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Fig. 1. The images show the pixel-accurate isosurface visualization of the strain of this bridge model. For these views, the frame rates
range from 18Hz for the total view (a) to 9Hz for the close-up on the pier (c). Users can interactively explore the model by adjusting
the desired isovalue or navigating to different points of interest.

Abstract— In NURBS-based isogeometric analysis, the basis functions of a 3D model’s geometric description also form the basis
for the solution space of variational formulations of partial differential equations. In order to visualize the results of a NURBS-based
isogeometric analysis, we developed a novel GPU-based multi-pass isosurface visualization technique which performs directly on
an equivalent rational Bézier representation without the need for discretization or approximation. Our approach utilizes rasterization
to generate a list of intervals along the ray that each potentially contain boundary or isosurface intersections. Depth-sorting this list
for each ray allows us to proceed in front-to-back order and enables early ray termination. We detect multiple intersections of a ray
with the higher-order surface of the model using a sampling-based root-isolation method. The model’s surfaces and the isosurfaces
always appear smooth, independent of the zoom level due to our pixel-precise processing scheme. Our adaptive sampling strategy
minimizes costs for point evaluations and intersection computations. The implementation shows that the proposed approach interac-
tively visualizes volume meshes containing hundreds of thousands of Bézier elements on current graphics hardware. A comparison
to a GPU-based ray casting implementation using spatial data structures indicates that our approach generally performs significantly
faster while being more accurate.

Index Terms—Computer graphics, Data Visualization, Isosurfaces, NURBS, Ray Casting.

1 INTRODUCTION

The concept of isogeometric analysis (IGA) is a promising attempt
to close the gap between computer aided design (CAD) and finite ele-
ment analysis (FEA). This gap exists because the model representation
used for design is generally not suitable for finite element analysis and
a polygonal or piecewise polynomial approximation of the actual ge-
ometry is used instead. The generation of such an approximation is
time-consuming and the subsequent iteration between two different
model representations is heavily involved and error prone.

As a solution, NURBS-based isogeometric analysis employs a
trivariate NURBS (Non-uniform rational B-splines) representation
which is based on the exact CAD geometry. The geometric flexibility
and the inherent higher-order continuity of the NURBS basis are both
significant advantages to standard finite element technology. In par-
ticular, they allow for an exact representation of a much larger class
of objects, such as conic shapes, and prove beneficial for problems in
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which smoothness of the simulated properties is of great importance
(e.g. in fluid mechanics). In the analysis, the solution space of the de-
pendent variables is represented in terms of the same basis functions
used for the geometric representation.

While modeling and simulation in isogeometric analysis are based
on exactly the same geometric representations, there are no interactive
visualization methods that perform directly on the trivariate NURBS
volume mesh. To complete this isogeometric pipeline, we developed a
GPU-based ray casting approach for the direct isosurface visualization
of NURBS-based isogeometric analysis. In a preprocessing stage, we
convert the NURBS representation into an equivalent rational Bézier
representation in order to generate local bounds of the simulated vari-
ables. At runtime, these bounds are used to focus the search for iso-
surfaces on the relevant parts of the volume. Our multi-pass approach
exploits current graphics hardware capabilities for efficient generation
and sorting of Bézier cell intersection intervals along all rays which
need further computation. This ray-interval generation scheme inher-
ently allows for front-to-back processing of the volume elements and
early ray termination. For each interval, ray entry and exit points for
the associated Bézier cells are computed. Once these points are iden-
tified, we search the corresponding part in a cell for isosurface inter-
sections by sampling along the ray. The computational costs of this
expensive operation are significantly reduced through the use of an
adaptive sampling strategy and an equally adaptive error metric.

Due to the historical dominance of finite element methods and the



novelty of the isogeometric approach, there has been little attention
paid to developing direct visualization algorithms for such higher-
order NURBS-based volume representations. However, the recent
advancements of direct rendering methods for bivariate NURBS sur-
faces, which also employ ray casting [19][23][28], motivated our ap-
proach. Our idea was to extend this practice to the task of interactive
visualization of trivariate NURBS volumes and perform ray casting on
the GPU using the parametric representation. Ray casting higher-order
volume representations generally requires finding the intersection be-
tween the ray and the curved boundary of the volume. In contrast to
other approaches, our system does not sidestep the issue of multiple
ray-face intersections, but instead provides a practical and robust so-
lution using a sampling-based root isolation approach.

We present a novel GPU-based algorithm for direct isosurface ren-
dering of a NURBS-based isogeometric analysis. The central proper-
ties of our algorithm are: minimal preprocessing costs, compact stor-
age and pixel-accurate visualization as a result of the direct use of the
parametric description. All rays are processed in front-to-back order,
which allows for early ray termination. Our main contributions are:

• A novel ray-generation scheme that creates only ray segments
which potentially contribute to the final image

• A robust approach for finding all intersections between a ray and
the curved boundary of the model making use of the smooth
trivariate tensor-product nature of our models

• An effective solution for the memory-allocation bottleneck,
which is a typical issue when constructing per-pixel lists on the
GPU

Our algorithm outperforms current state-of-the-art isosurface ren-
dering approaches for higher-order volume representations due to its
output-sensitive processing scheme. Our highly optimized GPU-based
implementation maintains interactive frame rates for models contain-
ing hundreds of thousands high-order volume elements. We compared
our approach to conventional GPU-based ray casting implementations
using spatial data structures. The results show that our algorithm typi-
cally performs significantly faster due to a lower number of generated
rays, better cache coherence, avoiding segmentation issues and pro-
cessing only the relevant cells of the model.

2 NURBS-BASED ISOGEOMETRIC ANALYSIS

The methodology of isogeometric analysis as proposed by Hughes et
al. [12] is a computational technique which generalizes standard finite
element methods. The concept refrains from generating a separate
finite element mesh for analysis purposes, but instead makes use of the
exact NURBS geometry — the standard representation in most CAD
systems. NURBS offer a compact representation and are well suited as
an accurate description for smooth geometries. The inherent property
of higher-order continuity is advantageous over C0-continuous finite
elements and is highly desired in the field of fluid mechanics [2] and
structural analysis [10].

A NURBS-based isogeometric analysis operates on solid geometry.
Thus, CAD modeling needs to deliver solids or the surface geometry
has to be used to generate NURBS solids in a post-process. This pro-
cess is obviously a non-trivial task and is not addressed in this paper.

The isogeometric analysis performs on an unstructured or partially
structured mesh of NURBS solids. A single trivariate NURBS solid V
of degree (l,m,n) is defined by
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where Ni,l , N j,m and Nk,n are the B-Spline basis functions and pi, j,k
are points of a control net with the dimensions (o+ 1)× (p+ 1)×

u

v

w

(a) (b)

u

v

w

(c) (d)

Fig. 2. This Figure shows the mapping (d) of attribute values (c), which
are color coded, onto a single NURBS solid (b). Both descriptions are
based on the same domain (a).

(q+1) and the corresponding weights wi, j,k. The B-Spline basis func-
tions are given by a set of knot vectors, which also define the domain
Ω ⊂ R3 of the NURBS volume. The coordinates in the domain are
denoted by u = (u,v,w)T , u∈Ω. For simplicity, all estimates given in
this work use an identical polynomial degree n.

The simulation parameters of the analysis depend on the subject the
method is applied to. The output of a fluid simulation may be pres-
sure and flow, while structural computations typically involve stress,
strain and displacement. In this work, we generalize and denote by an
attribute any parameter that has been subject to the analysis.

In general, the solution of a simulation is a function Ψ : Ω → κ

that maps from the domain Ω of the geometric description to an arbi-
trary attribute space κ , as illustrated in Figure 2. The solution in our
data sets is also given in a NURBS representation. The control points
ai, j,k ∈ κ for each attribute are attached to the control points of the
geometric description and are likewise evaluated.

At this point, we would like to clarify the terminology which is
used in this paper to denote the components of such a volumetric rep-
resentation. In this work, the term model refers to the entire mesh of
trivariate NURBS solids, including the solution of the isogeometric
analysis. This model can be decomposed into an equivalent repre-
sentation that consists of rational Bézier solids, which we refer to as
Bézier cells or just cells. The solution attached to each cell maps from
the domain of the cell to attribute space and is therefore referred to as
an attribute function. The boundaries of a Bézier cell are tensor prod-
uct Bézier surfaces, which we refer to as faces. In particular, an inner
boundary or transition denotes a face which is shared by two adjacent
Bézier cells, while an outer boundary is part of the surface of the entire
model.

3 RELATED WORK

While there are numerous isosurface visualization techniques for grid-
based volumes [17], irregular volumes [9] as well as higher-order fi-
nite elements [34] [14] [33], few rendering schemes for NURBS-based
volume representations exist. A major reason, aside from the obvi-
ously high costs, is that most CAD applications do not enforce volume
modeling [13] and thus little emphasis has been placed on the devel-
opment of appropriate rendering techniques. However, the seminal
work of Hughes et al. [12] introduced NURBS solids for the purpose
of isogeometric analysis resulting in an increasing need for algorithms
addressing this problem.



Common isosurface visualization approaches generate a polygonal
approximation of the actual isosurface which is then employed for
direct rendering. There are a variety of isosurface extraction algo-
rithms such as marching cubes [17] for regular grid structures or the
isosurface extraction algorithm for irregular volume data proposed by
Cignoni et al. [9] [8]. While the method of extraction may vary by
algorithm, the goal of each is to find a piecewise linear approxima-
tion which is sufficiently accurate for rendering. This task is a time-
consuming preprocessing step and for volumes containing curved iso-
surfaces, the resulting mesh is likely to be inaccurate in some areas
which causes visual artifacts. Furthermore, an isosurface extraction for
a NURBS-based volume description would necessitate a resampling of
the volume – a costly task with enormous storage requirements.

There are also a variety of rendering approaches for tetrahedral
volume meshes. Most of them use either point-based methods [37],
cell projection [25] or ray casting [35]. Visualization techniques for
higher-order volumes build on similar techniques, but focus on finite
element representations. A comprehensive summary of these methods
was produced by Sadlo et al. [26].

In particular, Nelson et al. [21] presented a ray-tracing system for
isosurface visualization of higher-order finite elements. The progres-
sion of the simulation data along the ray is approximated by a polyno-
mial. Their approach allows for pixel-exact images based on an error
budget, but the algorithm including recent GPU adaptations [22] did
not reach interactive frame rates. Bock et al. [3] also use ray approx-
imations in parameter space for their interactive visualization. They
exploit curve similarities to cluster and compress the resulting set of
curves – an approximate and time-consuming preprocessing step (up
to several hours) we would like to avoid.

Furthermore, Meyer et al. [20] presented an approach in which iso-
surfaces of higher-order finite elements are visualized using a particle
system. A set of particles is iteratively projected onto the isosurface
and evenly distributed. The partial derivatives of each particle are used
to determine its orientation in order to apply basic splatting algorithms
for interactive rendering. The amount of particles necessary to suffi-
ciently approximate the isosurface is view-dependent. An increasing
number of particles will improve visual quality. However, splat-based
methods are inefficient in generating pixel-accurate results as they are
achieved through ray casting techniques.

Üffinger et al. [33] presented a rendering system which employs
GPU-based ray casting for the visualization of curvilinear finite ele-
ment cells with varying polynomial degree. A three-dimensional grid
is used to intersect cells which are then sampled using a frequency-
based sampling strategy. A disadvantage of their approach is that the
grid cells might enclose a large amount of empty space. An alternative
is to sort the higher-order elements into a min/max octree hierarchy
similar to the approach presented by Knoll et al. [16]. However, in the
evaluation of our algorithm we found that grid-based data structures
do not allow us to focus on just those cells which contain a given iso-
value or a set of isovalues. Instead of traversing a spatial data structure
during runtime, our approach exploits current graphics hardware ca-
pabilities and generates and sorts the relevant cell intervals on-the-fly
without the need of further preprocessing.

As previously mentioned, few rendering methods exist for the vi-
sualization of NURBS volumes. Chang et al. [7] were the first who
presented a direct rendering approach. Similar to the particle-based
approach for higher-order finite elements by Meyer et al. [20], visu-
alization is accomplished by evaluating adaptively distributed point
samples and splatting. The limitations of such splat-based approaches
have already been pointed out. Raviv and Elber [24] precompute the
effect of each scalar attached to the control points on the final image.
The resulting mapping function allows for interactive rendering and
volume manipulation, but the approach is limited to a fixed view di-
rection. The rendering technique presented by Samuelčik [27] utilizes
a polygonal approximation of isoparametric curves and isoparametric
surfaces for volume visualization, but does not support isosurfaces.

Martin et al. [18] presented a robust isosurface visualization tech-
nique for various higher-order representations which can also handle
NURBS primitives. In their approach, the volume representation is

recursively subdivided until all intersections for the remaining sub-
patches can be determined using the Newton-Raphson method. While
subdivision is a proven approach for robust identification of all ray-
isosurface intersections, recursive algorithms are quite limited on cur-
rent GPUs. This system is CPU-based and it is not clear how to adapt
this to the GPU and how it would scale on a GPU.

4 PREPROCESSING

Let us briefly consider the challenges of ray casting a typical model.
In general, a parametric function p = Φ(u) maps from domain coor-
dinates u = (u,v,w)T to positions in world coordinates p = (x,y,z)T .
Given the solution of an isogeometric analysis, for each point p ∈ R3

in a cell we can find the corresponding coordinates a in attribute space
by evaluating a = Ψ(Φ−1(p)). Thus, for any point p in world co-
ordinates the inverse of the mapping function u = Φ−1(p) is needed
to evaluate the corresponding attribute value. In general, the inverse
mapping function is not available in an analytical form and requires a
numerical solution. The inversion results in an overdetermined system
of non-linear equations. In this work, we assume a bijective mapping
function, which has a unique solution for all points that belong to a
cell. For all practical purposes, most NURBS volumes comply with
this limitation. Furthermore, it generally applies to volume models
that are subject to an isogeometric analysis because multiple solutions
would imply a self-overlap.

In our algorithm, isosurface intersections are found by evaluating
the attribute function along the ray. However, the ray in world space
does not map to a line segment in the domain. Instead, it is a curve of
very high polynomial degree or not even parameterizable by a poly-
nomial description, as indicated in Figure 2(a). As a consequence, the
evaluation along the ray requires to find either an approximation of this
curve or to repeatedly find a solution for the inverse mapping function.
In this work, we choose the latter option and proceed in world coor-
dinates. We repeatedly solve the inverse mapping function using an
iterative method as described in Section 5 which works quite well due
to the inherent smoothness of NURBS.

The central task that needs to be accomplished during rendering
is to find intersections between the ray and implicitly defined isosur-
faces in the model. As there is no analytical solution to this problem
iterative sampling techniques are used to determine the actual inter-
section points. However, sampling requires the frequent evaluation of
the trivariate data representation and is thus an expensive operation.
Therefore, the main objective of our preprocessing stage is to simplify
this task and thereby reduce the sampling costs at runtime.

During the first step, the NURBS representation is converted into
a rational Bézier representation. The conversion is applied to the ge-
ometry as well as to the attached attributes. The standard technique of
knot insertion [5] is used to perform this task. The adjacency infor-
mation is kept to provide for an easy transition between neighboring
Bézier cells during ray traversal. In addition, we extract the face rep-
resentation of each element. The boundary of a trivariate Bézier cell
consists of the set of isoparametric surfaces given by the limits of its
domain (u,v,w∈{0,1}). Thus, its faces are defined by the correspond-
ing slices of the cell’s control point net. The resulting rational Bézier
representation is equivalent to the NURBS-based representation, but
as we will show, some of its properties simplify the ray casting algo-
rithm with respect to the following aspects:

• The recurrent task of evaluation can be performed more effi-
ciently on a Bézier representation than on a NURBS represen-
tation. Sederberg [30] proposed a scheme based on the Horner
algorithm in Bernstein basis which allows for the evaluation of
a rational tensor product Bézier surface of degree n in O(n2).
The method is well suited to be used on the GPU due to its fixed
register usage. We adapted this scheme for the trivariate case of
degree n which results in a complexity of O(n3).

• The conversion of the model results in a set of Bézier cells for
each of which we determine the respective range in attribute
space. At runtime, an isosurface intersection test is performed



only if the given isovalue is in the attribute range of the respec-
tive cell. Thus, instead of sampling through the entire model, we
only sample through the subset of cells which potentially contain
an isosurface.

• A common technique in GPU-based ray casting is to render a
conservative proxy geometry and use the resulting pixel candi-
dates for ray generation [6]. We follow this approach and em-
ploy the convex hulls of the cells’ faces, which are each gener-
ated from their Bézier control points using the QuickHull algo-
rithm [1]. In general, this set of convex hulls is tighter to the
actual boundary than a single convex hull of the NURBS repre-
sentation. Thus, its projection covers fewer pixels which in turn
means that fewer rays process the cell unnecessarily.

After preprocessing the parametric description of the cells, the cor-
responding attribute bounds, the adjacency information and the proxy
geometry are then uploaded to the GPU for rendering.

5 POINT EVALUATION

Given a Bézier cell C(u), we find any isosurface inside it by sampling
along the ray. For this, we need the ability to evaluate the attribute
function for any point p in world coordinates — a task we refer to
as point evaluation. Each point evaluation consists of the following
subtasks:

1. Find the corresponding coordinate u = (u,v,w)T in the domain
by solving the inverse mapping function u = Φ−1(p)

2. Evaluate the attribute function Ψ(u)

At first, we transform the subtask of solving the inverse mapping
function for p into a root-finding problem. Any given point p on the
ray r can be expressed as an intersection of three orthogonal planes
E0,E1 and E2 in Hessian normal form

E j : n̂ j ·d j = 0 (2)

The point p is equivalent to a point C(u) in the cell. We iteratively
find the domain coordinates ui ≈ u using Newton’s method. Each step
of the iteration is defined by

ui+1 = ui− J−1f (3)

with the remaining distance f to the point, given by

f =

C(ui) · n̂0 +d0,
C(ui) · n̂1 +d1,
C(ui) · n̂2 +d2

 (4)

and the Jacobian:

J =

 ∂C
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∂C
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∂C
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∂C
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∂C
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∂C
∂w · n̂1

∂C
∂u · n̂2

∂C
∂v · n̂2

∂C
∂w · n̂2

 (5)

This iteration continues until C(ui) reaches a desired proximity
‖f‖<= εp to the actual sample point p on the ray.

6 RAY CASTING BÉZIER CELLS

Isosurface ray casting of a set of Bézier cells consists of two major
tasks. First, the intersections between a ray and the cells’ curved
faces need to be found to determine the intervals inside the cell. Once
these intervals are determined, potential isosurface intersections are
searched by sampling along the ray.

Ray casting is a highly parallel technique which seems well-suited
to GPU computation; however, both face intersection and sampling re-
main very expensive operations. Üffinger et al. [33] reduce these costs
by employing a regular grid containing parallelepipeds as bounding

// first pass (Section 6.1)
for all proxy geometries {
generate ray intervals of face intersections

}

// second pass (Section 6.2)
for all rays {
sort list of intervals in ascending depth order

}

// third pass
for all rays {
for all intervals of each ray {
find face intersections // Section 6.3
classify ray segment // Section 6.4
if segment is inside cell {

search isosurface intersections// Section 6.5
}

}
}

Fig. 3. Pseudo code of our algorithm.

volumes for the respective faces. For comparison purposes, we im-
plemented their approach as well as an octree-based acceleration data
structure. We found that such acceleration data structures perform
slower than the approach suggested in this paper. The reasons for this
are discussed in Section 8.

Our considerations led us to the design of a GPU-based three-pass
algorithm which can be summarized as follows. In the first phase of
our algorithm, we generate a list of intervals for each ray. Each in-
terval limits the range of potential intersections between the ray and
the cell’s face. A detailed description of this stage is given in Sec-
tion 6.1. In the next step, the lists are sorted in ascending depth order
to enable early ray termination. Once the lists of intervals are sorted,
we process them in front-to-back order to find the face intersections
(see Section 6.3). Two consecutive intersections with the same cell
limit a ray segment which is classified with respect to the cell (see
Section 6.4). If the ray segment is inside the cell, the intersections
with isosurfaces are searched by sampling along the ray. An adaptive
sampling strategy (see Section 6.5) increases the rate of convergence
and thus reduces costs for sampling. The pseudo code explanation in
Figure 3 summarizes the main tasks of each pass. Figure 4 illustrates
an example and shows the corresponding results of each task.

6.1 Generate Ray-Interval Lists
In the first pass of our algorithm, we find the ray intervals which poten-
tially contain face intersections. These intervals are generated by the
rasterization of the convex hulls of the cells’ faces. However, hulls are
culled based on the cell’s properties in order to minimize the number
of generated intervals.

6.1.1 Culling
The convex hull of a cell’s face is only rendered if it complies with
one of the following requirements: 1) The face is part of the outer
boundary of the model or 2) the attribute bounds of the associated
cells include the current isovalue. Otherwise, the entire convex hull is
discarded at the geometry processing stage of this pass. This optimiza-
tion increases the performance of our approach because intervals are
only generated and stored in the per-pixel lists if they potentially con-
tribute either to the visualization of the model’s boundary or reference
a cell which potentially contains an isosurface.

The costs for vertex and geometry processing directly relate to the
number of Bézier cells that need to be processed. For large models,
a simple acceleration data structure is used to prevent this stage from
becoming a bottleneck. In this data structure, the proxy geometries
are organized in a small number of bins, each bin corresponding to a
particular attribute range. These ranges are determined by dividing the



Fig. 4. The intersection between a ray and a single NURBS volume,
which was converted into six Bézier cells. The ray-interval list (b) is
generated from the projection of the faces’ convex hulls (a). In this case,
two of the hulls are culled with respect to their attribute bounds. The
face intersections (c) are found by processing the ray-interval list. The
ray segments in the respective cells (d) are generated from the face
intersections and are searched for an isosurface intersection (e).

attribute bounds of the entire model into a set of subranges. For each
of these subranges, all the cells with an overlapping attribute range
are determined, and the associated proxy geometries are then inserted
into the corresponding bin. At runtime, only the geometry in the bin
containing the current isovalue and the convex hulls of outer faces have
to be rendered.

6.1.2 Generation

For each hull the rasterization results in a number of pixel candidates,
also called fragments. For a single pixel, the fragments corresponding
to the frontface and the backface of the convex hull form an interval
which is a conservative bound of potential intersections with the face.
Note that we do not intersect the faces during fragment processing.
Instead, we store each fragment, as described in Section 7, with its
associated values and defer further computations. At the end of this
pass, for each pixel we have an unsorted list of intervals which enclose
the potential intersections with the cells’ faces. Figure 4 shows the
generation of these intervals, denoted by (b), for a single ray. These
lists are sorted in the next stage of our algorithm and later sequentially
processed along the ray.

Although rendering any bounding volume would also serve for ray
generation, using the convex hull has considerable advantages. In gen-
eral, a convex hull is a tighter bounding volume than, for example, a
parallelepiped. Consequently, its screen projection generates a lower
number of fragments and thus fewer rays need to be processed. In
addition, they provide a coarse surface approximation which can be
exploited to generate a good initial guess for Newton’s method as pro-
posed by Pabst et al. [23].

6.2 Sort Ray-Interval Lists

Once the ray-interval lists have been constructed, every list has to be
sorted in ascending depth order. Most sorting algorithms could be
used to accomplish this task, but current GPUs are still limited with
respect to recursions and dynamic memory allocation. We have found
that Bubblesort works best within these limitations because of the fol-
lowing reasons: First of all, the intervals are stored in singly-linked
lists which prevents the use of sorting algorithms that require random

(a) (b)

Fig. 5. This Figure illustrates our sampling-based root isolation (for clar-
ity in a simplified 2D domain). For each sample on the ray, shown as
grey points in (a), we compute the corresponding domain coordinates,
which are shown as red and green points in (b). If two consecutive sam-
ples are on different sides of the domain boundary, we use the interpo-
lated intersection (shown as blue points) as an initial guess for Newton’s
method.

access. Furthermore, it is a non-recursive sorting algorithm which per-
forms all memory operations in place and thus has no additional stor-
age needs. Finally, the lists need to be sorted per pixel and the number
of list elements is relatively small and varies per pixel which makes
GPU-optimized sorting algorithms (such as radix sort) inefficient.

6.3 Ray-Face Intersection
The main objective of this stage is to identify the boundaries of the ray
segments which are analyzed for isosurface intersections, as illustrated
in (d) in Figure 4. Such a ray segment is limited by two consecutive
face intersections, which are shown in (c) in Figure 4. The sequence of
face intersections along the ray defines a number of mutually disjoint
segments because the cells do not overlap which is a precondition to
isogeometric analysis. This allows us to compute these segments step
by step in ascending depth order and if necessary, analyze them for
isosurfaces.

There is no closed-form solution for a curved face intersection. In
general, subdivision approaches [29], interval arithmetic [15] or it-
erative methods [19] are used instead. The latter represent the most
inexpensive approach, while the other two are more robust. In this
work, we chose an iterative approach because it enables us to achieve
interactive frame rates. However, we aim for a similar robustness and
therefore combine the iterative approach with a sampling-based root-
isolation technique.

A ray-face intersection results in a system of nonlinear equa-
tions. In order to find all the solutions, it is necessary to isolate
the roots before using an iterative root-finding method. Our method
is capable of isolating all face intersections along the ray within
the accuracy of our heuristic, and it provides close start values for
initiating Newton’s method. Most other interactive rendering ap-
proaches [33] [23] [19] [28] sidestep the issue of root isolation and
assume at most two intersections with a single face. We also imple-
mented such a common intersection heuristic and compare the results
of both approaches in our discussion in Section 8.

The main idea of our root-isolation technique is to exploit the re-
lationship between a face and the trivariate domain space of the cell.
Each boundary of the cell’s domain defines an isoparametric surface
which is equivalent to the respective face. Consequently, we need to
find the roots of the signed distance function which is defined by the
ray’s representation in domain space and a domain boundary. The
ray’s representation in the domain is not known and cannot be com-
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Fig. 6. These three examples illustrate the cubic interpolation (shown
as dotted line) of the signed-distance function between two consecutive
samples. If there is a single extremum (a) or even two extrema between
the two samples, as shown in (b) and (c), we continue sampling at the
first of the approximated extrema, shown as yellow points, in order to
reduce the chance of missing multiple roots.

puted on-the-fly. However, two points on the ray whose distances dif-
fer in sign imply a real root. Thus, roots can be isolated by sampling
along the ray, as shown in Figure 5. The interval which is sampled
is limited by the ray’s entry point and exit point into the convex hull.
Note that sampling is not used to compute the roots, but to isolate them
and provide a close initial guess for Newton’ method.

Nevertheless, each point evaluation as described in Section 5 is an
expensive task, and the number of samples needs to be minimized.
Sampling is started at the entry point into the convex hull. After each
point evaluation, we transform the ray direction into the domain in
order to estimate the next face intersection using a linear extrapolation.
The position of the next sample is then set to a small offset after the
estimated intersection. This is because we only need to find the sign-
change. As offset we use the projected screen-space error. In case
of a sign-change, we approximate the intersection by means of linear
interpolation, as shown in Figure 5(b), and we use the result as an
initial guess for Newton’s method. If the distance between entry and
exit point is smaller than the size of a pixel, we assume a top view of
a flat convex hull, which contains at most a single intersection. In this
case, no point evaluation is required. Instead, the mean of the initial
guesses provided by the two fragments is used.

In general, a linear extrapolation of the ray in domain space is as-
sociated with an error. Therefore, we provide two additional measures
which both contribute to the robustness of our approach:

• The step length is limited if the distance to the estimated intersec-
tion is too large or negative. This reduces the chance of missing
multiple intersections. The choice for this maximum step length
depends on the current view and the curvature of the face and
will be part of our discussion in Section 8.

• We adopt the idea of using a ray approximation in domain space,
as shown by Bock et al. [4]. While in their approach rays are ap-
proximated for the entire domain in a preprocessing step, we use
local interpolations which are computed on-the-fly. For each pair
of consecutive samples, we compute a cubic interpolation of the
ray-face distance and compute its extrema using its derivative, as
shown in Figure 6. If this approximation has a local extremum
between the two samples and the extremum indicates a sign-
change, roots may have been missed. In this case, we continue
sampling at the estimated position of the extremum and thereby
isolate the roots which would otherwise have been missed. Fur-
thermore, this approach also increases the quality of the inter-
polated initial guesses, because the signed distance function be-
tween two samples is likely to be monotonic.

Our sampling-based root-isolation approach requires performing
point evaluations outside the actual cell. The bijective mapping inside
the cell does not necessarily apply to the outside which may cause
ambiguities. However, ambiguities are rare due to the smoothness of
the polynomial basis and the fact that all such point evaluations are in
close proximity of the cell’s boundary. Furthermore, they do not rep-
resent a problem because the corresponding domain points can still be
classified outside.

6.4 Ray-Segment Classification

Once a face intersection is found, the segment between the last two
found intersections is classified as inside or outside the cell. In gen-
eral, this can easily be accomplished by tracking the current state of
the ray, similar to the point-in-polygon algorithm [32]. However, in
our case this task might involve issues associated with the use of nu-
merical methods such as double or missed intersections. Thus, we
additionally use the cells’ adjacency information which was gathered
during preprocessing to resolve inconsistencies.

The adjacency information identifies whether the face belongs to
the outer boundary of the model or if it represents an inner transition
between two adjacent cells. An intersection with the outer boundary
can be classified as an entry or an exit point, depending on the current
ray state. Thus, if the ray hits an outer boundary the current state of
the ray switches from outside to inside and vice versa. In contrast,
an intersection with a transition face implies that the ray is inside and
remains inside the model.

If the ray segment is inside the cell and the isovalue is in the corre-
sponding attribute bounds, as indicated for the segment (d) in Figure 4,
we proceed with searching for isosurface intersections by sampling
through the cell.

6.5 Isosurface Intersection

Once a cell has been identified as having isosurface intersections, the
next stage is to sample along the ray, using the point evaluation tech-
niques described in Section 5. A naı̈ve implementation would perform
equidistant point evaluations along the ray and report if a transition of
the respective isovalue occurs. Once a transition is found, an iterative
process could sample the corresponding range to determine the actual
intersection point. However, this approach would be too expensive in
our case due to the large number of expensive point evaluations.

Our idea is to estimate the distance to the nearest isosurface inter-
section along the ray using the derivative of the attribute function in ray
direction. This adaptive sampling approach allows for dense sampling
of regions which are close to the isosurface intersection and skipping
of parts of the cell which are quite distant from the isosurface. In the
following, we derive the size of the adaptive sampling step.

For the sake of simplicity, we assume that we are dealing with scalar
attributes. For higher-dimensional attributes a mapping to a scalar
value would have to be provided. Based on this assumption an iso-
surface, which corresponds to an isovalue ρ0 ∈ R, is defined by all u
which satisfy the equation ρ0 = Ψ(u). Thus, we find all intersections
between the ray r(t) = r0 + t · d̂ and the isosurface by solving

0 = ρ0−Ψ(Φ−1(r(t))). (6)

Given a cell C and a point s ≈ C(u) on the ray, we determine the
position s′ of the next sample as follows

s′ = s+∆t · d̂ (7)

where d̂ is the normalized ray direction and ∆t denotes the distance
to the next sample point.

∆t =

{
max(tmin,δ ) i f 0≤ δ < tmax
tmax else (8)

The distance ∆t depends on an estimate of the nearest isosurface
intersection, denoted by δ . It is provided by the linear extrapola-
tion of the attribute function along the ray. If the extrapolation di-
verges (δ < 0) from the isosurface or the sample point is already close
to the isosurface, we use an alternative distance of tmin/max instead.
The choice of these parameters is discussed in detail at the end of this
section. The estimate is determined by

δ =
ρ0−Ψ(u)

∂Ψ

∂ t

(9)



and the extrapolation is given by projecting the derivatives of the
attribute function and the domain coordinates onto the ray:

∂Ψ

∂ t
=

∂u
∂ t
·δu (10)

∂u
∂ t

= J−1 · d̂ (11)

δu = (
∂Ψ

∂u
,

∂Ψ

∂v
,

∂Ψ

∂w
)T (12)

J =
(

∂C(u)
∂u

∂C(u)
∂v

∂C(u)
∂w

)
(13)

If the interval of two attribute values of two consecutive samples
contains the isovalue ρ0, a root-finding method is applied to the corre-
sponding interval to find the exact intersection point. We have found
that a bisection method works well due to its numerical stability and
the proximity to the root. In order to avoid missing thin features, we
also consider the values and derivatives of the attribute function along
the ray as described for the face intersection in Section 6.3.

Once the isosurface intersection is found, we perform the shading
operations. If we are dealing with semitransparent isosurfaces we reset
the ray’s origin to the point of intersection. The adaptive sampling
continues until it reaches the cell’s exit point or the pixel’s color is
saturated.

The behavior of our adaptive sampling strategy can be controlled
by the parameters tmin and tmax, which form an interval which is used
to clamp the distance to the next sample.

In the proximity of an isosurface, the adaptive sample distance be-
comes very small because it is based on an estimate of the actual inter-
section. In cases when we seek all isosurface intersections in sequen-
tial order, the parameter tmin is used as a lower limit for the distance to
jump beyond the intersection found and continue the search for the re-
maining interval. Thus, the value tmin is an error bound for the minimal
distance between two consecutive isosurface intersections determined
by our algorithm. This parameter is set to the size of one pixel.

The alternative step size tmax is mainly motivated by the fact that
the sample distance is based on a first order extrapolation which may
be divergent or singular even if an intersection exists. This is gener-
ally caused by a local extremum. A higher-order extrapolation could
be employed, but it would not guarantee convergence. However, our
experience shows that tmax =

S
2n is a reasonable threshold, where S de-

notes the size of the cell and n its polynomial degree. A comparison
between different choices of tmax is shown in Figure 12 and discussed
in Section 8.

7 EFFICIENT PER-PIXEL LISTS

At this point, we have to point out that an efficient implementation of
the ray-interval list generation is necessary to prevent this stage from
becoming a serious bottleneck. Recall that in the fragment processing
stage of the first pass as described in Section 6.1.2, we store all infor-
mation that is necessary to perform the face intersection at a later stage.
Due to recent developments in modern graphics processors [31], it is
possible to perform atomic memory operations to arbitrary locations.
This scatter capability allows us to store the dynamic information in
texture memory. The data structure we employ is based on the dynam-
ically constructed linked list structure presented by Yang et al. [36].
In their approach, the concurrent access to the address of the next list
element is handled using a single atomic counter. As fragments are
processed by concurrent threads, the contention caused by all threads
trying to update the same memory location represents a major bottle-
neck. They sidestep this issue by utilizing append buffers — a feature
only available for DirectX 11. However, we need to remain platform-
independent and have developed an allocation scheme which alleviates
the effects of memory contention.

For each pixel, all fragments are stored in a singly-linked list. A
list element contains the core information of a fragment: depth, face

(a) (b) (c)

Fig. 7. In this example, two triangles (green, blue) are rendered se-
quentially into the per-pixel lists using an allocation grid of 2× 2 and a
page size of 2. The pixel colors of the head pointer image indicate the
corresponding allocation counter. Initially, no pages are reserved (a).
The fragments of the green triangle have to request new pages for the
corresponding pixels from the allocation grid. These requests are ad-
dressed to different atomic counters and do not stall each other (b). For
the blue triangle, two fragments fit into the reserved pages and only one
fragment has to request a new page (c).

index, predecessor and the interpolation of the initial guess for the face
intersection.

Figure 7 illustrates the construction of our linked-list data structure.
The address of the last list element is stored in the head pointer im-
age. All list elements are stored in a single buffer which is organized
in pages. This buffer is also referred to as fragment list buffer. Every
page reserves memory for a fixed number of list elements. The alloca-
tion of pages is controlled by the allocation grid. This grid is a fixed
size image which holds indices to empty pages in the fragment list
buffer. All indices in the allocation grid, also referred to as allocation
counters, work independently from each other.

At runtime, each fragment requests the head pointer for the pixel.
If there is no space left in the current page, a new page is requested
from the allocation grid. The grid position which the request is ad-
dressed to is determined using modulo operations. It corresponds to
the remainder of the division between the fragment’s screen position
and the grid resolution. At the grid position, we look up the address of
an empty page and perform an atomic increase on the corresponding
counter. The offset which is added depends on the page size and reso-
lution of the grid. For a grid size of sx× sy and a page size of sp, the
offset is sx× sy× sp. The result of this operation is the address of the
next empty page owned by this counter.

The size of the allocation grid directly affects the performance and
memory consumption of our algorithm. In general, a higher grid reso-
lution improves render performance, but also implies a slight memory
overhead. In the following, we elaborate the reasons for both.

The performance gain is due to the lower number of threads affected
by contention. In practice, fragment programs run on blocks of frag-
ments. Each fragment is processed concurrently and in the worst case,
all threads request an empty page from the allocation grid at the same
time. However, adjacent fragments address different allocation coun-
ters due to the applied modulo operations. As all threads in the same
block process neighboring fragments, concurrent access to the same
counter is rare. Furthermore, if the grid resolution is higher than the
block size, all threads in one block address different counters. Thus,



Fig. 8. The memory overhead of the linked list generation for various
configurations. Using a page size of 4 and an allocation grid of 64 × 64,
the list requires about 25% more memory for unused list entries.

Fig. 9. Costs for the fragment list generation for the close-up on the
bridge model shown in Figure 1(c) in various configurations. The per-
formance scales with both page size and allocation grid size. A maxi-
mum performance of about 5.5 ms for more than 4 million fragments is
reached using an allocation grid of 128x128 and a page size of 8.

increasing the grid resolution minimizes the number of concurrent ac-
cesses to the same atomic counter and improves performance.

The downside of a higher grid resolution is an increasing memory
overhead. Each allocation counter separately owns a number of pages.
With respect to ownership, all pages in the fragment list buffer are
interleaved. A page request returns the next page for that counter even
though some pages in between may remain unused. In the example
shown in Figure 7, the second page remains empty because no request
is addressed to the corresponding yellow counter. However, pixels that
access the same allocation counter are evenly distributed across the
screen and the number of page requests for each counter is similarly
high. An evaluation of various configurations, as shown in Figure 8,
indicates that the memory overhead remains fairly low in the range of
about 15% to 60% for a grid size of 64×64. Figure 9 shows that the
corresponding performance gain reaches up to a factor of 100x.

8 RESULTS AND DISCUSSION

Figure 10 illustrates the technical realization of our three-pass algo-
rithm, which was implemented as described. The first pass is imple-
mented using OpenGL and GLSL as it depends on the rasterization
capabilities. The resulting fragments are stored using the image load
and store capabilities [31]. Subsequently, the sorting pass and the ray
casting are performed by compute kernels which are implemented in
CUDA. However, the CUDA API does not provide the capability to
directly write into the framebuffer. An off-screen render target is used
instead and finally mapped to the screen.

All tests were performed on a 3.33 GHz Intel Core i7 workstation
with 12GiB RAM equipped with a single NVIDIA Geforce GTX Titan
graphics board with 6GiB video memory and using a window resolu-

Fig. 10. A schematic overview of our multi-pass ray casting system.

NURBS Bézier representation
solids #points solids #points degree

bridge 16 40,096 6296 169,992 2×2×2
wind simulation 120 789,680 705,550 19,049,850 2×2×2

Table 1. The bridge data set comprises the following attributes: engi-
neering stress, von Mises stress, engineering strain, and displacement.
The wind simulation comprises displacement, velocity and acceleration.

tion of 1024x1024. The linked list generation was configured using a
page size of 4 and an allocation grid of 64x64.

We evaluated our approach using two datasets: A NURBS-based
isogeometric analysis applied on a bridge model, as shown in Figure 1;
and a NURBS-based wind simulation of the air flow around one rotor
of a wind turbine as shown in Figure 11. The initial preprocessing
varies from less than a second for the bridge model to a few seconds
for the wind simulation. Table 1 shows the resulting number of Bézier
cells for each model. The rendering performance is mainly fill-rate
dependent; it varies between 9 Hz to 18 Hz for the views shown in
Figure 1 and is about 6 Hz for the view shown in Figure 11. The
respective timings for the three passes of our algorithm are given in
Table 2. The rendering performance for the view shown in Figure 1(b)
is slightly better considering that it benefits from higher cache coher-
ence and lower depth complexity.

First, we would like to discuss the memory requirements of our
algorithm. The main idea to focus the search for isosurfaces on the
relevant parts of the model requires a conversion from NURBS to a ra-
tional Bézier representation. While this is necessary to determine the
geometric and attribute bounds for the respective knot spans, it also
increases the number of control points, as shown in Table 1, and thus
memory requirements. The resulting overhead is of an order (n+1)3,
where n is the polynomial degree. Besides the parametric represen-
tation, a polygonal description of the faces’ convex hulls is required
including a per-vertex attribute for the initial guess. In our current im-
plementation, the Bézier control points are kept and used for efficient
evaluation. This memory overhead could be reduced by keeping only
the proxy geometry and the associated knot span for a direct evalu-
ation of the NURBS representation. However, additional memory is
also used for the generation of the ray-interval lists. The budget re-
served for this data structure is mainly depth-complexity and resolu-
tion dependent. In our current implementation, storing the necessary
information for a single fragment requires 16 bytes and we found that
a budget of 256MiB of graphics card memory was sufficient even for
views with a high depth complexity.

At this point, we would like to discuss the choice of Newton’s
method for numerical root finding and also point out the associated
limitations with respect to our algorithm. The convergence proper-
ties, advantages and issues of this method are thoroughly discussed
in [11]. In our algorithm, Newton’s method is used for four purposes:
root isolation, ray-face intersection, point evaluation and as a heuristic
for adaptive sampling. The latter increases rendering performance, as
shown in Figure 16, and convergence issues are addressed by limit-
ing the resulting sampling distance with satisfying results as shown in
Figure 12. Likewise, we set the maximum step length of our sampling-



Fig. 11. This Figure shows the air displacement around the rotor of a windturbine. The rotor is a separate object which consists only of NURBS
surfaces and is rendered using conventional NURBS ray casting [23] in a separate rendering pass. Some of the isosurfaces may not appear entirely
smooth. This is due to the C0-continuity at the boundary of adjacent NURBS elements and not an artifact of the proposed rendering algorithm.

view #fragments list generation sorting ray casting
bridge 824,858 2.6ms 3.2ms 49ms

pier 1,677,022 4.1ms 2.9ms 42ms
close-up 4,025,634 9.5ms 5.6ms 97ms

wind simulation 6,523,424 26.1ms 10.2ms 129ms

Table 2. This Table provides a detailed overview of the rendering times
for views shown in Figures 1 and 11. The view of the pier (Fig. 1(b)) runs
at 18 Hz and benefits from discarding inner cells which do not contain
an isosurface. In contrast, the close-up view (Fig. 1(c)) renders at about
9Hz due to a higher fill-rate and a larger number of cells in which a
search for an isosurface is necessary. The list generation for the view of
the wind simulation (Fig. 11) is more expensive due to larger number of
processed cells.

based root isolation approach to S/n, where S is the size of the interval
which is sampled and n the degree of the face. This choice worked
well for all our models. However, adapting these parameters to the
curvature, the current view and the error tolerance is desirable, but also
quite involved and remains future work. The point evaluation usually
converges to the only existing solution because the preceding sample
provides a very close initial guess. The convergence rate for finding
ray-face intersections benefits from our root isolation approach.

In practice, most models contain at least some degenerate cells. In
our wind simulation, for example, the space around the rotor is rep-
resented by a set of tubular sections. The inner faces at the center of
the tube degenerate to single edges. These degenerate cells are located
around the base of the rotor shown in Figure 11. In general, most
degeneracies are a result of one or more collapsed edges. During pre-
processing, we detect all faces which degenerated into a single edge or
even into a single point and exclude them from the rendering process.
In this case, all entry and exit points can still be found because such
degenerate faces are coincident with an edge or a point of an adjacent
face. However, faces with only a single collapsed edge do not undergo
special treatment. As a consequence, the partial derivatives close to
the collapsed edge become very small. Point evaluations in these re-
gions are limited by machine precision and the convergence properties
of Newton’s method. Adapting the iteration with respect to the type of
degeneracy could reduce the problem, but remains future work.

While the bijective mapping may be valid inside a cell, it does not
necessarily apply to the outside. In particular degenerate cells tend to
have ambiguities even close to the boundary. For our sampling-based
root isolation, this does not represent a problem. If Newton’s method
converges to one of the multiple solutions, the corresponding point in
domain space can still be classified as being outside.

Furthermore, we compared our results to the common intersec-
tion heuristic which is used by most other interactive rendering ap-
proaches [33] [23] [19] [28]. In their work, two initial guesses are
generated using the intersections with a convex proxy geometry. New-
ton’s method is then started for both, assuming not more than two
intersections between the ray and the contained face. For the purpose
of comparison, we implemented such a heuristic and use the interpo-
lated initial guess which is provided by the rasterization of the textured

(a) (b) tmax =
S
2n (c) tmax =

S
n (d) tmax = ∞

Fig. 12. The Figures (b) to (d) show the visual quality for different
choices of tmax. A close-up on the isosurface visualization shown in (a)
reveals that a higher maximum sampling distance may cause visual ar-
tifacts in regions with high curvature.

(a) Common heuristic (b) Our approach

Fig. 13. The visualization of the outer boundary of a tricubic Bézier
volume. The upper and lower face are highly curved. For these faces,
the common intersection heuristic (a), which is used by Üffinger et al.,
causes visual artifacts. By contrast, our approach (b) provides close
initial guesses and finds all face intersections.

convex hull. This heuristic is slightly faster compared to our approach,
as shown in Figure 15. For most of our models, the visual results are
also the same. This is mainly because most parts of our models have a
low curvature due to the refinement process of the isogeometric anal-
ysis. These parts apply the assumption of two or less intersections per
face. However, parts with higher curvature are affected by this limita-
tion which causes visual artifacts, as shown in Figure 13. For the same
view, there are no visual artifacts using sampling-based root isolation.

The performance chart in Figure 15 includes the draw times for our
approach as described and a variant of our approach employing the
common intersection heuristic. The performance gain using the lat-
ter is relatively low because the sampling for root isolation adapts to
the curvature of the face and the thickness of its convex hull. Thus,
most point evaluations related to root isolation are performed in re-
gions where it is necessary, e.g. at the silhouette of the model.



We compared our algorithm to an implementation of the approach
presented by Üffinger et al. [33]. In addition, we implemented an al-
ternative in which the parallelepipeds are organized in an octree data
structure instead of a regular grid. The octree adapts better to different
cell sizes and complex spatial configurations. This is very visible in
the frame rate variations of Üffinger et al. To ensure comparability,
both approaches use the same kernel for the actual isosurface intersec-
tion as our approach. At first glance, the detailed rendering times of
our performance tests in Table 2 suggest that the construction of the
ray-interval lists incurs a certain overhead in comparison to a spatial
acceleration scheme. But, as a matter of fact, our algorithm performs
much faster than both other approaches, as shown in Figure 15, be-
cause it takes a lot of computational load off the actual ray casting
kernel by generating a lower number of rays, exploiting the GPU’s
rasterization capabilities to intersect the proxy geometry and provid-
ing closer initial guesses for the intersection of the cells’ faces. In ad-
dition, we found that performing the major tasks in separate passes (as
shown in Figure 14) is much more cache-coherent than a single-pass
approach. The reasons for this are:

• Segmentation: For the purpose of analysis, the NURBS basis is
typically refined in regions with high curvature. As a result, the
cells’ sizes differ significantly which makes using a regular grid
rather unsuitable. In our tests, even grids with a very high resolu-
tion contained grid cells with more than thousand faces. Our al-
ternative octree-based implementation easily adapts to different
cell sizes. However, in both data structures it is inevitable that
many faces overlap multiple nodes or grid cells which causes a
considerable memory and performance overhead.

• Cache coherence: A modern GPU operates on blocks of threads
which are processed in parallel. All threads in a single block
accessing the same data benefit from the GPU’s texture cache.
However, the memory access can be quite incoherent for each
thread processing a single ray. Using a spatial acceleration struc-
ture, the data required for ray traversal and intersection tests may
be entirely different, even for adjacent rays. By checking the
attribute bounds during geometry processing and using raster-
ization for intersecting the convex hulls we move tasks which
potentially cause incoherent memory access to earlier stages of
the pipeline, where they are processed more efficiently.

• Proxy intersection: The ray segment which is analyzed for face
intersections is limited by the entry point and exit point of the
face’s proxy geometry. Each point provides an initial guess for
the point evaluation. In general, a convex hull provides a tighter
bounding volume than a parallelepiped or a bounding box. Con-
sequently, using convex hulls results in shorter ray segments.
Furthermore, the convex hulls are more suitable to attach ap-
propriate parameters for an initial guess [23]. However, an an-
alytical intersection of a ray and a convex hull would require
many more operations than the intersection with parallelepipeds.
Instead, we exploit the rasterization capabilities of the graphics
hardware to perform this task.

• Preprocessing: Our long-term objective to integrate our visu-
alization approach into an interactive isogeometric pipeline re-
quires a rapid response to changes in design and the correspond-
ing simulation. While additional data structures help to acceler-
ate the ray casting for a static geometry, they are a potential bot-
tleneck for interactive updates of the model. In contrast, our ap-
proach requires only minimal preprocessing and allows for par-
tial updates of the model.

Furthermore, we evaluated the effect of the adaptive sampling strat-
egy. Figure 16 illustrates that the number of point evaluations is highly
reduced in comparison to an equidistant sampling approach. The re-
sulting image quality was even better for the adaptive sampling ap-
proach because the minimum sampling distance tmin can be set much
lower than the step width of the equidistant approach.

determine relevant proxies

determine next voxel

determine next face intersection

sampling for isosurface

spatial data structure

proxy geometry

for all rays

(a) Common approach using a spatial
data structure

rasterize to generate intervals

sorted interval list

proxy geometry

intersect and sample for isosurface

sort intervals

for all proxy geometries

for all rays

for all rays

(b) Our approach

Fig. 14. A ray-casting kernel using a spatial data structure (a) requires to
frequent switches between different tasks. Even for adjacent rays, the
path of execution may be completely different which is in most cases
cache-inefficient. In our approach (b) major tasks are performed in sep-
arate passes to take full advantage of the GPU’s SIMD processing ca-
pabilities.

Fig. 15. This graph shows the draw times for different views of the wind
simulation (shown in Figure 11) using the approach of Üffinger et al., an
octree-based adaptation and our method. Our approach performs about
2 to 3 times faster than both other approaches. For this model, using our
sampling-based root isolation results in about 10% slower performance
compared to the common intersection heuristic.
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Fig. 16. This Figure shows the number of point evaluations for a view of
the strain in a single pier (a). In comparison to equidistant sampling (b),
adaptive sampling (c) reduces the number of point evaluations required.



Our approach sorts the ray-interval lists based on the intersection
with the convex hulls of the cells’ faces. In theory the order of the
actual face intersections along the ray could be different. This is not
a problem for the rendering of opaque isosurfaces since the traversal
will continue until another intersection is found in front of the next
interval. For transparent isosurfaces multiple intersections need to be
blended in the right order. The computed face intersections are there-
fore stored temporarily in the corresponding entry of the already allo-
cated interval lists. If there are more than two face intersections, we
insert new entries in the interval list using the allocation scheme de-
scribed in Section 7. Once the next interval lies behind all so far found
face intersections the isosurface search is performed. Thus, early ray
termination can still be efficiently used.

We would also like to point out that the applicability of our ap-
proach is not limited to isosurface rendering of NURBS-based isoge-
ometric analysis. Of course, our approach also applies to NURBS
and Bézier volumes of arbitrary degree with attached scalar fields
or attribute functions. Furthermore, the main idea to generate only
ray intervals requiring further computations could be adapted to other
higher-order representations. In general, the ray intervals can also be
used for direct volume rendering (DVR) by exchanging the search for
isosurfaces with regular sampling. Using a linear approximation of the
attribute function between the samples, volume pre-integration [35]
may be used to accumulate color and opacity contributions. However,
the performance of our approach mainly benefits from culling, adap-
tive sampling and a higher cache coherence by processing only a few
relevant intervals. For DVR, the number of relevant cells depends on
the given transfer function. In comparison to isosurface rendering, the
number of generated intervals would be higher which increases stor-
age needs, costs for sorting and the number of point evaluations.

9 CONCLUSION AND FUTURE WORK

We developed a GPU-based ray casting system for the direct visualiza-
tion of the results of a NURBS-based isogeometric analysis. Our sys-
tem exploits current graphics hardware capabilities to construct ray-
interval lists on-the-fly which contain all intervals that are relevant for
the current isosurface visualization. Based on these interval lists, we
demonstrated how to efficiently search for an isosurface directly using
the underlying parametric volume and attribute representation without
the need of discretization or approximation.

We support NURBS volumes of arbitrary degree, which is enabled
by our adaptation of Sederberg’s [30] scheme to the trivariate case.
Thus, our system always generates pixel-accurate visualizations of the
isosurfaces within the limitations of the numerical approaches em-
ployed. The combination of our root-isolation approach and Newton’s
method represents a robust, adaptive and still interactive solution for
finding multiple ray-face intersections. We also provide a mathemat-
ically founded detailed description of a practical GPU-based imple-
mentation of our system which interactively visualizes models con-
sisting of hundreds of thousands of cells with minimal preprocessing
costs. Furthermore, we show how to avoid the memory allocation bot-
tleneck for creating per-pixel linked lists and demonstrated that our
approach is more than 100 times faster than a naı̈ve implementation.
A comparison to GPU-based ray casting implementations using a reg-
ular grid and an octree data structure shows that our approach results
typically in a factor of 2 to 3 higher frame rates due to our efficient
processing scheme.

There are many further options to refine and optimize our approach.
The preprocessing could be extended with an additional refinement
stage, since currently we depend directly on the refinement level of
the isogeometric analysis. An adaptive subdivision of cells with a large
attribute range would reduce the number and lengths of ray segments
which have to be analyzed for isosurface intersections. This subdi-
vision creates a hierarchy for each cell, which could also aid level-
of-detail management for handling larger models. Additionally, the
development of an appropriate occlusion culling technique is required
for scenes with high depth complexity. Since we process only those
cells which belong to the boundary of a model and those that contain
an isosurface, the number of cell intervals per ray is typically small.

However, if we were to render isosurfaces simultaneously for multiple
isovalues the number of cell intervals could potentially become larger
even though only the first entries are typically needed. Furthermore,
the interval sorting step could significantly benefit from a coarse front-
to-back rendering of the cells’ surfaces.

In structural dynamics it is common to simulate dynamic models,
which are represented by a sequence of discrete time steps. Our aim
is to move towards a full 4D NURBS-model such that the visualiza-
tion could show a smooth transition between the different time steps.
Ideally the structural engineers would not only avoid the discretization
of the geometry but instead generate the 4D model directly and there-
fore avoid the discretization in time as well. Our direct visualization
approach is an important first step towards a complete isogeometric
pipeline which allows for the design, simulation and visual analysis
of volumetric NURBS models without the need for an intermediate
approximation of the geometry.
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[33] M. Üffinger, S. Frey, and T. Ertl. Interactive high-quality visualization of
higher-order finite elements. Computer Graphics Forum, 29(2):337–346,
2010.

[34] I. Wald, H. Friedrich, A. Knoll, and C. D. Hansen. Interactive isosurface
ray tracing of time-varying tetrahedral volumes. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1727–1734, Nov. 2007.

[35] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting
for tetrahedral meshes. In Proceedings of the 14th IEEE Visualization
2003 (VIS’03), VIS ’03, pages 44–, Washington, DC, USA, 2003. IEEE
Computer Society.

[36] J. C. Yang, J. Hensley, H. Grün, and N. Thibieroz. Real-time concur-
rent linked list construction on the gpu. Computer Graphics Forum,
29(4):1297–1304, 2010.

[37] Y. Zhou and M. Garland. Interactive point-based rendering of higher-
order tetrahedral data. IEEE Transactions on Visualization and Computer
Graphics, 12(5):1229–1236, Sept. 2006.

Andre Schollmeyer is a PhD candidate
with the Virtual Reality Systems group
at the Bauhaus-Universität Weimar. His
research interests include real-time ren-
dering techniques, GPGPU programming,
ray tracing and point-based rendering.

Bernd Froehlich is chair of the Vir-
tual Reality Systems group (www.
uni-weimar.de/medien/vr) and
a full professor with the Media Fac-
ulty at Bauhaus-Universität Weimar.
His research interests include real-time
rendering, visualization, 2D and 3D
input devices, 3D interaction techniques,
display technology, and support for
collaboration in colocated and distributed
virtual environments.

www.uni-weimar.de/medien/vr
www.uni-weimar.de/medien/vr

	Introduction
	NURBS-Based Isogeometric Analysis
	Related work
	Preprocessing
	Point Evaluation
	Ray casting Bézier Cells
	Generate Ray-Interval Lists
	Culling
	Generation

	Sort Ray-Interval Lists
	Ray-Face Intersection
	Ray-Segment Classification 
	Isosurface Intersection

	Efficient Per-Pixel Lists
	Results and Discussion
	Conclusion and Future Work

