HECTOR - Scripting-Based VR System Design

Gordon Wetzstein'> Moritz Gollner>* Stephan Beck® Felix Weiszig® Sebastian Derkau® Jan P. Springer® Bernd Frohlich?

! University of British Columbia 2 Ceetron GmbH 3 Bauhaus-Universitit Weimar

Abstract

Modern VR systems embrace the idea of scripting interfaces for
rapid prototyping of applications. HECTOR goes one step further:
the entire core of the VR system is written in PYTHON, easily gluing
interchangeable high-performance C++ libraries, a module-based
system infrastructure and a scripting-based application layer. Thus,
the time consuming and error prone compile-debug cycle for ap-
plication and system development becomes obsolete — both, the
infrastructure and the application layer, can be extended or modi-
fied even at run-time.

Keywords: Virtual Reality, Scripting, Distributed Graphics

Introduction

Recently, a variety of VR systems [Blach et al. 1998; Tramberend
1999; Bierbaum et al. 2001] have been proposed that allow appli-
cations to be rapid-prototyped via script interfaces. Due to their
interpreted nature, scripting languages are developer friendly, easy
to debug, and applications are modifiable during execution. While
most of the existing VR systems provide scripting interfaces, their
internal structure often follows a monolithic design principle, which
makes changing of individual system parts, such as the renderer or
physics engine, problematic.

VR Juggler [Bierbaum et al. 2001] introduced a modular design
that allows the system to be extended quite easily. Hector follows
a new design paradigm based on the same idea: while time-critical
system components are still implemented in C++, a scripting-based
glue layer provides a module loading and unloading mechanism,
distributed event-driven communication within the system as well
as an application development interface. Thus, novel design con-
cepts for VR systems can be prototyped in a light-weight scripting
environment during run-time.

Concepts

Individual HECTOR modules are threads that implement function-
ality for rendering, 3D sound synthesis, event distribution, physi-
cal simulation and input device management. Most of these mod-
ules utilize existing libraries such as OpenGL|Performer [Rohlf and
Helman ], OpenSceneGraph (http://www.openscenegraph.org/),
Open Dynamics Engine (ODE, http://www.ode.org/), or Spread
(http://www.spread.org/). A specific module implementation can
be chosen in a configuration script depending on availability and
operating system. When the system is started only the micro kernel
and the communication module are initialized. All other modules
are loaded upon request by newly created objects in the virtual en-
vironments. All objects have module-dependency lists that trigger
reference counters in the kernel which also unloads unnecessary
modules.

All communication within the system is event driven. Whenever
an object is created, destroyed or its attributes are modified events
are distributed to all components that have been registered in the
communication module for this event type. This allows a natural
extension for distributed applications where local events are spread
to all HECTOR stations in the network and handled as if they were
created locally. PYTHON’s pickle interface provides a powerful way
of event serialization where even internal references to PYTHON ob-
jects are automatically kept consistent within remote applications.

Figure 1: Two Hector applications: a physically-based buggy racer (a) and a virtual
pool game (b).

HECTOR’s distribution mechanism is implemented on IP mul-
ticasting. New applications broadcast a join request to all existing
stations and are then updated with the current state of the virtual en-
vironment through reliable TCP connections. In order to guarantee
a consistent environment in realtime all event changes are multicast
with unreliable UDP messages. Furthermore, the network module
keeps a hash table that associates each distributed object attribute
to its most recent change event. This ensures that the attributes
can be internally updated independently of how fast they can be
send and that no deprecated information floods the network. For
distributed physically-based applications generally only one station
runs the physics engine and redistributes the results of the simula-
tion to other stations, even though individual objects are connected
to input devices on those.

Results and Discussion

HECTOR is a lightweight, open source, scripting-based, dis-
tributed, and platform independent VR system. It is written in
PYTHON and glues several high-performance C++ libraries. Ex-
tensions to the framework can be prototyped rapidly during run-
time. HECTOR is freely available at www.sourceforge.net/projects/
hector. The system has been successfully tested with various ap-
plications, such as a distributed physically-based buggy racer (cf.
figure 1) or a virtual pool game that is displayed on a TFT display
horizontally mounted on a table and controlled by a tracked real
pool queue.

References

BIERBAUM, A., JUST, C., HARTLING, P., MEINERT, K., BAKER,
A., AND CRUZ-NEIRA, C. 2001. VRJuggler: A Virtual Plat-
form for Virtual Reality Application Development. In Proceed-
ings of IEEE Virtual Reality 2001 Conference, IEEE Computer
Society, 89-97.

BLACH, R., LANDAUER, J., ROSCH, A., AND SIMON, A. 1998.
A Highly Flexible Virtual Reality System. Future Generation
Computer Systems 14,3-4, 167-178.

ROHLF, J., AND HELMAN, J. IRIS Performer: A High Perfor-
mance Multiprocessing Toolkit for 3D Graphics. In Proceedings
of ACM SIGGRAPH 94.

TRAMBEREND, H. 1999. Avocado: A Distributed Virtual Reality
Framework. In Proceedings of IEEE Virtual Reality *99 Confer-
ence, IEEE Computer Society, 14-21.


http://www.openscenegraph.org/
http://www.ode.org/
http://www.spread.org/
www.sourceforge.net/projects/hector
www.sourceforge.net/projects/hector

