEEE Visualization ’99, pp. 169–174,
Oct.1999.

[6] B. Fröhlich and J. Plate,“TheCubic Mouse:A New
Device for Three-Dimensional Input,” in Proceed-
ings of CHI ’2000, ACM, Apr. 1–6 2000.

[7] J. Rohlf and J. Helman, “I RIS Performer: A High
PerformanceMultiprocessingToolkit for 3D Graph-
ics,” in Proceedings of SIGGRAPH ’94 (A. Glassner,
ed.), pp. 381–395, ACM, July24–29 1994.

[8] P. S. Strauss, “IRIS Inventor: A 3D Graphics
Toolkit,” in Proceedings of the 8th Annual Con-
ference on Object-Oriented Programming Systems,
Languages and Applications (A. Paepcke, ed.),
pp. 192–200, ACM, Sept. 26–Oct.1 1993.

[9] B. Stroustrup, The C++ Programming Language.
Reading,MA, USA:Addison-Wesley, 3rd ed., 1998.

[10] H. Tramberend, F. Hasenbrink, and B. Fröhlich,
“Tools, Mediators, and Interaction Operators: A
Concept for Interaction in VirtualEnvironments,” in
Proceedings of 3. International Immersive Projec-
tion Technology Workshop, pp. 77–79, Centerof the
FraunhoferSocietyStuttgart IZS,May10–11 1999.

