Ray Casting of Trimmed NURBS Surfaces on the GPU
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ABSTRACT

We propose a conceptual extension of the standard triangle-based
graphics pipeline by an additional intersection stage. The corre-
sponding intersection program performs ray-object intersection tests
for each fragment of an object’s bounding volume. The resulting hit
fragments are transferred to the fragment shading stage for comput-
ing the illumination and performing further fragment operations. Our
approach combines the efficiency of the standard hardware graphics
pipeline with the advantages of ray casting such as pixel accurate
rendering and exact normals as well as early ray termination.

This concept serves as a framework for the implementation of
an interactive ray casting system for trimmed NURBS surfaces.
We show how to realize an iterative ray-object intersection method
for NURBS primitives as an intersection program. Convex hulls
are used as tight bounding volumes for the NURBS patches to
minimize the number of fragments to be processed. In addition,
we developed a trimming algorithm for the GPU that works with
an exact representation of the trimming curves. First experiments
with our implementation show that real-time rendering of medium
complex scenes is possible on current graphics hardware.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, Surface, Solid, and Object
Representations; 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

Keywords: intersection shader, ray casting, parametric surfaces,
NURBS, Iterative Bézier Clipping, high-quality rendering, pro-
grammable graphics hardware

1 INTRODUCTION

Parametric surfaces are widely used in Computer Aided Design
(CAD) and, to a lesser degree, in Digital Content Creation (DCC)
systems. Non-Uniform Rational B-Spline (NURBS) surfaces are
the most common representative of this type of surface. NURBS
provide local and intuitive control, have a compact representation,
and they are well suited for a large number of problems. In most
existing systems the parametric representation of NURBS is con-
verted into triangle meshes for interactive rendering on graphics
processing units (GPU). Trimming complicates the tessellation due
to the required fine sampling of trim boundaries. This process is
time consuming — nightly builds are commonly used to generate
high quality meshes for CAD models. In addition, the triangulated
representations have high memory requirements. On-the-fly tessella-
tion approaches on the CPU [Guthe et al. 2002] and recently on the
GPU [Guthe et al. 2005] have been introduced, which recompute a
high quality approximation of the surface whenever necessary. How-
ever, if a pixel-accurate representation is required, the number of
generated triangles can be quite high and may demand level-of-detail
techniques.

In this paper we present the concept of an extended graphics
pipeline, which allows the rendering of complex primitives such
as parametric surfaces and implicit surfaces. Our pipeline adds
an intersection stage right after the rasterization stage and before

Figure 1: Perfect patch contours and intersections: ray casted scene of NURBS
surfaces running with 20 Hz at a resolution of 1280 x 1024 pixels on a current GPU.

the fragment program. The rasterization unit generates the frag-
ments (candidate pixels) corresponding to the bounding volume of
an object to be displayed. The intersection stage reconstructs the cor-
responding ray from the viewpoint for each fragment and computes
the intersection with the surface contained in the bounding volume.
The intersection point and normal are passed on to the fragment pro-
gram. This seamless integration into the graphics pipeline combines
its high efficiency with the advantages of ray casting. In particular
it enables pixel-accurate contours and intersection curves as well
as accurate normals. A single pass implementation, front-to-back
sorting of the objects, and direct access to the current depth buffer
enables a two-stage early ray termination check, which leads to an
efficient and scalable ray casting implementation.

One of the most challenging graphics primitives for the imple-
mentation with our extended graphics pipeline are trimmed NURBS
patches. Their high algebraic degree requires a numerical inter-
section approach and thus a complex intersection program. Our
implementation uses Newton Iteration, a method sensitive to the cho-
sen initial value. On the CPU the coherence of neighboring rays can
be exploited to provide initial values. On the GPU rays are processed
in parallel without access to the neighboring pixels’ information.
Instead of using ray coherence we make use of the geometrical con-
text within the Newton Iteration. In addition to the computationally
expensive ray-object intersection, high quality trimming based on
NURBS trimming curves needs to be supported. However, if rays
can be intersected with NURBS patches on the GPU, they certainly
can be intersected with NURBS curves as well. We use the idea of
a point-in-polygon test to classify the parametric coordinates of an
intersection point with respect to the Bézier representation of the
original NURBS trimming curves.

This paper demonstrates that direct real-time rendering of
trimmed NURBS patches has become possible with current graph-
ics hardware. We show how to efficiently implement ray casting
for these types of surfaces in a single pass algorithm, which also
includes pixel-precise trimming against an exact representation of
the trim curves. For the implementation of our system, we intro-
duce the concept of an extended graphics pipeline, which allows



the direct treatment of graphics primitives that can be intersected
with a ray. The actual implementation maps the intersection stage
to the first part of the fragment program. The experiences with our
system convinced us that our approach will be an ideal solution for
the next generation of CAD and other NURBS-based systems. No
approximations are necessary any more, neither for NURBS patches
and their normal vectors nor for the frequently used trimming curves.
The direct support of trimmed NURBS models and other higher
order primitives are a powerful addition to the standard hardware
rendering pipeline, since they greatly simplify the implementation
of many graphics applications.

2 RELATED WORK

Ray tracing and ray casting of parametric surfaces [Kajiya 1982;
Toth 1985; Martin et al. 2000] and implicit surfaces [Blinn 1982;
Hanrahan 1983] have been demonstrated but these approaches do
not provide real-time performance on commodity hardware. Re-
cently, several approaches for ray tracing and ray casting on GPUs
have been proposed [Purcell et al. 2002; Foley and Sugerman 2005;
Thrane and Simonsen 2005]. However, these techniques limit them-
selves to triangulated geometry, and the results reported so far do not
show the speedup expected when comparing the raw performance
of CPUs and GPUs. In contrast to these techniques, our approach
uses the available resources of current GPUs efficiently.

2.1 Ray Tracing of Parametric Surfaces

Algorithms for ray-patch intersection can be divided into four broad
categories: subdivision-based algorithms, solely iterative, numerical
techniques, algebraic methods, and Bézier Clipping. Subdivision-
based algorithms [Whitted 1980; Rogers 1985; Woodward 1989]
use the convex hull property of parametric patches to determine the
ray-patch intersection by subdividing a polygonal approximation of
the surface up to a given precision. Numerical root finding methods
have been employed, e. g., by Toth [1985] and Martin et al. [2000];
both were using Newton Iteration. Kajiya [1982] and Manocha
[1994] used algebraic techniques, i. e. resultant-based elimination,
to simplify the ray-patch intersection.

One of the first algorithms for computing the intersection be-
tween a ray and a surface patch was presented by Kajiya [1982].
He demonstrated that a ray-patch intersection test can be reduced
to the problem of finding the roots of a univariate polynomial. La-
guerre’s method was employed for finding all roots because of its
cubic convergence and the guarantee of finding an intersection. Un-
fortunately, because of its algorithmic complexity, this algebraic
technique cannot be employed for higher order surfaces on current
graphics hardware.

Toth [1985] presented results in terms of solving a general non-
linear system of equations using multivariate Newton Iteration. He
solved the problem of finding an initial value by employing tech-
niques from Interval Analysis. Unfortunately computing interval
extensions results in subdivision of the surface, which is too complex
to be implemented efficiently for a whole scene on current graphics
hardware.

The Bézier Clipping algorithm for ray-patch intersection was first
demonstrated by Nishita et al. [1990]. Bézier Clipping integrates
subdivision-based and numerical methods to compute the intersec-
tion between a ray and a Bézier patch. The algorithm and its recent
enhancements by Efremov et al. [2005] uses the convex hull property
of parametric patches to determine intervals which are guaranteed to
not include any intersection point. This improves the convergence
rate compared to subdivision-only techniques while it also allows
for finding the nearest intersection point. Nishita et al. [1990] also
used Bézier Clipping for trimming patches. We have adapted and ex-
tended this subdivision method for ray-curve intersection and show

an implementation on current GPUs.

The approach for ray-patch intersection of Martin et al. [2000] is
very similar to ours. An axis aligned bounding box hierarchy was
employed to reduce the number of intersection tests and to provide
initial guesses for the Newton Iteration. We do not use a hierarchy
and we use convex hulls as bounding volumes. Martin et al. [2000]
use a polygonal approximation of the trim region to simplify the
classification of intersection points.

Streaming SIMD extensions on current CPUs combine the power
of single instructions executed on multiple data with the conventional
programming model of CPUs, i. e. a mature tool chain supporting
the development. Benthin et al. [2004] show that using streamlined
arrangement of data along with the advantages of ray tracing exhibits
faster rendering times of cubic Bézier and Loop subdivision surfaces
than conventional CPU approaches. Geimer and Abert [2005] show
interactive ray casting of trimmed bi-cubic Bézier surfaces. Both
approaches exhibit lower memory requirements compared to highly
triangulated models.

2.2 GPU-based Techniques

Guthe et al. [2005] propose a GPU-based algorithm for rendering
trimmed rational bi-cubic Bézier patches. NURBS and T-Spline
surfaces of arbitrary degree are supported by approximating them
with bi-cubic Bézier patches. The two-pass algorithm seamlessly
integrates into the standard graphics pipeline and generates vertices
on the surface in the vertex shader through evaluation of the patch
at a uniform grid in parameter space, with grid size adapted to the
current view and the curvature of the patch, from which a mesh is
easily generated. The individual tessellation of the patches requires
an explicit treatment of cracks, which introduces further complexity.
For trimming, textures containing the discretized trim curves are
employed, which are updated based on the current viewing parame-
ters. Their approach is based on rendering triangles and is therefore
vertex limited, though the view dependent re-tessellation generates
high quality images with very little artifacts. The approximation of
trimming curves based on texture grids requires very high resolution
if discontinuities of the trimming curves need to be reproduced accu-
rately. In addition, the intersection of curved surfaces requires very
fine tessellation along intersection curves to avoid visible artifacts.
These situations are difficult to detect.

Purcell et al. [2002] were the first demonstrating how to im-
plement a full ray tracing system for static scenes entirely on the
GPU. They showed that consumer-level graphics hardware, as it
is available today, can be used for ray casting and ray tracing of
triangle-based models. In their work they employed a uniform grid
as a GPU-based acceleration structure which has been built in a
preprocessing step on the CPU. Such a 3D structure is not necessary
for the limited case of ray casting on the GPU, since rasterization
can be used efficiently to identify a good candidate set of rays for
each object.

Gumbhold [2003] renders ellipsoids on the GPU. He projects
a quad for each ellipsoid and interpolates the parameters for the
ray-ellipsoid intersection using the rasterization unit. Thus the ray-
ellipsoid intersection for each pixel requires only very few simple
operations, which results in high frame rates. A similar approach
was implemented in older graphics hardware to support the scan
conversion of spheres. This work is conceptually similar to our
technique, since we also project a proxy geometry for generating
the candidate rays for our objects. However we cannot use scan
conversion for computing the intersection with NURBS surfaces.

The introduction of an intersection stage into the graphics pipeline
as well as the corresponding intersection program is mainly a con-
ceptual contribution of our work. The intersection stage requires that
the ray through each pixel of the projection of a bounding volume
is reconstructed and intersected with an object. The depth value
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Figure 2: Overview of the algorithm stages and their relation to stages in the extended
graphics pipeline.

of the actual intersection is written into the depth buffer instead
of the depth value of the rasterized bounding volume. Kriiger and
Westermann [2003] and later Hadwiger et al. [2005] have also recon-
structed the ray equation for each pixel from a rendered bounding
box of volume data. They use this information to loop through the
volume in the fragment program. They have not generalized the
concept to multiple different objects and they did not introduce the
concept of an intersection program or an intersection stage.

3 ALGORITHM

The algorithm starts with a preprocessing phase where the parametric
data for each NURBS surface is stored into textures. This includes
knot vectors, control points, and other auxiliary information. Next,
vertex and fragment programs are generated dependent on the degree
of each NURBS patch. The intersection program is implemented
as part of the fragment program. Code for trimming is included if
the surface domain is trimmed. The control points of the trimming
curves, in our case Bézier curves derived from the original NURBS
representations, are also stored into textures. In order to provide
a bounding volume for each surface, sub-patches are generated by
subdividing each surface patch. For each sub-patch the convex hull
of its control points is computed. The corresponding parameter
range is used to generate initial guesses for the Newton Iteration.
The preprocessing phase would be able to run incrementally frame
by frame because of low computational cost.

Figure 2 provides an overview of the stages of our algorithm,
which are executed for each primitive per frame. Rendering a
NURBS patch is initiated by rendering the convex hulls of its sub-
patches. If early ray termination is enabled the convex hulls are
sorted front-to-back. The ray originating at the front face of the
convex hull and its direction is reconstructed in object space for each

vertex in the vertex program. These values are interpolated in the
raster unit yielding the correct ray equation for each fragment. The
intersection program performs the early ray termination, a test if the
intersection with the convex hull is farther away than the nearest
intersection point encountered so far. If this test fails the intersection
computation with the surface is performed. After that, the patch is
trimmed. The intersection found in parameter space is classified
against the trim region by counting the intersections of a ray from
this point with all trim curves. A variation of Bézier Clipping is
used for the ray-curve intersection test. All fragments that are not
discarded by the trimming stage are passed on to the fragment pro-
gram for shading computation. This includes the surface normals
which are already calculated during the ray-surface intersection.

GPU Limitations Current GPUs only provide a subset of the
functionality commonly found on CPUs. The most important lim-
itations, which makes the implementation of complex single-pass
programs a difficult task, are:

— The instruction count is effectively limited to 4096 instructions.

— There is only a small number of registers available, e. g. current
graphics boards from Nvidia have 32 registers and there is no
further writable random access memory.

— Because of the parallel nature of the fragment processing units
coherence of initial values for the Newton Iteration between
neighboring pixels/rays is difficult to exploit.

4 SURFACE RENDERING

4.1 Notation

A non-uniform rational B-spline (NURBS) curve is defined in ho-
mogeneous form over 7 € [0, 1] by

Celt)= Y PN (1)
i=0

where P; € R? x R are homogeneous control points and Nﬁ SRR
are B-spline basis functions of degree p defined over a knot vector
= (1) 1. 1, € [0, 1]. For Bézier curves the knot vector simplifies
tofg=...=t,=0andt,| =... =242 = 1. The order o of the
curve is defined as p + 1; see [Piegl and Tiller 1997] for details.
Control points consists of a three dimensional position and a weight.
Only the position is used for convex hull computations.

A tensor product NURBS surface is defined in the following way:

n m
S(l/hV) = ZOZOPI’JNgl (M)N‘lg] (V)v
i=0 j=

with two knot vectors 7, and 7, for the parameter axes and a control
point mesh P, ; of size (n+1) x (m+1).

Following Kajiya [1982] we represent a ray in its implicit form
by the intersection of two planes P; and P,. The ray is therefore
given by

Pl Z(}’ll,d]) and P2:(n2,d2),
where n; and n; are the normal vectors and d; and d; are the dis-
tances of the planes from the origin. The ray-patch intersection
equation is then given by

ny-Su,v)+d
F(u,v) = ( n;SEM,Vg"‘d; ):0.



4.2 Evaluation of Curves and Surfaces

In order to solve F (u,v) = 0 the surface and its partial derivatives
have to be evaluated. This can be done through direct evaluation
of the defining function. However, other algorithms such as the
de Casteljau for Bézier curves and surfaces as well as the de Boor al-
gorithm for B-spline curves and surfaces exist. They exhibit several
properties which make them more suitable for our purposes [Farin
1990]. In particular, these algorithms are numerically robust since
they mainly consist of repeated convex combinations. From a com-
putational point of view the algorithms allow to calculate the partial
derivatives while incurring only little additional computational cost;
in our GPU implementation de Boor’s algorithm involves a binary
search to find the knot vector range for the respective parameter
when evaluating a curve. When evaluating a curve C(t), t € [0,1]
at rg, one step of the de Casteljau algorithm subdivides C into two
sub-curves Cy(t), t € [0,tg], and C,(t), t € [to, 1], and calculates the
corresponding control points. This property is exploited for trim-
ming, as described in section 5.

To implement the NURBS evaluation on the GPU, the number
of required registers is the critical factor. The evaluation of a curve
needs only N registers with N being the order of the curve. Evaluat-
ing a tensor-product surface with curves of order M and N requires
M + N registers. M + 2N (N < M) registers are necessary to addi-
tionally compute the partial derivatives during surface evaluation.

4.3 Ray-Patch Intersection

Most algorithms for intersecting a ray with a parametric patch cannot
be implemented on current GPUs as they either use an amount
of memory which is not bound by the degree of the patch, e.g.
subdivision methods, or have excessive resource requirements, e. g.
algebraic elimination methods for degrees higher than bi-cubic.

We chose Newton Iteration because only evaluation of function
values and partial derivatives are required. Additionally, the memory
requirements are low because only the parameter values of one
iteration step need to be kept. It converges quadratically if the initial
guess is close enough to the solution. This makes it superior to other
iterative methods such as Bisection which converges at a linear rate.
However, if the initial guess is not close to the solution neither the
quadratic convergence nor finding the root are guaranteed. We will
discuss this in more detail in section 4.4.

The roots of F(u,v) are the parameter values of ray-patch inter-
sections. They can be found with Newton Iteration by starting with
a guess (ug, vO)T. Each step then takes the form

(M,V)]Z-Jrl = (u,v),{ _JilF(ukvvk)‘

The Jacobian J of F at (u,v)7 is given by
J= ny-Sy  np-Sy
S\ mSu nmaSy

where S, and S, are the partial derivatives of S at (u,v)”. The inverse
of the 2 x 2 matrix J can be computed directly. The Newton Iteration
terminates if the absolute value of F falls below a tolerance €, i.e.
|F (u,v)| < € or the maximum number of iterations is exceeded. The
image sequence in figure 3 exemplary visualizes the influence of the
number of iterations during the Newton Algorithm.

For an efficient implementation, in particular for making use of
early ray termination, Newton Iteration has to be implemented in a
single rendering pass. Newton Iteration only adds a constant amount
of registers to the complexity of the surface evaluation. Therefore
computing the partial derivatives simultaneously with a surface point
is still bound to M + 2N registers, with N < M.

(b) Max. Iteration = 2

v

(¢) Max. Iteration = 3 (d) Max. Iteration = 4
Figure 3: Convergence of the Newton Iteration for different maximum numbers of
iterations; from (a) to (d) the number of iterations increases from one to four (initial
values were generated using view-independent uv-texturing and 2 x 2 uniform
subdivision).

4.4 Initial Values

A good choice of the initial value is situated close to the parameter
value corresponding to the first intersection point of a ray with the
surface. The choice of the initial values directly affects visual quality
and performance. We developed two complementary approaches to
generate initial values: subdivision of the convex hull of a NURBS
patch and uv-texturing of the bounding volume.

Subdivision of the Convex Hull Following the approach
of Martin et al. [2000] multiple bounding volumes are used; each
being the convex hull of a sub-patch and each providing an initial
guess for its enclosed part of the NURBS surface. For each NURBS
surface the control mesh is subdivided by knot insertion [Piegl and
Tiller 1997] until a given depth is reached or the sub-patch becomes
sufficiently flat. For each sub-patch the convex hull of its control
mesh is computed using the Quick Hull algorithm [Barber et al.
1996]. The parameter range for each sub-patch is restricted to the
parameter range between the inserted knots. The center of this
parameter range is a suitable initial guess because the union of the
convex hulls of all sub-patches for a surface patch approximate the
patch with quadratically decreasing distance error as the subdivision
increases [Piegl and Tiller 1997]. The convex hull is also used by
the uv-texturing methods described below.

The number of rays missing the enclosed surface is reduced with
the subdivision due to the tight approximation of the patch through
the convex hulls of its sub-patches. Thus the convex hulls employed
in our work provide an additional advantage over the axis-aligned
bounding boxes used in [Martin et al. 2000]. Although convex
hulls require a higher number of triangles than bounding boxes,
processing vertices is not our limiting factor.

uv-Texturing We have developed a view-independent and a
view-dependent technique for computing an initial guess for the
Newton Iteration. The view-independent method interpolates pa-
rameter values corresponding to the vertices of the convex hull of
the control mesh. Since the convex hull is an approximation of the
NURBS surface, the parameter values interpolated along its surface
provide a better approximation of the intersection than the fixed
midpoint approach described earlier.

In order to include the ray direction in the calculation of the
initial guess the view-dependent method uses the vertex program to
intersect a ray from the viewpoint through each vertex of the convex



hull of the contained patch. Newton Iteration is also used for this ray-
patch intersection. The start values for the vertex rays are obtained
from parameter values of the corresponding control points similar to
the view-independent method. The computed parameter values for
the vertices are then interpolated across the surface of the convex
hull and provide the initial guess for each generated fragment.

4.5 Early Ray Termination

The current hardware rendering pipeline uses the early-Z test to
avoid unnecessary shading operations. Fragments are discarded
before they reach the fragment processors if they will fail the Z-
test [Montrym and Moreton 2005; ATI 2005]. In the extended
graphics pipeline as proposed in this paper, a similar test, performed
before the intersection shader, could be even more beneficial. The
minimal possible depth value of a ray-surface intersection is given
by the intersection point with its convex hull. A fragment can be
discarded if the depth value generated by rasterizing the convex hull
is greater than the one stored in the depth buffer. In this case the
intersection test of the corresponding ray with the contained object
is not necessary. Even if this approach is not identical to the early
ray termination used with CPU-based ray tracing systems, its effect
is similar. Thus, we will use this term also in the context of the
extended rendering pipeline.

Unfortunately, when implementing the intersection program as
part of a fragment program, the early-Z test available on current
hardware cannot be used: the depth value of the ray-object inter-
section is returned from the fragment shader instead of the depth
value generated by the rasterization of the convex hull. Modifying
the depth value in the fragment program disables the early-Z test
on current graphics hardware. An alternative is to implement the
functionality of early-Z through the programmable pipeline. This
requires that the current depth buffer is also used as a texture and
the early ray termination test is implemented as a branch in the
fragment program, skipping the whole program if any possible in-
tersection is behind the already encountered ones. However, the
result of reading from a texture which is part of the active frame
buffer is neither defined in OpenGL nor in Direct3D. In practice,
current graphics hardware supports reading from the active depth
buffer even if there is no guaranty that the values retrieved from
a texture fetch are the currently correct values of the depth buffer.
The parallelism of the processing units in the GPU as well as the
missing texture-cache-memory synchronization may yield this in-
consistency. Fortunately, in the case of early ray termination this
may only incur some additional intersection tests but the regular
depth test, performed after the fragment program, ensures that the
generated image is artifact free. In particular, the value retrieved by
a texture lookup into the depth buffer is always greater or equal to
the currently correct depth value. By discarding rays whose minimal
possible intersection depth is greater than the depth value retrieved
from the texture lookup into the depth buffer, our implementation of
early ray termination is conservative and the standard depth buffer
test ensures depth consistency in the rendered scene.

A second early depth test can be used after the ray intersection is
computed. If a ray hits a surface, the exact depth of the intersection
point is computed and compared to the depth value already fetched
from the depth buffer for the first early-Z test. If the fragment is
hidden then the trimming and shading can be skipped.

5 DIRECT TRIMMING OF NURBS SURFACES

Trimming is the process of removing parts of a surface patch by
specifying one or more non-intersecting trim curves in the parameter
domain of the surface. These curves are typically NURBS curves
and they form the boundary of the trim region. Parameter values

0/1 surface parameter space [u,v] 1)1 d

010 — 110
(a) (b)

Figure 4: Nishita transformation.

inside the trim region do not belong to the domain of the patch and
corresponding surface points are excluded from the surface.

We employ a technique similar to the point-in-polygon test for
classifying points in the (u,v) domain with respect to the trim region.
A ray is generated in the parameter domain of the patch originating
at (up,v,) and pointing in an arbitrary direction. This ray is inter-
sected with all relevant trimming curves and if the total number of
intersections is odd, the surface point S(u,v,) is trimmed away.

We developed an iterative version of the Bézier Clipping algo-
rithm [Nishita et al. 1990] for the ray-trim curve intersection. The
original version cannot be implemented on current graphics hard-
ware due to its recursive nature. The NURBS representation of the
trimming curves needs to be converted into Bézier form for Bézier
Clipping, which provides an exact representation of the original
curves. Our Iterative Bézier Clipping has the capability to determine
all ray-curve intersections in the order of an increasing curve param-
eter. It uses the curve evaluation already described in section 4.2.

5.1 Bézier Clipping

Bézier Clipping is a robust root finding algorithm used in [Nishita
et al. 1990] for trimming and rendering of Bézier surfaces. For
computing ray-curve intersections the algorithm requires that each
parametric Bézier curve C is transformed into a Bézier polynomial d.
The roots of d are located at the ray-curve intersections as shown in
figure 4a. The graph D(t) = (¢,d(t)) € R? (figure 4b) can be thought
of as an unwound version of the curve along the parameter ¢ with
evenly spaced Bézier points D; = (i/N,d;) where N is the degree of
the curve and d; is the distance of the control point P; perpendicular
to the ray.

The roots of the Bézier polynomial d are determined by repeatedly
clipping away parameter regions which do not contain any root. Both
Bézier Clipping and Iterative Bézier Clipping start by clipping from
the interval bounds of the original curve’s domain, resulting in a
connected sub-interval in each iteration. However, if this interval
does not shrink by a specified amount, it is split and Bézier Clipping
starts recursively for each part. Iterative Bézier Clipping has been
developed to avoid the recursion and to work with constant memory
requirements for the interval split.



// find the largest slope
for (i = 1..N)
slope = slope( D[il], D[0] )

if ((sign(d[i]) !'= sign(d[0])) and (slope < current))
current = slope
k=i

// find the predecessor with smallest slope
for (i = 0..k)
slope = slope(D[il,D[k])

if ((sign(d[i]) != sign(d[k])) and (current < slope))
current = slope
1=1

Listing 1: Finding the first intersecting line segment of the convex hull with the t-axis.

5.2 Convex Hull Intersection

Bézier Clipping requires that the parameter axis ¢ of the Bézier
polynomial d is intersected with its convex hull. The smallest and
largest intersection parameters f,,;;, and t,,, define the boundary
segments [ = [0,2,ix] and r = [fyay, 1], Which cannot contain any

root of d. The explicit computation of the convex hull using e. g.

Jarvis March or Graham Scan is too expensive in both memory and
time. We use a simpler algorithm, which searches on the fly for only
those edges of the convex hull intersecting the 7-axis (see listing 1
for finding ;).

Starting from Dy, which is part of the convex hull, all control
points are searched for point D;, with a different sign than D and the
maximum slope with respect to Dg. There exists a line segment L of
the convex hull intersecting the ¢ axis that contains Dy and another
point D; of Dy ...D; which is the other endpoint of L. D; is found
by searching Dy ... Dy for the point with different sign than D; and
minimum slope with respect to Dy. The parameter f,,,;, is then found
by intersecting L with the ¢ axis. Accordingly, #,4x can be found
by starting with Dy and searching analogously. For example, in
figure 5 the line segment [Dy, D;] contains #,;, and the line segment
[D2, D3] contains fgy.

Figure 5: Finding the intersecting line segment L of the convex hull with the t-axis, e. g.
the line segment [Dy,D5] in the drawing.

5.3 Iterative Bézier Clipping

As mentioned before, it is necessary to split the current interval in
cases where it contains more than one root or the clipping operation
does not shrink the interval / enough. In this case each of the
sub-intervals is separately searched. Since this must be supported
with constant memory cost only two intervals at a time are used:
the interval / currently searched for roots and the interval r to be
searched later. The interval s extends from the left boundary of [
to the right boundary of r. The interval s contains all the possible
roots and it serves as a parameterization of the sub-curves. The
left interval is initialized with / := s and searched first. The right
interval r is initially empty. If / needs to be split, s is split instead

and [ is assigned the left part of s while r is assigned the remainder
of s. Splitting will shrink / and enlarge r to ensure / and r remain
a partition of the interval s. When / becomes small enough a root
is found and the search is continued in r, i.e. [ ;= r and r empty.
Control points for the curves restricted to the respective intervals
are computed from the original control points every time they are
needed. With this technique all roots in an interval can be found.

Iterative Bézier Clipping favors re-computation over storing val-
ues in order to maintain a small fixed-sized state through iterations.
While our algorithm is conceptually simple, the requirement to avoid
code duplication due to missing function call mechanisms and lim-
ited program memory leads to complex state management in our
implementation.

In figure 6 an exemplary interval contraction is shown alternating
between clipping and subdivision; note the growing of interval r
when a subdivision step is applied.
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Figure 6: Interval contraction during the Iterative Bézier Clipping algorithm.

The algorithm’s requirements in terms of register usage is mainly
determined by the curve evaluation. Thus N + C registers are needed,
where N is the order of the curve and C is a constant amount of
additional registers for holding the state inside the loop. The intervals
are expected to converge quadratically if they contain only one root.

Alternatively the algorithm can be implemented by clipping only
the left side of the left interval /. Thus the root is always approached
from the left side and only #,,;, has to be determined in the convex
hull intersection test. This saves half of the number of convex hull
intersections at the expense of additional subdivisions. We found
that this version performs nearly twice as fast as the original version.

6 IMPLEMENTATION AND RESULTS

In our implementation we employ the runtime generation of shader
programs using the Sh framework [McCool and Du Toit 2004]. Sh
allows the programmatic driven creation of GPU programs, also
known as shader metaprogramming. We evaluated our implemen-
tation for a number of scenarios including trimming. The images
were computed with a screen resolution of 1280 x 1024 pixels and
partially cut out from the screen shot. The objects were positioned
such as that 80% of the screen width was covered. The number of
iterations for the Newton solver varied between four and 16. The
original patches were uniformly as well as adaptively subdivided at
different levels generating up to 70000 triangles for the convex hulls.
For each surface an individual vertex program and fragment program
was generated and bound to that surface. All tests were run on a PC
with an AMD Athlon 64 3000+ CPU and Nvidia Geforce 7900 GT
GPU.

The performance for rendering NURBS surfaces depends on the
degree of a surface patch. As can be seen in table 1 the draw time for



rendering a single Bézier patch at 100 % screen coverage is directly
related to its degree. This is in accordance with the computational
complexity of the de Boor algorithm as well as the de Casteljau
algorithm which grow quadratically with respect to the degree of the
surface patch under evaluation. Because of the very low number of
vertices used to drive the fragment programs and the high arithmetic
intensity in the fragment programs our approach is clearly fill limited.
For this reason we prefer to show fill rates in MPixel per second
instead of patches per second.

Degree 2x2 3x3 4x4 5x5 6x6
Draw Time (ms) 15 27 56 94 139
Fill (MPixel/s) 87 48 23 14 9

Table 1: Peak performance for Bézier patches (single patch per degree, resolution:
1280 x 1024, screen fill: 100 %, max. iterations: 4).

Table 2 shows the performance data for various scenes, trimmed
and untrimmed, with increasing uniform subdivision. The results
show that we achieve between 17 and 36 frames per second (FPS)
using four iteration steps. Adding more iterations does not affect
draw times dramatically, e. g. the teapot in figure 7b was rendered
with 36 FPS at four iterations, it still achieves 18 FPS when rendered
at a maximum of 16 iterations. Draw times decrease for sufficiently
subdivided patches since less rays are created that do not intersect
the surface. At some point draw times start to increase if the sub-
division creates too many triangles. Adaptive subdivision helps to
automatically find a good subdivision limit since a finer triangulation
of the convex hulls is driven by a flatness criterion.

95’ 8 § Draw Time (ms)
= e ‘@ at Iteration Step
&3 s 2
E i
a 4 8 16
7a 3732 1x1 55 67 92

7b 3092 2x2 30 41 62

7b, 11a 3092 2x2 45 57 82
12698 4x4 41 53 71
51160 8x8 45 55 72

7b, 11c 3092 2x2 56 67 92
12698 4x4 52 62 82
51160 8x8 58 67 85

Table 2: Performance data for various scenes with increasing uniform subdivision and
number of triangles generated for the bounding volume.

Figures 8 and 9 show the convergence of the Newton Iteration for
a bi-cubic Bézier patch at different numbers of maximum iterations.
Initial values were generated by view-independent uv-texturing as
described in section 4.4. Figures 8a and 9a also show a color coding
of the parameter domain with RGB = (u,v,0). Figure 8 uses the
midpoint heuristic as described in [Martin et al. 2000]. Note that
we generate the convex hull of the control point mesh as a surface
approximation instead of using axis-aligned bounding boxes. In
figure 9 the control point mapping described in section 4.4 was used.
As can be seen very clearly the control point mapping converges
faster than the midpoint heuristic. Additionally the different shapes
of the convergence area suggest that the midpoint heuristic may still
have visible artifacts for even more Newton steps.

(a) 161 Patches (b) 32 Patches

Figure 7: NURBS models used for performance data in table 2.

() () (d)

Figure 8: uv-texturing using midpoint of parameter range (uniform subdivision: 2 x 2).
(a) shows the uv-texture and (b) to (d) show the result for up to two, three, and four
iterations, respectively.

(a) (b) (c) (d)

Figure 9: uv-texturing using control point mapping (uniform subdivision: 2 x 2). (a)
shows the uv-texture and (b) to (d) show the result for up to two, three, and four
iterations, respectively.

(a)

In figure 10 details of a teapot are shown for different subdivision
methods. The methods generate the same amount of triangles for the
convex hull of the whole model, 12500 in that case. The inset on the
lower right of each image shows the convex hull textured with the
initial values used for the Newton Iteration. In figure 10a adaptive
subdivision was used while in figure 10b a uniform subdivision
was employed. With the adaptive subdivision a triangle distribution
towards critical regions is achieved driven by the flatness criteria.
This leads to earlier convergence than using a convex hull generated
by a uniform subdivision. Also, it generates less artifacts at the same
iteration level as shown in the marked regions of figure 10b, where
the upper right regions are missing pixels and the lower left region
exhibits penetration problems between the body and the nozzle of
the teapot.

Table 3 presents the results of operating without the early-Z
test, using hardware early-Z, or the manual early-Z in the fragment
program. The scene is a set of quads stacked in depth shaded by a
compute intensive fragment program. We used a perspective view,
which explains the nonlinear increase in the draw times. The results
show that the hardware early-Z is very efficient, but the manual early-
Z behaves also quite well in comparison to doing without early-Z at
all. We employ the manual early-Z for early ray termination. The
results in table 3 indicate that the dependency on the actual depth
complexity in our case is quite low although hardware-supported
early-Z cannot be used.

Table 4 shows the results of rendering a bi-cubic Bézier patch
along with three different trim regions (see figure 11). The draw
times clearly exhibit a strong dependency on the number of trimming
curves, which is due to the fact that we are not using an acceleration
approach. But even the current implementation would allow for



(a)

Figure 10: Adaptive subdivision using flatness criteria vs. uniform subdivision (teapot
with 12500 triangles, 3 iterations). Inset on lower right shows the convex hull textured
with the initial values. The marked regions show the differences, which are hardly
visible. Along the spout of the teapot there are a few pixels missing. The intersection
curve of spout and body of the teapot shows also a few pixel differences, which are due
to z-fighting. The artifact markers in (b) were generated by image postprocessing.

Draw Time (ms) for No. of Surfaces

Early-Z

2 4 8 16 32 64 128

NURBS/off 33 52 80 135 183 205 250
NURBS/on 21 27 30 34 39 45 55

Tri/hardware 10 10 11 12 13 13 16
Tri/manual 13 16 20 24 30 38 42
Tri/none 18 32 56 86 116 160 200

Table 3: Draw times for different primitives with respect to early-Z and early ray
termination (resolution: 1280 x 1024 pixels, screen fill: 80 %).

interactively changing trim curves because only the textures con-
taining the control points would have to be updated. This feature is
important for various application scenarios such as CSG-operations
in a CAD context.

Draw Time (ms) at Reso-
lution (100 % screen fill)

4002 6002 800% 10002

Figure
Curves

notrim 0 6 11 17 25
Ila 2 14 26 44 66
11b 8 26 53 88 134
llc 9 28 56 93 141

Table 4: Trimming baseline for a single bi-cubic Bézier patch (max. iterations: 4,
uniform subdivision: 4 x 4).

7 DISCUSSION

Our current implementation can handle patches up to an order of
M +2N < 19. With 32 registers available in the fragment shader
patches of degree six by six are supported. The already announced
Direct3D 10 standard [Blythe 2006] requires 4096 registers for the
fragment shader, which should be enough for all practical purposes.
Moreover the storage is supposed to be provided by an indexable
register file, which would enable unified programs for different
degrees of surfaces.

An iterative algorithm like Newton’s method may introduce pixel
artifacts due to non-convergence, which was also reported from

(a) 2 curves

(b) 8 curves (c) 9 curves

Figure 11: Images for trimming baseline performance for table 4.

other implementations, e. g. [Martin et al. 2000]. A reference image
generated with a large number of iteration steps and a very finely
subdivided convex hull can be seen in figure 12a. The image in
figure 12b results from a rendering using uniform subdivision, four
by four sub-patches, and up to four iteration steps. The regions
marked in figure 12b show the difference between both images.
The single pixel error on the duck’s bill was the only one we could
find on this model. There are also a few pixel differences at the
interpenetration of surfaces due to z-fighting. It is our experience
that the adaptive subdivision of the convex hulls in combination with
a maximum of four to eight iteration steps results in rendering with
very few or no artifacts as can be seen in the images. To further
reduce the amount of artifacts simply increasing the number of
maximum iteration steps at runtime or generating finer subdivision
in the preprocess is effective.

= =
(a) (b)

Figure 12: (a) Reference image vs. (b) default quality (max. iterations: 4, subdivision:
uniform, 4 x 4). The artifact markers in (b) were generated by image postprocessing.

First experiments with view-dependent uv-texturing for creating
improved guesses for the initial values are shown in figure 13. Fig-
ure 13a shows the surface used for the experiments. Figures 13b
and 13d show the number of actual iteration steps (i) encoded in
the pixel color as RGB = (i,i,0) for view-independent and view-
dependent uv-texturing, respectively. Brighter pixel colors denote a
higher number of iterations (up to ten). In figure 13c the difference
of the uv-textures from both methods is shown. Darker regions
mean no difference, which results in the same number of iteration
steps, while brighter regions show the difference of the initial values
encoded in the color as RGB = (Au,Av,0) for the current view. With
view-dependent uv-texturing the generation of initial values by inter-
secting the boundary control points of a patch in the vertex program
in general leads to less iteration steps in the fragment programs.

Our approach for direct trimming of NURBS is pixel accurate
and robust. Compared to texture-based methods, such as [Guthe
et al. 2005], the memory requirements for our algorithm are neg-
ligible; only the control polygons of the Bézier curves have to be
stored. Furthermore Iterative Bézier Clipping is not restricted to
direct rendering of parametric surfaces. It can also be used to trim
triangulated surfaces. Our implementation could also be used to
trim regions which are changing on a frame-by-frame basis resulting
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Figure 13: (a), (b) view-independent uv-texturing vs. (a), (d) view-dependent
uv-texturing (max. iterations: 10, subdivision: uniform, 4 X 4). (c) is the difference
between the initial values of both methods.

from CSG-operations at runtime. Even the present implementation
which classifies every pixel of the patch with respect to all trim
curves performs reasonably well. For more complex trim regions an
acceleration approach needs to be implemented considering only the
relevant trim curves with respect to a given point in the parameter
domain.

The shader program creation is driven by classifying each surface
in the scene. Depending on the scene the amount as well as the com-
plexity of these shader programs varies. There is a trade-off between
creating a specialized shader program for each encountered surface
patch and using a single general program. Using one shader program
per surface patch effectively limits the number of surfaces which
can be rendered efficiently to a few thousand. On the positive side
many parameters can be directly encoded into the program saving
registers and limiting the number of instructions, which makes the
implementation of complex primitives such as NURBS surfaces pos-
sible. However switching shader programs is an expensive operation
on current graphics hardware. Alternatively shader programs can be
build per surface type, e. g. based on the degree of the surface and
shared between instances of that surface type. This limits the amount
of shader programs that have to be generated and switched in the
hardware. The drawback of this method is that the front-to-back
sorting of the scene, required for early ray termination, conflicts
with the sorting with respect to the shader program type. Trade-offs
between both sorting orders are possible but it is not clear what the
impact on the performance would be.

Our algorithm is mostly limited by the fragment processors. Solu-
tions like tightly connected dual graphics cards and next generation
graphics cards with their unified vertex and fragment processors (cf.
Direct3D 10 standard [Blythe 2006]) will alleviate this problem con-
siderably. First experiments with a dual graphics card solution using
Nvidia’s SLI hardware showed a speedup of almost a factor of two.
Also, with the Sh framework we are able to generate GPU programs
for surfaces with arbitrary degrees. However current hardware limits
us to degree six by six.

Our approach is difficult to compare directly to triangulation-
based techniques, but there are a few related issues. The numerical
intersection approach leads to precision issues if the number of
iterations is quite small. These problems are particularly present
at interpenetrations of surfaces and at the silhouette. In other re-
gions the normals and the shading computations seem to be less
dependent on the number of iterations. Triangle-based renderings
have precision problems at exactly the same locations as our ray
casting approach if the subdivision is not sufficiently high. One of
the most important differences is that ray casting is mainly an image
resolution-dependent technique whereas the triangle-based methods
depend heavily on the number of patches. However our method has

also some dependency on the number of patches, since we are using
the convex hulls for finding the candidate sets of rays. The early-Z
test saves the expensive intersection operations for occluded patches.
For triangle-based methods occlusion culling approaches could help
to keep the dependency on depth complexity low.

8 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a conceptual extension of the ren-
dering pipeline by adding an explicit intersection stage. This ex-
tended pipeline combines the efficiency of the standard hardware
graphics pipeline with the advantages of ray casting enabling high-
performance, pixel-accurate rendering of a large class of objects, for
which the intersection with a ray can be computed. The extended
rendering pipeline can be mapped onto available graphics hardware
by implementing the intersection test as part of the fragment pro-
gram. The applicability and efficiency of our approach has been
demonstrated by the implementation of ray casting for trimmed
NURBS surfaces on current graphics hardware. Newton Iteration
is employed for the intersection test and Iterative Bézier Clipping
for exact trimming. Early ray termination based on a double manual
early-Z test results in a mainly resolution-dependent algorithm with
only slight dependency on the actual depth complexity. We have
shown that interactive rendering of medium sized scenes is possible
with current graphics hardware.

We need to further investigate methods for the generation of good
initial guesses for the Newton Iteration, since they could speed up
the computations significantly and avoid artifacts due to incorrect
or failing convergence. One promising idea is the use of a very low
resolution 4D structure similar to a light field [Levoy and Hanrahan
1996]. In a potentially GPU-based preprocess a set of rays is inter-
sected with the patch and the uv-values of the intersection points
are stored in the 4D structure. At runtime, an interpolating look-up
is performed, which considers the actual origin and direction of
the current ray. Different methods for computing the intersection
test, such as Branin’s method or Bézier Clipping, need to be further
explored as well.

Rendering of patches with a complex set of trimming curves
requires an acceleration structure for fast access to the relevant
Bézier segments. In most cases a 1D structure subdividing the
axis orthogonal to the test ray direction should be sufficient. The
subdivision could be a regular structure or adapted to the boundaries
of the convex hulls. The first approach requires only indexing, while
the second approach needs to use a binary search for accessing the
relevant segment. In each segment, the Bézier curves are sorted
along the ray, which allows to exclude curves, which lie behind
the start point of the ray. Here a binary search may be used as
well, but it might not be necessary since the number of curves per
segment is typically very small. These acceleration approaches have
low memory requirements, but the challenge is to fit this additional
program code on the GPU.

We believe that GPU-based ray casting of trimmed NURBS sur-
faces will be a viable alternative for CAD and other NURBS-based
systems since it greatly simplifies the implementation of such sys-
tems. In addition to parametric surfaces the extended rendering
pipeline allows to seamlessly integrate implicit surfaces as well as
other objects that can be intersected with a ray into the hardware
rendering pipeline. Moreover the introduction of an intersection
stage and an explicit intersection program keeps the ray-surface in-
tersection separated from the actual shading program, which allows
arbitrary combinations of primitives and shading algorithms. The
straightforward mapping onto existing graphics hardware lets us
to believe that these are the first indications that triangles as the
primary rendering primitive will be complemented by a powerful set
of higher order primitives in the near future.
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