
To appear in the Proceedings of IEEE VR 2008.

Advanced Multi-Frame Rate Rendering Techniques
Jan P. Springer1 Christopher Lux1 Dirk Reiners2 Bernd Froehlich1

1 Bauhaus-Universität Weimar 2 University of Louisiana at Lafayette

ABSTRACT

Multi-frame rate rendering is a parallel rendering technique that
renders interactive parts of the scene on one graphics card while the
rest of the scene is rendered asynchronously on a second graphics
card. The resulting color and depth images of both render processes
are composited and displayed.

This paper presents advanced multi-frame rate rendering tech-
niques, which remove limitations of the original approach and reduce
artifacts. The interactive manipulation of light sources and their pa-
rameters affects the entire scene. Our multi-GPU deferred shading
splits the rendering task into a rasterization and lighting pass and
distributes the passes to the appropriate graphics card to enable light
manipulations at high frame rates independent of the geometry com-
plexity of the scene. We also developed a parallel volume rendering
technique, which allows the manipulation of objects inside a translu-
cent volume at high frame rates. Due to the asynchronous nature of
multi-frame rate rendering artifacts may occur during the migration
of objects from the slow to the fast graphics card, and vice versa.
We show how proper state management can be used to avoid these
artifacts almost completely. These techniques were developed in
the context of a single-system multi-GPU setup, which considerably
simplifies the implementation and increases performance.

Keywords: Multi-Frame Rate Rendering, Multi-GPU Systems, 3D
Interaction

Index Terms: F.1.2 [Computation by Abstract Devices]: Modes
of Computation—Interactive and Reactive Computation; I.3.2
[Computer Graphics]: Graphics Systems—Distributed/Network
Graphics; I.3.3 [Computer Graphics]: Picture/Image Generation—
Display Algorithms; I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

1 INTRODUCTION

Parallel rendering is commonly used to improve graphics perfor-
mance for very large models. These approaches aim at an even
distribution of the workload across a number of graphics nodes,
which scales at most linearly with the number of involved resources.
In contrast, multi-frame rate rendering [1] is a parallel rendering
technique that purposely splits the workload unevenly. Interactive
parts of the scene are updated at the highest possible frame rates
on one graphics sub-system (fast client), while the rest of the scene
is rendered at lower frame rates on a second system (slow client).
The results of these asynchronous image generation processes are
digitally or optically merged and displayed.

Multi-frame rate rendering has been shown to be quite effective
for virtual environment applications, where only a small subset of the
objects in the scene are actively manipulated. However, due to the
parallel and asynchronous nature of the image generation process,
some limitations and artifacts are inherent to the approach. While the
original implementation by Springer et al. [1] was based on a cluster

Figure 1: Volume rendering application using multi-frame rate rendering on a
single multi-GPU system. The image is a snapshot of the fast client showing
the digital composition result at 1600×1200 pixels. Volume ray casting was
used on the 1024× 439× 734 volume data set with 2048 samples per ray. The
fast client renders only the screen area in front of the manipulated well (green)
at 30 Hz. The slow client renders the whole volume at ≈1 Hz. Top right shows
the contributions of the slow client (gray scale) and the fast client (colored). The
clients were each running on an NVIDIA Quadro FX 5600.

of graphics workstations, we explore a single-system implementation
using a dual-graphics card setup. Such an implementation does
not suffer from limited network throughput and increased latency.
Additionally, advanced techniques for distributing the work load
between graphics cards become feasible, which further increases the
flexibility and perceived interactivity of the system while reducing
the overall complexity of the implementation.

This work is motivated by requirements for rendering large data
sets from the automotive and the oil & gas industry, where multi-
frame rate rendering can be most useful. Manipulation of lights is
important for the visualization of car models. However, lighting
changes, which affect the whole scene, can only be updated at low
frame rates in the original implementation. Volume rendering is
extremely important in the oil & gas industry. A central task is the
precise placement of virtual wells inside a seismic volume. Since the
semi-transparent volume has to be rendered after the manipulated
well for correct occlusion, the volume would have to be handled on
the fast graphics system as well, making multi-frame rate rendering
useless for this situation. In addition, intermittent rendering artifacts
resulted in limited user acceptance even though they might not affect
interaction performance.

The main contributions of this paper are advanced multi-frame
rate rendering techniques, which are applicable to cluster-based as
well as single-system multi-frame rate rendering setups. However, a
single-system environment simplifies the implementation and also
significantly increases performance. Our multi-GPU deferred shad-
ing approach allows the interactive manipulation of lights, which
affects the whole scene. It also allows for balancing the handling of

1

To appear in the Proceedings of IEEE VR 2008.

shading computations between the fast and slow client. Our parallel
volume rendering method has been shown to be very effective for
supporting highly interactive manipulation of objects inside large
volumes rendered with extreme quality. In addition, artifacts occur-
ring during migration of objects from the slow to the fast graphics
card, and vice versa, can be almost completely hidden by prediction
and intelligent bookkeeping. These techniques considerably extend
the potential application domains for multi-frame rate rendering
and enable users to interactively manipulate objects within complex
virtual environments.

2 RELATED WORK

Support for multiple graphics cards in a single computer system
once was the domain of specialized high-end graphics systems (e. g.
SGI’s RealityEngine [2] or InfiniteReality [3] platforms). With the
introduction of the PCIe bus system this capability became recently
available for single PCs. Besides using multiple graphics boards in
such a PC system for dedicated tasks, vendor-specific solutions exist
which allow the combined usage of these GPUs for the generation
of a single image (e. g. NVIDIA SLI [4] or ATI CrossFire [5]). These
solutions can be classified as Sort-First approaches [6]. This is in
contrast to multi-frame rate rendering where a Sort-Last composition
is needed. Also, with these vendor solutions the image generators
are tightly coupled for load balancing and they are presented as a
single graphics device to an application. Unfortunately, there is
no support for application-specific Sort-Last composition using the
vendor-provided high-bandwidth low-latency interconnect between
graphics cards. This can only be achieved by transferring data from
one card to the other via host system memory (cf. sections 3.1 and
3.2).

In this paper we present an approach to adapt direct volume ren-
dering for our multi-frame rendering framework. 3D texture-based
direct volume visualization methods sample the volume data by
using a stack of typically viewport-aligned slice planes as proxy
geometry [7]. These planes are then blended into the frame buffer
in front-to-back or back-to-front order. As an object-order method
the density and therefore the number of slice planes that must be
generated and rendered directly depends on the data complexity as
well as the desired output quality. In contrast volume ray casting [8]
samples the volume data at discrete locations along rays originating
at the viewer position. For each pixel a ray is generated and traversed
through the volume allowing direct evaluation of the volume ren-
dering integral. Implementations of volume ray casting techniques
on the GPU emerged in recent years. Early GPU-based volume ray
casting approaches [9, 10] were dependent on multiple render passes
and temporary image buffers for storing intermediate results. Later
methods [11] show how to implement the complete volume ray cast-
ing algorithm in a single fragment program by employing enhanced
programmability features of recent GPU architectures (e. g. NVIDIA
NV40). However, these approaches are not directly aware of prior
frame buffer content created from regular geometry, which poses
problems for proper image composition. Correct volume clipping
at geometry boundaries using depth information of previously ren-
dered geometry has been recently demonstrated [12, 13]. The main
advantage of GPU-based volume ray casting techniques is their inde-
pendent ray traversal, allowing the implementation of advanced ac-
celeration techniques like early ray termination in a straightforward
way. For reasonably small data sets slice-based volume rendering
as well as volume ray casting approaches achieve interactive frame
rates with decent output quality using current graphics hardware,
i. e. NVIDIA G80 or newer. However, larger data sets, even if fitting
into available graphics memory, still suffer from low frame rates,
impeding interaction with objects that need to be placed precisely
inside volumes.

For the interactive manipulation of lights we adapted the deferred
shading approach [14, 15], which is a method that separates the

computation of relevant per-fragment shading information from the
actual shading. This is achieved by storing the necessary information
in intermediate buffers for later use in the composition stage (e. g.
using G-buffers [16]). While hardware implementations do exist
for some time (e. g. PixelFlow [17, 18]), consumer-product GPUs
allowing for implementations that exhibit interactive frame rates
became available only recently (e. g. NVIDIA NV40) [19]. Deferred
shading is a multi-pass rendering method. The first pass collects
relevant per-fragment shading information and writes it to precon-
figured buffers on the graphics card. The second pass performs the
shading only for actually visible fragments. The separation of gener-
ating the per-fragment shading information and the actual shading
itself allows for efficient implementations of sophisticated lighting
models.

3 MULTI-GPU SYSTEM SUPPORT

Multi-frame rate rendering and display is a parallel rendering tech-
nique improving interaction fidelity in complex virtual environments
[1]. The results of asynchronously running image generators is
displayed using either optical superposition or digital composition
(cf. figure 2). The setup consists of a master node, a slow client
(SC), and a fast client (FC). SC is designated for rendering all
non-interactive parts of the scene. FC is responsible for rendering
only those parts of the scene that are currently relevant to the user
interaction (e. g. selected object(s), menus, cursors). The scene
as a whole is distributed by the master node to the render clients.
Objects migrate from SC to FC upon request (e. g. user selection)
and vice versa (e. g. deselection). The number of objects that must
be rendered by FC is (usually) much smaller than on SC, which
leads to higher frame rates on FC and therefore to better interaction
response while SC may render at low or even non-interactive frame
rates.

Master

Client

Client

(a) Optical superposition.

Client

Client

Master

(b) Digital composition.

Figure 2: Multi-frame rate display methods [1].

We have implemented multi-frame rate rendering for a single
computer system running with two graphics cards configured as
independent devices using optical superposition and digital compo-
sition. Optical superposition does not provide correct occlusion of
objects rendered by SC and FC. It is useful as a simple mechanism
for overlaying interactive elements that do not need to be handled
in a depth correct way (e. g. system controls). However, for the
handling of interactive elements within the scene, where correct
occlusion is necessary, digital composition provides a more viable
approach. Therefore we will not further pursue optical superposition
in the remaining discussion. Figure 3 shows digital photographs of
an application prototype using multi-frame rate rendering by digital
composition on a single-computer system with two GPUs.

3.1 Buffer Transfer Methods
There are several ways for transferring frame buffer content from SC
to FC in a single-system multi-GPU setup using digital composition.
First, existing infrastructure for multi-frame rate rendering in a
graphics cluster can be reused. Instead of assigning SC and FC
to different cluster machines both client applications are executed
on the same machine but assigned to different GPUs. Frame buffer
transfer uses the local loopback device. Second, by using process-
shared memory instead of using the local loopback device. Third,
depending on the scene graph API involved it is also possible to use
process-local memory together with a multi-threaded application
architecture.

2

To appear in the Proceedings of IEEE VR 2008.

(a) Slow part on GPU 1. (b) Fast part on GPU 2. (c) Digital composition.

Figure 3: Multi-frame rate rendering by digital composition on a single
computer system using multiple image generators. (a) Scene part rendered by
SC on GPU 1. (b) Scene part rendered by FC on GPU 2; frame-buffer image
from SC in gray scale. (c) Final image on GPU 2 as perceived by the user.

We implemented multi-frame rate rendering prototypes with dif-
ferent scene graph APIs. We were using Avango [20], which is
based on OpenGL|Performer [21], OpenSG [22], and an in-house
development of a minimal scene graph implementation. For the
purpose of this discussion the structural difference between these
APIs is their support for asynchronous draw traversals. While
OpenGL|Performer supports multiple image generators using a
multi-process aware buffer approach the actual scene graph traversal
can not be separated in an asynchronous way; there is only one
application traversal per application available which internally syn-
chronizes the available cull and draw processes. In this case separate
application instances need to be used that communicate via external
resources (e. g. network or process-shared memory). OpenSG does
support distributed rendering in a PC cluster as well as concurrent
render traversals of the scene using multiple threads. However, the
implementation of various render strategies for multi-GPU multi-
frame rate rendering turned out to be non-trivial since this is an
uncommon use case for a scene graph API. Thus, we decided to de-
velop a minimal scene graph prototype allowing for asynchronously
running graphics contexts. In both cases, i. e. OpenSG and our
in-house development, process-local memory is available to share
resources and communicate results between the graphics contexts.

Sending frame buffer content from SC to FC via local loopback
device involves the use of a networking API usually based on sockets.
A raw byte buffer representation of the frame buffer is created that
also contains management information such as overall buffer size,
frame counter, and the logical graphics buffer (left or right buffer
for stereo applications). This raw byte buffer will be handed to
the network API for sending. The network API however will copy
that buffer internally at least once before actually sending it over
the physical network. The buffer may also be split into several
packets depending on the network protocol used. Since the actual
send operation takes some time, it is important to decouple reading
from the graphics device and sending with the network API because
otherwise the send and flush operations of frame buffer sized buffers
would stall the draw process, further delaying SC. Similar reasoning
holds for receiving buffers on FC. Because the local loopback device
does not actually read or write to an external device a speedup
compared to actually using a physical Gigabit Ethernet device was
expected. However, the network API’s internal buffer copy for full
screen sized frame buffers is still a limiting factor. In our experience
the local loopback device will only provide a bandwidth of 2 Gbit/s
on current Linux systems (based on kernels from the 2.6.x series).

To reduce the latency between reading the frame buffer on SC
and uploading it on FC we implemented the buffer send/receive
mechanism using process-shared memory between multiple appli-
cation instances on the same system using a copy mechanism. This
was achieved by reusing the infrastructure from the networking API
and adding custom copy functionality. Unfortunately the bandwidth
we achieved was just slightly better than the bandwidth achieved via
local loopback device. This is propably due to the fact that reading
from and writing to memory not only consumes bandwidth but also
needs processing power. Memory bandwidth in modern PC systems
is at least a magnitude higher than Gigabit Ethernet transfer perfor-

mance. Concurrently reading and writing memory will degrade this
bandwidth advantage.

Thus, copying frame buffers is not an option even on systems
providing process-shared memory. Because of this we resorted to
a zero-copy mechanism—at least as far as main memory is con-
cerned. There is currently no implementation of true shared memory
between GPUs available and there is also no API for direct buffer
transfers from one GPU to another without intermediate buffering
in host memory. Process-shared memory must be used instead; a
unique location in machine-local memory that is mapped to a virtual
address within the processes attached to the shared memory segment.
Because the attached processes all see the same memory only pointer
values to the current buffer(s) in the shared memory segment must be
adjusted to realize buffer updates. Our implementation uses a triple
buffer approach so as to minimize the impact on the involved render
processes. One buffer is assigned to SC for writing its frame buffer
into it. Another buffer is used by FC for uploading the buffer’s
content into its frame buffer. The third buffer is a transfer buffer,
which is either outdated after swapping with FC or it contains the
most recently read frame buffer from SC. Once SC has read its
frame buffer content, a lock is entered which is located in shared
memory. While holding the lock SC swaps pointers to its buffer and
the currently unused transfer buffer as well as setting a flag in shared
memory. FC, as part of its frame update cycle, will also enter the
shared lock once per frame and, upon finding the flag set, swap the
pointer to the transfer buffer with its own buffer and reset the flag.
We found that the overhead for this scheme is nearly unnoticeable,
lock retention usually ≤ 0.1 ms. For scene graph APIs capable of
asynchronous render traversals, such as OpenSG and our own min-
imal scene graph implementation, the same mechanism can be used.
However, because only one process-local address space must be
managed the implementation becomes simpler. Buffer management
here uses process-local memory (or heap memory) which avoids the
use of a separate allocation API. However, the latency is similar to
the case which uses shared memory.

As has been shown there are several ways of achieving multi-
frame rate rendering using digital composition on a single-system
dual-GPU setup. The methods vary in their degree of efficiency
and depend mainly on the bandwidth available by the underlying
transport mechanism. However, the zero-copy approach is clearly
the method of choice, i. e. swapping pointers to buffers provides the
lowest latency. Our implementations also show that multi-frame-rate
rendering not only works on a dual-GPU setup but that infrastructure
can be build allowing for selective use of the right communication
and transfer path for specific application scenarios as well as a
variety of hardware configurations.

3.2 End-to-End Latency Analysis

Latency decreases in a multi-GPU based multi-frame rate rendering
system because the frame buffer image is transferred to and from
host memory only within a single computer compared to the original
cluster solution [1]. We will analyze the end-to-end latency for
conventional rendering and multi-frame rate rendering using digital
composition at a resolution of 1280× 1024 pixels with a frame

Update

~20ms

Send

~111ms

TFrame = Trender + TRead

186ms = 166ms + 20ms

Frame Rate: 30Hz

TFrame = TDraw + TRender

33ms = 10ms + 23ms

Frame Rate: 6Hz

Update

~20ms

FC

SC

Master

Sensors

Figure 4: End-to-end latency for multi-frame rate rendering using digital
composition in a cluster setup.

3

To appear in the Proceedings of IEEE VR 2008.

1280× 1024 1600× 1200

MB/s ms MB/s ms
R

ea
d RGBA 521 10.1 684 11.6

BGRA_EXT 997 5.3 939 8.4
DEPTH 565 9.3 733 10.8

D
ra

w RGBA 1298 4.0 1412 5.6
BGRA_EXT 2081 2.5 2166 3.6

DEPTH 1213 4.3 1372 5.7

Table 1: Timings for reading from and writing to the graphics device (NVIDIA
GeForce 8800 GTX, driver rev. 97.46, ASUS P5N32-E SLI based system). Note
that read/write performance of color data is heavily format dependent.

rate of 6 Hz for SC and 30 Hz for FC (cf. figure 4). In all cases
sensor data and event updates are received with a latency of 40 ms by
participating clients assuming an externally running tracking system
sending new values at a rate of 50 Hz, i. e. every 20 ms. The end-to-
end latency in a conventional rendering setup consists then of this
sensor-update latency and the frame time of the render client, which
is roughly the same as the render time of SC (TRender in figure 4).
In the example this is 206 ms if event updates arrive at frame start
which we assume for the following discussion. In the worst case the
time for one tracking frame (20 ms) needs to be added.

In a cluster-based multi-frame rate rendering setup using digital
composition sensor data is also received with a latency of 40 ms. On
FC the frame time is split into the time needed for uploading the
frame buffer from SC (TDraw in figure 4) and the time for rendering
the relevant scene parts for the current interaction (TRender in
figure 4). TDraw is the accumulated time for uploading color and
depth values at a certain resolution. Table 1 indicates TDraw to
be ≤ 10 ms for an image size of 1280× 1024 pixels. This amounts
to an end-to-end latency of 73 ms for FC. On SC the frame time
consists of the time needed for rendering the relevant scene parts
(TRender in figure 4) and the time for downloading the frame-buffer
image (TRead in figure 4). TRead, like TDraw, is the accumulated
time for reading color and depth data from the graphics device as
shown in the upper part of table 1. We assume TRead to be≤ 20 ms.
Additionally, the just read frame-buffer image must be transferred
over the network to FC. For a resolution of 1280× 1024 pixels
this takes ≈111 ms as can be seen in table 2. The final end-to-end
latency for an event to be incorporated into the frame-buffer image
of SC, transferring the frame buffer to FC, and uploading it to
FC’s graphics card is then 337 ms, or 390 ms at most considering an
additonal lag of 20 ms for sensor data as well as an additional render
frame for FC of 33 ms. However, the end-to-end latency relevant
for interaction is the end-to-end latency on FC. This is only 73 ms
compared to 206 ms for the conventional rendering case.

End-to-end latency for event updates on FC remains the same for
multi-frame rate rendering using digital composition in a multi-GPU
setup compared to a cluster-based setup, i. e. 73 ms, since we are
still running a master application on a separate machine. Only FC
and SC are running on a single machine. Because buffer transfer
from SC to FC is realized by a zero-copy approach network-transfer
latency is avoided. For our example the event-update latency on SC

Resolution
64 Bits Color/Depth

Buffer
Size

Transfer
Time

Transfer
Rate

1024× 768 6 MB 66 ms 15 Hz
1280× 1024 10 MB 111 ms 9 Hz
1600× 1200 15 MB 166 ms 6 Hz

Table 2: Network transfer times at different buffer sizes for Gigabit Ethernet
(observed for application level end-to-end buffer send and receive on a Cisco
Catalyst 3560G switch).

decreases in a multi-GPU setup to 226/279 ms.
The bandwidth that can be achieved on current graphics systems

and network setups differs by at least one order of magnitude. Giga-
bit Ethernet provides an approximate maximal bandwidth of 90 MB/s
in practical experience for application-level usage. Thus, sending
a buffer of 10 MB, i. e. 1280× 1024× 8 bytes (4 bytes color and
4 bytes depth), takes ≈111 ms while reading and writing the same
buffer from and to graphics hardware only takes 20 ms and 10 ms,
respectively. In a stereoscopic setup, where two complete frame
buffers must be sent per frame, these times would double. Clearly,
network transfer is the limiting factor here. A multi-GPU system
taking the roles of both SC and FC reduces the end-to-end latency
of frame-buffer image updates from SC to FC from 337/390 ms
to 226/279 ms because only reading and writing of image data on
the same host memory is necessary. Including the sensor and event-
update processes into the same machine will reduce latency even
further. It is noteworthy that the host system should nonetheless
provide enough compute power. Early experiments on systems with
a dual-core CPU showed an excessive amount of compute contention
between the processes or threads participating in the setup. Using
a machine with a quad-core CPU exhibited a significantly better
balanced system load.

4 MIGRATION ARTIFACTS

Multi-frame rate rendering migrates objects from the slow client to
the fast client if they are involved in an interaction. These objects
have to be migrated back to the slow client once they are no longer
manipulated. Since our implementations work with a replicated
scene graph copy in each rendering process, migration requires only
toggling a node mask on the concerned object. However, because
parallel as well as asynchronous rendering processes are involved on
the fast as well as the slow client, the following artifacts may occur:

I Selection Artifact: Once an object is selected it is activated
on the fast client and deactivated on the slow client. Because
it typically takes a couple of frames until the updated frame
buffer from the slow client arrives on the fast client, the object
is actually rendered twice into the multi-frame rate image. This
will become only apparent if the user starts manipulating the
object right away before the updated frame buffer from the slow
client arrives. In this case both the moved object and the object
in its original location will be shown. Otherwise the depth buffer
takes care of the doubly rendered object and this artifact will not
be visible to the user.

I Release Artifact: Once an object is no longer needed on the
fast client it is deactivated on the fast client and activated on
the slow client. Thus, the fast client does not render this object
anymore, but it takes again some frames of the fast client until an
updated frame buffer from the slow client arrives incorporating
this change. During the intermediate period the object is not
displayed at all and users perceive it as a popping artifact.

Our idea is to ameliorate the situation by using prediction and
appropriate bookkeeping. For predicting the selection of an object
we simply use the “over” status similar to 2D interfaces. Assuming
ray-based selection the object is activated on the fast client as soon
as the ray intersects the object. At the same time it is deactivated
on the slow client. In our experience this heuristic works quite well
since in most cases users need some time from entering the over
status until selection. Fixing the release artifact seems simple at
first glance: just keep the object active on the fast client until it
is incorporated into the frame buffer of the slow client. However,
it is slightly more complicated since the two render processes are
running fully asynchronous and it is not known which update from
the slow client will contain the just released object. In addition, the
user might have activated the object again in the meantime, which
complicates state handling further.

4

To appear in the Proceedings of IEEE VR 2008.

OVER

Intersect

SELECTEDINACTIVE

Release

SelectIntersect

No Intersect

Figure 5: The state transition diagram for possible states of an object during
an interaction.

To deal with this problem we need to know which objects were
actually rendered into the frame buffer of the slow client that is
currently in use on the fast client. Thus, the slow client not only
needs to pass the frame buffer to the fast client, it also needs to
provide the list of rendered objects (or the list of missing objects).
On the fast client the selection and release process for an object can
be described by the state diagram shown in figure 5. The fast client
can be in one of three states with respect to an object in the scene
graph: INACTIVE, OVER, or SELECTED. In addition there is the
information if the object is contained in the currently used frame
buffer from the slow client. Hence, there is only a total of six state
combinations, which may occur.

Table 3 considers all possible state combinations and determines
if the object needs to be rendered on the fast client or not. State com-
bination 1 shows an INACTIVE object, which is not yet contained in
the frame buffer of the slow client. Thus, it needs to be rendered on
the fast client. State combinations 2 and 3 represent an object that is
in state OVER or SELECTED but no longer contained in the frame
buffer of the slow client. Thus, it needs to be rendered on the fast
client as well. State combination 4 represents an INACTIVE object
that is contained in the frame buffer of the slow client. State com-
binations 5 and 6 are the most interesting ones. State combination
5 represents a selected object, which is still contained in the frame
buffer of the slow client, but the user may have started to move the
object. Thus, it needs to be displayed on the fast client—possibly as
a shadow object until it is no longer contained in the frame buffer of
the slow client. State combination 6 may have several reasons. The
user may have just moved over an object, but it is not yet selected
and still contained in the frame buffer of the slow client. The fast
client would not have to render it, but it would do no harm if it
does. The other possibility is that the user just released an object and
entered the over status while the object was not yet removed from
the frame buffer of the slow client due to a very short interaction
time or the very slow frame rate of the slow client. In this case the
position of the object in the frame buffer of the slow client and the
current position on the fast client might be different. Then the object
needs to be rendered on the fast client—possibly using a shadow
object as well.

INACTIVE OVER SELECTED SC FC

1 1 0 0 0 1
2 0 1 0 0 1
3 0 0 1 0 1
4 1 0 0 1 0
5 0 1 0 1 1*

6 0 0 1 1 1*

Table 3: Possible state combinations of an object on the fast client. The state
variable SC denotes that the considered object is contained in the frame buffer
of the slow client. The resulting state variable FC is set to 1 if the object needs
to be rendered on the fast client. States 5 and 6 indicate that a shadow object
might be drawn on the fast client instead of the actual object.

Shadow objects are also used in distributed applications (e. g. by
Benford and Mariani [23]) to indicate that a lock for an object has
not yet been acquired, but the interaction may have already started.
Here the object is also drawn twice—once at its original location as
a regular object and once as a shadow object (e. g. as a line drawing).
Once the lock is acquired the original object vanishes and the shadow
object turns into the real object. If the lock cannot be acquired the
shadow object vanishes. We have experimented with the use of
shadow objects, but since our current implementation of the above
described state handling rarely generates these problematic cases,
it is surprising to users if shadow objects actually appear for a split
second while doubly drawn objects remain mostly unnoticed. For
this reason we do not use shadow objects at the moment.

5 VOLUME RENDERING SUPPORT

Many application areas require high-quality visualization of large
volume data sets. Especially in the oil & gas industry interaction
fidelity for the manipulation of geometry inside the semi-transparent
seismic volume is necessary (e. g. for specifying a well path). Even
though head tracking is available they often do not move much while
they are placing and manipulating geometry representations such as
well paths inside a translucently rendered volume. This observation
was a driving motivation for developing multi-frame rate rendering
in the first place [1].

In the context of multi-frame rate rendering such an interaction
scenario could be trivially decomposed into non-interactive parts
containing the volume representation and interactive parts contain-
ing the well geometry. While this would accomplish the desired
behavior of SC carrying the volume rendering load and FC pro-
viding high frame rates for the interaction the final image would
exhibit incorrect occlusions. The digital composition of SC’s frame
buffer and FC’s render process cannot incorporate transparency in-
formation correctly. This is due to the fact that the color buffer
from SC is an already finished image. This means that interactive
geometries can appear correctly only in front of but never inside or
behind the translucent volume. To ensure correct occlusion the vol-
ume has to be drawn after all opaque geometries, in particular after
the interactively manipulated well geometry and thus shifting the
computational load of the volume rendering to FC and diminishing
all performance advantages.

Our solution, which allows correct blending of geometry with
the translucent volume, is to detect screen-space portions where
the volume potentially overlays the interactive geometry and to
redraw only these portions on FC. Usually only small parts of the
volume actually overlay manipulated objects (e. g. geometry in a
well planning task consists only of thin tubes as shown in figures 1
and 7d). For this reason the volume rendering load on FC will be
significantly lower compared to rendering the full volume on SC.
Our approach guarantees that exactly the screen-space fragments
covered by the interactive geometry trigger the volume rendering
algorithm on FC, thus preventing unnecessary work on FC.

To prevent screen-space fragments from being processed we use
stencil testing. OpenGL specifies stencil tests to be performed after
the fragment processing stage. However, current graphics hardware
does perform the stencil test prior to this stage, rejecting fragments
before entering the fragment processing stage and thus circumvent-
ing potentially expensive calculations. We generate the required
stencil mask during the rendering of the interactive geometry on
FC. Since this rendering pass is executed against the depth image
received from SC the mask spans precisely the visible fragments of
the interactive geometry. While the frame-buffer image from SC
contains the base color image of the non-interactive geometry com-
bined with the fully rendered volume (cf. figure 6a), the depth image
must contain only values generated by the non-interactive geometry
(cf. figure 6b) to allow correct clipping with geometry rendered
on FC. Subsequently executing the volume rendering algorithm on

5

To appear in the Proceedings of IEEE VR 2008.

(a) Color buffer on SC. (b) Depth buffer on SC.

Figure 6: Volume rendering in a multi-frame rate rendering setup, SC part. (a)
shows the color and (b) the depth buffer content.

FC with stencil testing enabled will perform image updates for ex-
actly those screen regions where the volume is actually covering
interactive geometry.

Our volume visualization is based on ray casting similar to
Stegmaier et al. [11]. By rendering only the bounding box of the
volume data set a single fragment shader program is needed which
implements the complete volume ray casting algorithm. Thus, the
stencil tests discards complete rays instead of just fragments of slices
as it would be the case for slice-based volume rendering, which ren-
ders a large stack of viewport-aligned polygons and making the
stencil test much less efficient. The basic volume ray casting al-
gorithm determines the ray entry and exit positions for the volume
analytically. It is unaware of the current frame buffer content and so
prevents correct interaction of the volume with already rendered ge-
ometry. To achieve correct clipping behavior the fragment program
needs to access depth information of previously rendered geometry.
Therefore, we employ a two-pass approach. The first pass renders
the entire scene geometry into off-screen buffers holding depth and
color information. On FC a stencil buffer is added in this pass si-
multaneously generating the stencil mask. The subsequent volume
rendering pass uses the depth buffer as an input texture in order to
terminate ray traversal if scene geometry is hit.

The work flow for multi-frame rate volume rendering on SC and
FC is quite similar. Special care must to be taken on SC when to read
the frame-buffer image components to be send to FC. The depth
values must only contain the depth information of the geometry
rendering pass. Therefore, the depth buffer content is downloaded
directly after processing all scene geometry, preventing the volume
rendering from modifying these depth values. After receiving the
frame-buffer image on FC the geometry pass on FC is used to
generate the stencil mask and update the volume rendering for a
subset of screen-space fragments. Figure 7a shows a stencil mask
generated on FC for the interactive geometry of the selected well
object located inside the semi-transparent volume. As illustrated
in figure 7b the actual scene contribution of FC is generated based
on this mask. Figure 7c shows the digital composition of SC’s and
FC’s contributions, highlighting the scene part generated on SC
using gray scale. The final image composite as perceived by a user
is shown in figure 7d.

Combining GPU-based volume ray casting with stencil testing
on FC permits smooth interaction with scene geometry placed in-
side semi-transparent volume data. However, the efficiency of this
approach depends on the size of the screen projection and the pen-
etration depth of the interactive geometry within the volume. The
projection size defines the number of rays that must be generated and
traversed through the volume. The penetration depth determines the
number of samples taken along the ray. The computational cost for
traversing a ray through the volume is at most linear. Optimizations
like early ray termination may reduce the number of samples that
must be processed.

Our multi-frame rate volume rendering approach is based upon
the same frame-buffer image as the original digital composition
technique. However, depth and color values are downloaded at dif-
ferent points in time of the frame cycle on SC before being sent

(a) Stencil buffer on FC. (b) Color buffer on FC. (c) Digital composition.

(d) Final rendering on FC.

Figure 7: Volume rendering in a multi-frame rate rendering setup, FC part. (a)
shows the stencil mask generated by the active geometry on FC while (b)
shows the final image contribution from FC. (c) shows the composition of the
contributions from SC (gray scale) and FC (colored). (d) shows the final image
as perceived by the user. The images show a section of a 1024×439×734
data set rendered with volume ray casting using 2048 samples per ray. The
clients were each running on an NVIDIAQuadro FX 5600 at ≈1 Hz and 30 Hz,
at a screen resolution of 1600×1200 pixels.

to FC. A potential pipeline stall is introduced on SC for reading
the content of the depth buffer after the geometry rendering pass.
Because the volume ray casting algorithm also requires the depth
buffer content for correct interaction with already rendered geom-
etry this stall is generated independently of the depth image read
operation. The latency caused by the read operation can be hidden
by using an asynchronous read-back mechanism (e. g. OpenGL’s
ARB_pixel_buffer_object extension), if no additional copy-
ing is necessary (e. g. when using a multi-threaded application
scenario). This way the volume rendering is not delayed while the
depth values of the geometry rendering pass are transferred to host
memory.

Even though we used a volume ray casting approach the stencil-
mask technique will also work for other volume rendering methods
like traditional slice-based volume rendering. However, due to the
overhead for the rasterization of the proxy geometry it will not be as
efficient as using a ray casting approach.

6 INTERACTIVE LIGHT MANIPULATION

In addition to interacting with geometry users often also want to
manipulate lights, or more specifically objects representing a light,
to change the lighting in the scene. Using multi-frame rate rendering
this however will cause problems. While the geometry representing
a light is rendered on FC, providing sufficient interaction speed, the
underlying light abstraction from the graphics API is updated on
SC only. This signals the user two disconnected visual cues: the
light geometry or handle is updated appropriately and the light’s
influence on the scene is lagging behind. Using digital composition
the final image contains the color and depth image generated by SC
complemented by FC’s additional rendering of the interactive scene
parts. Because the base color image already contains lit pixel values
the lighting stage cannot be moved to FC. However, if the frame-
buffer image from SC would contain the information necessary for
shading the pixels, the lighting can be shifted to FC. This can be

6

To appear in the Proceedings of IEEE VR 2008.

realized by using a multi-frame rate specific adaptation of deferred
shading.

Deferred shading [14] separates rasterization and shading of ge-
ometry into two rendering passes. This is accomplished by first
rendering the scene into multiple off-screen buffers storing per-
fragment parameters needed for lighting calculations (e. g. position,
normal as well as diffuse and specular reflectance information). The
second pass performs the shading by evaluating the lighting model
for each fragment using the stored per-fragment parameters. For
this pass only a full-screen quad is rendered executing the fragment
program responsible for the shading calculations. As a result the
shading calculations are completely decoupled from the geomet-
ric complexity of the scene, thus allowing a linear computational
complexity depending on the number of active light sources and
the number of pixels. Storing multiple per-fragment attributes gen-
erated during the first rendering pass is accomplished by using
the ARB_draw_buffers OpenGL extension, which provides a
mechanism for rendering to multiple target buffers instead of the
usual color (and depth) buffer. For deferred shading four-component
buffers are used. While 8 bits precision per component are sufficent
for the specification of color parameters, 16 bits per component for
the normal vectors yield better results [19].

It is easy to see that the two-pass algorithm for deferred shading
can be used within a multi-frame rate rendering setup. The geometry
pass is run on SC while the shading pass is run on FC. Along with
the depth value SC will also store the interpolated normal as well as
diffuse and specular reflectance coefficients of the current material
for each fragment. We use a 16 bits per-component float buffer
for the normal data and 8 bits per-component float buffers for the
material parameters. These buffers are transferred together with the
depth buffer to FC (cf. figure 8a to 8d).

FC executes the shading pass using the buffers from SC as input
textures for a fragment program applied to a full-screen rendered
quad. To reconstruct the 3D position of a fragment its window
position and depth value are used. Interactive geometries are then
rendered afterward on top of the base image (cf. figure 8e). Alter-
natively, they may also be rendered into the multiple render target
buffers from SC allowing for a unified lighting shader at the end of
FC’s render process.

Our multi-frame rate deferred shading method allows for user
interaction with light representations as well as light parameters
at interactive frame rates even though these manipulations affect
the entire scene. However, there is also a cost involved because
more buffers have to be transferred from SC to FC. For the original
multi-frame rate rendering method using digital composition 64 bits
per pixel are necessary; i. e. 32 bits color and 32 bits depth. The
minimum bit size per pixel for deferred shading is rather 144 bits:
32 bits depth, 48 bits normal (i. e. 16 bits per component), 32 bits
diffuse, and 32 bits specular color coeffecients. To increase the
numeric precision the normal values might even be stored as 32 bit
values per component instead of 16 bit values, which increases the
48 bits buffer size for the normals to 96 bits. This means that in any
case more data must be transferred from SC to FC.

Beside the depth and normal buffer generated by SC the remain-
ing buffers contain material descriptions. Instead of actually storing
the material parameters, it is much more efficient to store only mate-
rial indices on a per-fragment basis on SC. The material palette and
the stored indices are then used on FC to look up the actual material
parameters during the shading pass. This reduces the buffer-transfer
overhead to only depth, normal, and material index information. On
the other hand, a scene traversal is needed to associate all geometry
with its material index as well as generating a material palette texture.
This may be problematic in highly complex scenes or very dynamic
environments.

Apart from the increased buffer sizes of this approach it also
shifts computational load from SC to FC. In the original setup SC

(a) Normal buffer on SC. (b) Diffuse buffer on SC.

(c) Depth buffer on SC. (d) Specular buffer on SC.

(e) Final shading on FC.

Figure 8: Deferred shading in a multi-frame rate rendering setup. Figure (a) to
(d) show the content of the render targets from SC holding normals, diffuse
reflection coefficients, depth, and specular reflection parameters, respectively.
Figure (e) shows the final shading using the buffer contents from SC together
with the currently active lights as computed on FC. The model shown consists
of 3 M triangles. The clients were each running on an NVIDIA Quadro FX 5600
in active stereo mode using a screen resolution of 1600×1200 pixels. Frame
times were 80 ms for SC and 6 ms for FC. Four point lights were enabled on FC.

would not only have to transform and rasterize potentially large sets
of geometry but also apply shading on the resulting fragments as
well. With deferred shading these calculations are moved completely
to FC. Even though the complexity is limited by the screen reso-
lution, an actual shading program might implement an expensive
lighting model, which may decrease the frame rate on FC more
than is desirable. It is, however, possible to balance the cost for the
lighting model by decomposing the lighting process into currently
manipulated active lights and static lights, which are currently not
manipulated by the user. The shading for non-interactive lights can
be moved back to SC leaving only the active lights for processing on
FC. This approach bears the cost of requiring an additional render
target buffer on SC, which must also be transferred to FC, but may
outweigh the computational cost imposed by the choosen shading
model.

7 CONCLUSIONS AND FUTURE WORK

We have presented advanced multi-frame rate rendering techniques,
which are generally applicable to cluster-based as well as single-
system multi-frame rate rendering setups. The implementation of
multi-frame rate rendering on a single multi-GPU system simpli-
fies software development and significantly reduces buffer transfer
limitations. Visual artifacts which may occur when objects need
to migrate from the slow to the fast graphics card, and vice versa,
can be mostly hidden by intelligent state management. Our volume
rendering support makes use of the fact that object manipulation
inside a volume often affects only a limited number of pixels—and
only those pixels need to be updated on the fast client for every

7

To appear in the Proceedings of IEEE VR 2008.

frame. Our multi-GPU deferred shading approach computes per-
pixel normals as well as material information for the whole scene
on the slow client, while the actual shading is computed on the fast
client enabling interactive light manipulation at high frame rates.

Multi-frame rendering techniques can also be applied to systems
with only a single GPU by interleaving the rendering process of
the fast and slow client. The entire scene needs to be partitioned
such that each part requires approximately the same rendering time.
Rendering of these scene partitions is then distributed over multiple
frames of the fast client. An equal workload distribution is usually
difficult to achieve. However, in case deferred shading is used, the
partitioning depends mainly on the geometry complexity, which
is easier to manage. An explicit scene partitioning would not be
required for this approach if GPUs would support an efficient render
task scheduling mechanism. Interleaved rendering enables users
of single GPU and low-end graphics systems to benefit from the
improved interaction fidelity of our technique. In addition, since
buffer transfers have also a significant influence on single-system
implementations using multiple GPUs, it might be sometimes more
efficient to use interleaved rendering on a single GPU without the
need for any transfer operations through host memory.

Depth-image warping is used in image-based rendering to gener-
ate novel views from given reference images considering per-pixel
color and depth information, which is also available with our multi-
frame rate rendering technique. Post-rendering 3D warping [24]
is a particular warping technique, which focuses on increasing the
overall frame rate of interactive systems by generating new views
between the current view point and a predicted view point. This
approach has proven to be quite effective in exploiting view point
coherence. We are planning to combine post-rendering 3D warp-
ing with multi-frame rate rendering to improve performance for
navigation tasks.

Adapting, refining, and newly developing advanced rendering
techniques in the context of multi-frame rate rendering considerably
extends the potential of current graphics systems and enables the
interactive manipulation of extremely large virtual environments.

ACKNOWLEDGMENTS

We thank the NVIDIA Professional Solutions Group Europe for
continued support and hardware donations. This work was supported
in part by the VRGeo Consortium. Seismic data from Wytch Farm
oil field courtesy of BP, Premier Oil, Kerr-McGee, ONEPM, and
Talisman. The VW New Beetle model courtesy of Volkswagen AG.

REFERENCES

[1] J. P. Springer, S. Beck, F. Weiszig, D. Reiners, and B. Froehlich.
Multi-Frame Rate Rendering and Display. In Proceedings
IEEE Virtual Reality 2007 Conference, pages 195–202. IEEE,
2007..

[2] K. Akeley. Reality Engine Graphics. In Proceedings of ACM
SIGGRAPH 93, Computer Graphics Proceedings, Annual Con-
ference Series, pages 109–116. ACM, 1993..

[3] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal.
Infinitereality: A Real-Time Graphics System. In Proceed-
ings of ACM SIGGRAPH 97, Computer Graphics Proceedings,
Annual Conference Series, pages 293–303. ACM, 1997..

[4] NVIDIA GPU Programming Guide. URL http://developer.
nvidia.com/object/gpu_programming_guide.html. revision
2.5.0, 2006.

[5] E. Persson. Programming for Crossfire™. URL http://ati.amd.
com/developer/SDK/AMD_SDK_Samples_May2007/
Documentations/Programming_for_CrossFire.pdf. 2005.

[6] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting
Classification of Parallel Rendering. IEEE Comput. Graph.
Appl., 14(4):23–32, 1994..

[7] T. Cullip and U. Neumann. Accelerating Volume Reconstruc-
tion with 3D Texture Hardware. Technical Report TR93-027,
University of North Carolina, Computer Science Department,
1993.

[8] M. Levoy. Efficient Ray Tracing of Volume Data. Trans. on
Graphics, 9(3):245–261, 1990..

[9] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser.
Smart Hardware-Accelerated Volume Rendering. In Proceed-
ings of EG/IEEE TCVG Symposium on Visualization VisSym

’03, pages 231–238. IEEE, 2003.
[10] J. Krüger and R. Westermann. Acceleration Techniques for

GPU-based Volume Rendering. In Proceedings IEEE Visual-
ization 2003, pages 38–43. IEEE, 2003..

[11] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A Sim-
ple and Flexible Volume Rendering Framework for Graphics-
Hardware-based Raycasting. In Proceedings of Volume Graph-
ics 2005, pages 187–195. Sony Book, New York, 2005.

[12] NVIDIA SDK. URL http://developer.nvidia.com/object/
sdk_home.html.

[13] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and
D. Weiskopf. Real-Time Volume Graphics. A. K. Peters, Ltd.,
Natick, MA, USA, 2006.

[14] T. Whitted and D. M. Weimer. A Software Test-Bed for the
Development of 3-D Raster Graphics Systems. In Computer
Graphics (Proceedings of ACM SIGGRAPH 81), volume 15(3),
pages 271–277. ACM, 1981..

[15] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt.
The Triangle Processor and Normal Vector Shader: A VLSI
System for High Performance Graphics. In Computer Graphics
(Proceedings of ACM SIGGRAPH 88), volume 22(4), pages
21–30. ACM, 1988..

[16] T. Saito and T. Takahashi. Comprehensible Rendering of
3-D Shapes. In Computer Graphics (Proceedings of ACM
SIGGRAPH 90), volume 24(4), pages 197–205. ACM, 1990..

[17] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-Speed
Rendering Using Image Composition. In Computer Graphics
(Proceedings of ACM SIGGRAPH 92), volume 26(2), pages
231–240. ACM, 1992..

[18] A. Lastra, S. Molnar, M. Olano, and Y. Wang. Real-Time
Programmable Shading. In SI3D ’95: Proceedings of the 1995
Symposium on Interactive 3D Graphics, pages 59–66. ACM,
1995..

[19] S. Hargreaves and M. Harris. Deferred Shading.
URL http://developer.nvidia.com/object/6800_leagues_
deferred_shading.html. 2004.

[20] H. Tramberend. Avocado: A Distributed Virtual Reality Frame-
work. PhD thesis, Universität Bielefeld, 2003.

[21] J. Rohlf and J. Helman. IRIS Performer: A High Performance
Multiprocessing Toolkit for 3D Graphics. In Proceedings of
ACM SIGGRAPH 94, Computer Graphics Proceedings, Annual
Conference Series, pages 381–394. ACM, 1994..

[22] D. Reiners. OpenSG: A Scene Graph System for Flexible and
Efficient Realtime Rendering for Virtual and Augmented Real-
ity Applications. PhD thesis, Technische Universität Darmstadt,
Fachbereich Informatik, 2002.

[23] S. Benford and L. Mariani. Requirements and Metaphors of
Shared Interaction. COMIC Project, Esprit Basic Research
Project 6225, Deliverable, Lancaster University, October 1993.

[24] W. R. Mark, L. McMillan, and G. Bishop. Post-Rendering 3D
Warping. In SI3D ’97: Proceedings of the 1997 Symposium
on Interactive 3D Graphics, pages 7–16. ACM, 1997..

8

http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/object/gpu_programming_guide.html
http://ati.amd.com/developer/SDK/AMD_SDK_Samples_May2007/Documentations/Programming_for_CrossFire.pdf
http://ati.amd.com/developer/SDK/AMD_SDK_Samples_May2007/Documentations/Programming_for_CrossFire.pdf
http://ati.amd.com/developer/SDK/AMD_SDK_Samples_May2007/Documentations/Programming_for_CrossFire.pdf
http://developer.nvidia.com/object/sdk_home.html
http://developer.nvidia.com/object/sdk_home.html
http://developer.nvidia.com/object/6800_leagues_deferred_shading.html
http://developer.nvidia.com/object/6800_leagues_deferred_shading.html

