

HECTOR
Scripting-Based VR System Design

Abstract

Gordon Wetzstein1,3 Moritz Göllner2,3 Stephan Beck3 Feliz Weiszig3 Sebastian Derkau3 Jan P. Springer3 Bernd Fröhlich3

1University of British Columbia 2Ceetron GmbH 3Bauhaus-Universität Weimar

NetworkingModule-Based Design

Discussion References

HECTOR’s distribution mechanism is implemented on IP multicasting. New
applications broadcast a join request to all existing stations and are then updated
with the current state of the virtual environment using reliable TCP connections.
Updates are multicast with unreliable UDP messages. For distributed physically-
based applications generally only one station runs the physics engine and
redistributes the results of the simulation to other stations, even though
individual objects are connected to input devices locally.

Local events are spread to all
HECTOR stations in the network
and handled as if they were
created locally. PYTHON’s pickle
interface provides a powerful
way of event serialization.

Modern VR systems embrace the idea of scripting interfaces for rapid prototyping of applications. HECTOR goes one step
further: the entire core of the VR system is written in PYTHON, easily gluing interchangeable high-performance C ++ libraries,
a module-based system infrastructure, and a scripting-based application layer. Thus, the time consuming and error prone
compile-debug cycle for application and system development becomes obsolete — both the infrastructure and the application
layer can be extended or modified even at run-time.

Individual HECTOR modules are threads that implement functionality for
rendering, 3D sound synthesis, event distribution, physical simulation, and
input device management. Most of these modules utilize existing libraries such
as OpenGL|Performer [Rohlf and Helman], OpenSceneGraph
(www.openscenegraph.org), Open Dynamics Engine (ODE, www.ode.org), or
Spread (www.spread.org). A specific module implementation can be chosen in a
configuration script depending on availability and operating system. When the
system is started only the micro kernel and a communication module are
initialized. All other modules are loaded upon request by newly created objects
in the virtual environment. All objects have module-dependency lists that
trigger reference counters in the kernel which also unloads unnecessary
modules.

All communication within the system is event
driven. Whenever an object is created,
destroyed, or its attributes are modified events
are sent to all distributed components that
have been registered in the communication
module for this event type.

HECTOR is a lightweight, open source, scripting-based, distributed, and platform independent VR system. It is written in
PYTHON and glues together several high-performance C ++ libraries. Extensions to the framework can be prototyped
rapidly during runtime. HECTOR is freely available at www.sourceforge.net/projects/hector. The system has been
successfully tested with various applications, such as a distributed physically-based buggy racer or a virtual pool game that
is displayed on a TFT display horizontally mounted on a table and controlled by a tracked real pool queue.

Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., and Cruz-Neira, C.
2001. VR Juggler: A Virtual Platform for Virtual Reality Application
Development. In Proc of IEEE VR 2001, pp. 89–97.

Blach, R., Landauer, J., Rosch, A., and Simon, A. 1998. A Highly Flexible
Virtual Reality System. Future Generation Computer Systems 14, 3–
4, pp. 167–178.

Rohlf, J., and Helman, J. 1994. IRIS Performer: A High Performance
Multiprocessing Toolkit for 3D Graphics. In Proc of ACM SIGGRAPH.

Tramberend, H. 1999. Avocado: A Distributed Virtual Reality Framework. In
Proc of IEEE VR ’99, pp. 14–21.

Distributed physically-based buggy racer with 2
participating staions on a single computer.

Villiard game controlled by tracked props.

