
A Shared-Scene-Graph Image-Warping Architecture for VR: Low Latency
versus Image Quality

Ferdi Smit∗
CWI, Amsterdam

Robert van Liere†

CWI, Amsterdam
Stephan Beck‡

Bauhaus-Universität Weimar
Bernd Froehlich§

Bauhaus-Universität Weimar

ABSTRACT

Designing low end-to-end latency system architectures for virtual
reality is still an open and challenging problem. We describe the de-
sign, implementation and evaluation of a client-server depth-image
warping architecture that updates and displays the scene graph at
the refresh rate of the display. Our approach works for scenes con-
sisting of dynamic and interactive objects. The end-to-end latency
is minimized as well as smooth object motion generated. However,
this comes at the expense of image quality inherent to warping tech-
niques. To improve image quality, we present a novel way of de-
tecting and resolving occlusion errors due to warping. Furthermore,
we investigate the use of asynchronous data transfers to increase
the architecture’s performance in a multi-GPU setting. Besides
polygonal rendering, we also apply image-warping techniques to
iso-surface rendering. Finally, we evaluate the architecture and its
design trade-offs by comparing latency and image quality to a con-
ventional rendering system. Our experience with the system con-
firms that the approach facilitates common interaction tasks such as
navigation and object manipulation.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

1 INTRODUCTION

Most current rendering systems used in virtual environments are
scene-graph based. The scene graph consists of several entities re-
quired for rendering, such as cameras, lights and geometric objects,
along with their respective pose matrices and dependencies. The
usual method of operation is to first update the state of the scene
graph based on the most recent input sensor data and then render
the scene out to the display for each application frame. Tracker
sensors usually generate pose updates at 60Hz or more. The display
system operates at a fixed frequency, typically 60Hz, which defines
the optimal frame rate for an application. Rendering, however, can
often not be performed in less than 16.6ms required for a 60Hz up-
date rate. Thus, the scene graph update is constrained by the render
process, and input data arriving at a higher rate than the applica-
tion frame rate is ignored. Rendering at lower frame rates than the
display refresh results in two problems. The end-to-end latency di-
rectly depends on the application frame rate and is therefore high
for low frame rates [12]. Second, because the display is refreshed
at 60Hz, the previous application frame is repeated by the display
until a new one becomes available. This repetition of application
frames results in visually displeasing artifacts for moving objects,
such as judder [1] and jerky motion. Both problems significantly
affect interaction tasks such as navigation and object manipulation.

∗e-mail: Ferdi.Smit@cwi.nl
†e-mail: Robert.van.Liere@cwi.nl
‡e-mail: Stephan.Beck@medien.uni-weimar.de
§e-mail: Bernd.Froehlich@medien.uni-weimar.de

Figure 1: Overview of the proposed real-time image-warping archi-
tecture. A client and server process run in parallel, where the client
generates new application frames at a fraction of 60Hz (60/N) and
the server produces new display frames at 60Hz. The scene graph
is shared to allow the server access to geometry and the latest pose
information.

In this paper, we present an architecture that updates and ren-
ders the scene graph at the display refresh rate. This is achieved
by an image-warping architecture using a parallel client and server
process, which access a shared scene graph (Figure 1). The client
is responsible for generating new application frames at its own
frame rate depending on the scene complexity. The server performs
constant-frame-rate image warping of the most recent application
frames, based on the latest state of the scene graph. The central idea
for enabling image warping based on the state of the scene graph
is to tag each pixel in the client rendering process with an object
identification (object ID). This enables the server process to warp
each individual pixel based on the latest pose information from the
corresponding object in the scene graph.

An important aspect is the manner in which data is shared, in
particular when the client and server run on different GPUs. In this
case, per-pixel data needs to be transferred from the client to the
server GPU. Since the server has a strict performance requirement
of less than 16.6ms per frame, it is a bottleneck to wait for a time-
consuming synchronous data transfer to complete at each frame. To
overcome this problem, we implement the architecture using asyn-
chronous data transfers. In this way, data is transferred to the server
GPU by a background thread while the server itself is busy pro-
cessing. This reduces the impact of data transfers and allows for
more per-pixel data to be shared. A single-GPU implementation
runs client and server on the same GPU, with the advantage that
per-pixel data is now shared on this GPU and need not be trans-
ferred.

Image warping is an image-based technique that generates
novel views from reference images by performing a per-pixel re-
projection. In this way, the application frames generated by the
client can be transformed and re-projected for new object poses
and camera viewpoints at the server. Since the warping operates
on fixed image sizes (e.g. 1024x768), it results in constant image
update rates and constant latency independent of the scene com-
plexity. However, image warping comes at the expense of some
trade-offs; it can have a negative effect on image quality, such as

sampling artifacts and occlusion errors due to missing image infor-
mation. In addition, the quality of warped images depends on the
distance to reference images and thus the frame rate of the client
render process. We quantify the number and types of errors intro-
duced by image-warping, and present a novel method for detecting
and resolving occlusion artifacts. These methods can be used to
increase the produced image quality, at the expense of longer pro-
cessing times.

A limitation of the proposed architecture is that image-warping
methods have difficulties handling scene transparency and dynamic
object deformations. For certain simple cases of transparency this
can be resolved by generating one or more extra depth-layers of
per-pixel information on the client, much like LDIs [14]; however,
this is highly inefficient for applications such as volume rendering
using many transparent slices. Object deformations are especially
difficult to handle due to changing surface topology. We will in-
vestigate how image-warping can be used efficiently for volume
visualization through iso-surface rendering.

The presented architecture incorporates input sensor updates into
the scene graph and the displayed image at the display refresh
rate, which results in the minimal latency achievable through non-
predictive methods. Our investigation of different image-warping
methods show that point-splat warping is currently the fastest
method providing a reasonable image-quality trade-off. It achieves
constant 60Hz warping for 1024x768 stereoscopic images when
running client and server on different GPUs. From our experi-
ence with the implementation, we conclude that our low latency
system running at 60Hz significantly improves the interactivity, be-
sides eliminating judder and jerky motion. Navigation and object
manipulation can particularly benefit from our architecture due to
the reduced latency [3]. In addition, object selection and most sys-
tem control tasks are executed at the display refresh rate because
of the direct influence of the latest scene graph state on the warped
images.

The main focus in this paper will be on world-in-hand scenes
consisting of very large models. We believe this scenario to be
typical for many scientific visualization applications, especially in
combination with large models obtained by scanning real-life ob-
jects. Furthermore, we aim at providing good solutions for desktop-
VR systems where head motions are typically small and individual
object motion, often realized using 6-DOF input devices, is exten-
sive. Although all of the presented techniques also work in dif-
ferent settings, such as for walk-through scenes and HMDs, these
may require different, fine-tuned configurations to avoid introduc-
ing additional errors due to rapid changes in viewing direction and
increased occlusions.

2 RELATED WORK

Image-based rendering by 3D warping was introduced by McMil-
lan and Bishop [11]. Layered depth images (LDI) [14] is a tech-
nique that combines several depth images from nearby views into
a layered representation in order to reduce occlusion artifacts and
holes. In the context of auto-stereoscopic displays, image-warping
using splatting was used to generate the multiple required shifted
view-points from a single rendered view [4]. A good overview of
many different warping algorithms is given by Mark [9]. Other
approaches have been explored in order to reduce latency for in-
teractive VR-systems. A very common method is to use predictive
Kalman filtering [5] on the received tracker reports prior to the ren-
dering of a new frame. Further examples are the PixelView archi-
tecture proposed by Stewart et al. [19], the Reflex HMD by Kijima
et al. [6], the SLATS system by Olano et al. [13] and the Tal-
isman architecture by Microsoft [20]. All of these systems either
require special hardware to be used in real-time, impose constraints
on the scenes used for rendering, or were test-bed systems that did
not operate in real-time for realistic resolution and scenes. Further-

Figure 2: Using a second client view in order to reduce occlusion
artifacts in the form of holes. Object A and B are visible in the server’s
projection; however, object B is occluded by object A in the first client
view’s projection, resulting in a hole. By adding a second client view
the occlusion issue can be resolved.

more, the focus of these systems mostly lies on static scenes and
viewpoint changes, with no support for moving objects. Our ap-
proach supports dynamic scenes and operates in real-time at 60Hz
for stereoscopic displays using commodity hardware. Because of
this, we support realistic latency reduction for head-tracking as
well as general 6 DOF input devices in common, practical VR-
environments. A longer overview of related work is given by Smit
et al. [16].

We have previously evaluated the difference in image quality
between using image-warping and a classic level-of-detail (LOD)
method to achieve a 60Hz frame rate for large models [16]. A
standard edge-collapse LOD method was used decimate the set of
polygons to a pre-specified number that the hardware can render at
60Hz. It was shown that in this case image-warping produces better
quality images than those produced by the LOD method. This re-
sult increases our believe that image-warping methods can provide
a good trade-off between image quality and low latency systems.

An important aspect of image warping is the link between im-
age quality and the number of client cameras and their placements.
Most previous camera placement strategies (e.g. [9]) were con-
cerned with static scenes only. For dynamic scenes in particular,
good client-side camera placements can reduce the amount of er-
rors resulting from image warping. We have shown that by using
two client-side cameras along with prediction based on the optic
flow of the scene, errors caused by occlusion can be reduced sig-
nificantly [16]. In this paper, however, we use a simple client-side
camera placement where two client cameras are placed at fixed po-
sitions relative to the server camera.

Previous image-warping architectures did not share the scene
graph; although the use of object IDs has been proposed [9], this
was not widely adopted. There are several important benefits to as-
signing object-IDs to pixels and sharing the scene graph completely
between client and server. First, the latest pose for objects as well
as cameras can be re-sampled from the input devices or animation
files. Consequently, late input device re-sampling is no longer re-
stricted to camera pose updates alone, and allows for latency re-
duction at the object level and for dynamic scenes. Furthermore,
certain scene graph updates, such as object selection, can be per-
formed directly at 60Hz by the server, without waiting for the next
client frame. Finally, since the server has access to all geometry,
errors in the image-warping output can be detected and the cor-
responding geometry can be re-rendered at these locations by the
server. This increases image quality.

3 ARCHITECTURE

An overview of the presented architecture was previously shown in
Figure 1. The server performs image warping to generate a trans-
formed and re-projected server view using images generated by the

client. The implementation is free to choose the number of images
generated by the client for each frame, as well as the client view-
points used for this purpose. However, as can be seen in Figure 2,
a minimum of two client views are generally required to produce
a single server view without serious occlusion artifacts [9]. In this
case, both client views are warped to the same server view where
the depth buffer handles overlapping pixels. Consequently, for
stereoscopic rendering, the server needs to perform image-warping
four times: twice for each of the left- and right-eye server views.

An important aspect of this architecture design is the shared
scene graph. Both the client and the server have full access to the
complete scene graph state and geometry. This enables the server
to use the latest available object pose information for warping, and
also the possibility to render parts of the geometry.

3.1 Client

The purpose of the client is to render images from different view-
points, in such a way that the server can use this data to perform ef-
fective image-warping. We call the data generated by the client for
this purpose a client frame. To generate the required data, the client
renders the scene from multiple viewpoints. Our implementation
uses two viewpoints per client frame, but depending on application
requirements more can be added. At the start of a client frame,
a buffer slot is acquired for data storage (see Section 3.3). Next,
the head-tracker device is sampled to determine the latest camera
pose. Since we assume stereoscopic displays, we can render a left-
and a right-eye view for this camera pose. In order to avoid some
clipping at the borders of the screen after warping, we increase the
field-of-view of the cameras. The eye-separation is also increased
in an attempt to avoid some warping occlusion artifacts. For each
viewpoint, the inverse of the corresponding camera’s projection and
modelview matrices are stored in the buffer slot as Cimg→cam and
Ccam→wld , respectively.

Next, the scene graph is rendered for each of the viewpoints. For
every geometric object that is to be rendered, a static 16-bit object
ID i is assigned to that object and the inverse of the corresponding
object matrix is stored in an array in the buffer slot as Ci

wld→ob j .
The scene is rendered using a custom shader program that outputs
per-pixel color, normal, depth and object IDs. The pixel’s color is
stored in a 4-component 8-bit BGRA format, where the alpha com-
ponent is used for the low eight bits of the object ID. The normal
is converted to the [0,1] interval for each of three components and
stored as 16-bit fixed point. No shading is performed, since deferred
shading will be done on the server using the stored normal. Post-
projection depth information is also converted to (0,1) and stored
in a 16-bit fixed point integer format as 216 · z/w. Finally, the high
eight bits of the object ID are stored in a single 8-bit component.
This results in a total required storage space of 13 bytes per pixel.

3.2 Server

The server starts by polling the client in a non-blocking fashion
to determine if a new client frame is available. Details of differ-
ent approaches to achieve this are given in Section 3.3. If a new
frame is available, it is used as the source for warping; if not, the
server continues using the previously received frame. A ratio is
kept that indicates the number of frames the server renders until
a new client frame becomes available; for example, if the server
renders three frames for every client frame, this ratio equals 3:1.
Next, a ∆t value can be computed according to the number of times
a new client frame was not available since the last received frame
and the kept ratio. This value is useful for motion extrapolation,
which will be described below. Finally, the server generates a left-
and right-eye stereoscopic view from a newly sampled head-tracker
pose Swld→cam by warping the two client viewpoints for each view
individually.

Suppose that we know the 3D homogeneous coordinates of a
pixel Pxyzw in the client’s post-projection space and the pixel’s cor-
responding object ID i; in that case, it is possible to warp the pixel
to the server’s new viewpoint by first unprojecting the pixel, trans-
forming it back to world-space, applying object transforms and fi-
nally reprojecting it using the server’s camera: P′xyzw = Mi ·Pxyzw,
where Mi equals:

Scam→img ·Swld→cam ·Si
ob j→wld ·Ci

wld→ob j ·Ccam→wld ·Cimg→cam

The matrices denoted by S are the server’s projection, camera and
object matrices, and the ones denoted by C are the client’s corre-
sponding matrices. The procedure is depicted in Figure 3. The
per-pixel normals are stored in the client’s camera space. For the
purpose of deferred shading, the normals need to be transformed to
the server’s updated camera space. This is achieved by computing
the following normal-matrix:

Ni = ((Swld→cam ·Si
ob j→wld ·Ci

wld→ob j ·Ccam→wld)−1)T

The matrices Mi and Ni are calculated for each object once per
server view, and are then uploaded to the GPU. In this way, a GPU
image warping algorithm can warp a pixel or a normal by a sin-
gle 4x4 matrix multiply, where the required matrix is pre-computed
per-object instead of being computed for each pixel. Furthermore,
all the warping equations are expressed in terms of general 4x4 ho-
mogeneous matrix computations, allowing for arbitrary transforms
to be easily inserted in the warping pipeline and effortless integra-
tion with the standard OpenGL rendering pipeline. We found that
these computation do not generally cause a large performance over-
head for several hundreds of objects. For a very large amount of
objects, the computations may impact performance, and the imple-
mentation should be extended to perform them on multiple cores
and in parallel with the GPU operations. Some additional work that
can be pre-computed, such as extrapolated matrices for fixed time
steps, could be performed by the client.

So far we have not yet mentioned the significance of the server’s
object matrices Si

ob j→wld , nor how they are calculated. If the
server’s object matrix for any particular object is equal to the
client’s object matrix for that object, the object will only appear to
change pose whenever a new client frame becomes available. This
results in non-smooth motion, or judder, and high latency. How-
ever, using image warping, we are free to change the server’s object
matrices as well as it’s camera matrix. This can be done either
by sampling the newest pose from a 6 DOF interaction device, or
by extrapolating object motion when it is not linked to an interac-
tion device. In order to extrapolate object motion, the server keeps
the client’s object matrices for the previous client frame as well as
for the current client frame. Using these two object poses and the
previously calculated ∆t value, we can extrapolate the pose by per-
forming a quaternion spherical linear extrapolation on the rotational
part, and a regular linear extrapolation for the translational part. In
effect, this is a linear prediction. Note, no such prediction is per-
formed for object poses that can be updated in the scene graph at
60Hz.

3.3 Data transfers and synchronization
A mechanism is required to move data from the client to the server
and to synchronize these transfers. The most efficient way to do
this depends heavily on whether the architecture is implemented on
a multi-GPU or on a single-GPU system. In the former case, the
data needs to be transferred from the client to the server GPU over
the PCIe bus, while in the latter case buffer data can be left in the
video RAM of the single GPU and need not be explicitly trans-
ferred. For either case, buffer synchronization is required. Due to
this dependence on the underlying system, we distinguish between

Figure 3: (left) Schematic overview of warping a client pixel Pxyzw to the server pixel P′xyzw. Re-sampling of object poses is essentially achieved
through the server’s object-to-world transform. All six required matrices are concatenated into a single warping matrix for each different object.
(right) Simplified 3D depiction of the same process.

data transfer and synchronization implementations for a multi- and
single-GPU system.

In a previous multi-GPU implementation, we have used direct,
synchronous data transfers [15]. The time required for synchronous
transfers turned out to be a bottleneck; therefore, we have imple-
mented indirect, asynchronous data transfers. To achieve this, the
architecture runs four threads: a client rendering thread, a server
warping thread, a client frame downloading thread and a server
frame uploading thread. Each of these threads is executed in paral-
lel on a quad-core CPU. The client rendering thread and the server
warping thread each open a separate OpenGL context on a different
GPU and share this OpenGL context with either their corresponding
down- or uploading thread, respectively. Client frames are written
to and read from a circular producer-consumer buffer containing
a number of slots where client frames can be placed. With such
thread-synchronized buffers, we can either request a new slot to
write to, or poll (optionally blocking) for a new slot to read from.
Since separate GPUs can not share memory directly, we need three
instances of such circular buffers: one on the video RAM of the
client GPU, one in system shared memory and one in the video
RAM of the server GPU. The slots in shared system memory can
be accessed by data pointers, while the slots in video RAM are ac-
cessed by OpenGL buffer object IDs. These producer-consumer
buffers are shared between the threads to allow communication; the
client’s GPU buffer is shared by the client’s render and download
threads, the shared system memory buffer by the client’s download
and the server’s upload threads, and the server’s GPU buffer by the
server’s upload and the server’s warping threads. This is shown
schematically in Figure 4.

The transfer of client frames to the server GPU now proceeds as
follows. First, the client render thread acquires a free slot to write
to from its producer-consumer buffer in client GPU space, after
which it renders the frame to that GPU buffer. The client’s down-
load thread polls for newly rendered buffers and downloads them
to system shared memory. Next, the server’s upload thread will de-
tect a new buffer in shared memory and proceeds to upload it to the
server GPU. Finally, the server warping thread detects that a new
frame is available in its GPU memory, and switches to that GPU
buffer as the source for image-warping. All these threads operate
asynchronously and data transfers are performed using the OpenGL
PBO extension’s DMA transfers. The effect of transferring data in
this fashion is that the image-warping server does not need to spend
time on uploading data to the GPU; however, new client frames
will arrive a short time later due to background transfers. An im-
portant observation is that updates received by the server of newly
rendered client frames were already infrequent (say every 200ms),
so an extra delay of a few milliseconds is hardly significant with
respect to the total update time between new client frames; on the

Figure 4: Schematic overview of the implementation of asynchronous
data transfers for image warping. A situation is shown where every
thread is working on a different buffer slot. In practice, other situa-
tion may occur; for example, since data transfers are relatively fast
and client rendering relatively slow, the server will often be using the
previous slot used for client rendering.

other hand, since only 16ms are available for image-warping, had
this delay of a few milliseconds occurred then, even such a small
delay would have a significant impact on image-warping perfor-
mance, taking up a large percentage of the available 16ms. With
asynchronous transfers, the server does receive new client updates
with some delay, but it can still continue to perform image warp-
ing in the meanwhile; therefore, the delay slightly reduces image
quality due to the larger warping distance between slower client
updates, but it has minimal impact on warping performance. The
resulting latency is unaffected because the server still manages to
perform image warping for every display frame.

For the single-GPU implementation, no data transfers are re-
quired; therefore, it suffices to synchronize multiple buffers that are
kept in the GPU’s video RAM. Two threads are now used: one for
the client’s rendering and one for the server’s warping. Both threads
open an OpenGL context on the same GPU, which is shared to al-
low accesses to all resources from either thread without copying
data. We use the same circular producer-consumer buffer as de-
scribed previously; however, only a single instance is now required
that manages the frames in the single GPU’s video RAM. Note, in
earlier work [15] we introduced the notion of client chunk-size on
a single GPU, where the client split the geometry into small chunks
for rendering to ease the scheduling and time-slicing of the GPU.
With the next generation of graphics drivers and vertex buffers this
appears to be no longer necessary. We ran some tests that confirmed
that chunk size has minimal influence on the achieved frame rates;
therefore, all client-side geometry is now rendered efficiently in a
single batch.

3.4 Image warping
Image-warping is performed entirely on the GPU by custom ver-
tex, geometry and fragment shaders. Rendering begins by drawing
a static, screen-aligned grid consisting of a number of evenly spaced
vertices equal to the client’s resolution. There is a one-to-one cor-
respondence between vertices in the grid and pixel-centers in the
client texture. Therefore, per-pixel image warping can be achieved
by transforming the individual vertices in the grid. Each vertex
contains the post-projection 2D coordinates Pxy ∈ [−1,1]× [−1,1]
of the corresponding pixel’s center. Other per-vertex information
that is available from buffer generated by the client is the post-
projection depth Pz ∈ (0,1), the object ID i, the normal n and the
pixel’s color. Furthermore, it is assumed that the homogeneous co-
ordinate Pw = 1. Each vertex is warped to its new location in a
vertex shader. First, we fetch the pre-constructed warping matrix
Mi corresponding to the pixel’s object ID from GPU memory with
four texture reads. Since the combination of the pixel’s 2D coordi-
nates and depth results in a valid vertex in post-projection space, it
can be warped easily by pre-multiplying it by the warping matrix:
P′xyzw = Mi ·Pxyzw. Homogeneous or perspective division will occur
later in the OpenGL pipeline, so this P′xyzw can be send directly to
the fragment shader.

Next, we need to determine the projected size of the warped
pixel. Suppose that the depth for a given pixel with coordinates
(x,y) is given by a two-dimensional function z = f (x,y). In that
case, the warp can be seen as a general 2D coordinate transform:
P′xyzw = Mi

4 +Mi
1x+Mi

2y+Mi
3 f (x,y), where Mi

n is the n-th column
of Mi. This follows directly from Mi ·Pxyzw. The corresponding
Jacobian matrix of this transform has 2x2 dimensions because the
function can be interpreted as to map 2D screen pixel coordinates
to warped 2D pixel coordinates. The expansion factor of this trans-
form, representing the change in size of a warped pixel, is given
by the Jacobian, which is the determinant of the Jacobian matrix of
partial derivatives, after homogeneous division:

J =
(

∂ (P′x/P′w)/∂x ∂ (P′y/P′w)/∂x
∂ (P′x/P′w)/∂y ∂ (P′y/P′w)/∂y

)

After simplification of the derivatives and substitution by the ele-
ments of P′xyzw, we find that:

J11 =
P′wMi

11−P′xMi
41 +(P′wMi

13−P′xMi
43) ·∂ f (x,y)/∂x

(P′w)2

The other three elements are found through very similar equations.
The partial depth derivatives for f (x,y) can be approximated by us-
ing the depth buffer gradients: ∂ f (x,y)/∂x = (f (x + 1,y)− f (x−
1,y))/2, and so on. However, a more robust depth derivative can be
computed from the pixel’s original normal n as (Snxy)/nz where S
is the size of a pixel in post-projective space, which is (2/w,2/h)
for a resolution of wxh. This final form is equivalent to the warp-
ing equations used by McMillan [11]; however, the ones here are
written in general 4x4 homogeneous matrix form for easy con-
catenation of transforms. In this way, the Jacobian matrix can be
computed quite efficiently in the vertex shader, given that P′xyzw is
already computed. Finally, the pixel’s normal must be warped to
camera space for the purpose of deferred shading. This is achieved
by pre-multiplying the normal by the pre-computed normal matrix
n′ = Ni ·n.

4 IMAGE-WARPING ERRORS

Image-warping techniques generally introduce a number of errors
in the output images. The magnitude of errors depends on the dis-
tance between the warped source view and the resulting target view
and, consequently, the client’s frame rate. We distinguish between
two types of errors: sampling errors and occlusion errors. Sampling

Figure 5: A quality comparison of a 60x60 pixel close-up from a 10M
polygon statue model. From left to right: point-splat, quad-splat and
mesh-based image warping methods and the directly rendered refer-
ence. Some noise appears for the splat-based methods due to over-
lapping splats; however, this is generally not very noticeable when
viewed from a distance. The mesh-based result shows slightly too
much blurring.

errors are due to errors in pixel-surface reconstruction and shading,
while occlusion errors result in missing geometry in the output im-
ages.

4.1 Sampling errors
Sampling errors are caused by the use of image-warping to recon-
struct continuous surfaces using only discrete pixel information.
Generally, these sampling errors manifest as small errors in shad-
ing and slightly thicker edges at sharp depth boundaries. When
the distance between the source and target images is large, a loss
of resolution can also be distinguished. However, in practice these
degradations of image quality are not very noticeable, especially
not for animated scenes.

In an effort to reduce sampling errors, we have implemented
three different warping algorithms. All three algorithms use the
same warping equation, but vary in the way the warped pixels are
rendered: a screen aligned point splat, a general quadrilateral splat
and a mesh-based reconstruction. Sample output of these three al-
gorithms is given in Figure 5. The point-splat method computes the
Jacobian matrix as described earlier (see Section 3.4) and then de-
termines a per-pixel splat size s = ceil(max(J11 + J12,J21 + J22)).
This size is set in the vertex shader on a per-pixel basis using the
gl PointSize variable; hence, this method can only render screen
aligned squares of size sxs pixels. The splat size is ceiled to avoid
hole artifacts resulting from discrete splat sizes that are too small to
cover the surface entirely. A drawback is that this generates slightly
thicker edges and overlaps individual splats. A more flexible ap-
proach is the use of a general quadrilateral splat. In this case, the ge-
ometry shader inputs a pixel to be warped and outputs a single quad.
The four vertices of this quad are computed by post-multiplying
the Jacobian matrix by half-pixel offsets (x± 0.5,y± 0.5) of the
warped pixel’s position. This results in less overlap for individual
splats. Note that the previously described discrete point splat size
S is equal to the smallest square completely covering this quad. Fi-
nally, a mesh-based reconstruction similar to the one proposed by
Mark and McMillan [10] treats the grid of pixels as a connected
triangle mesh. Each vertex in this grid mesh is warped, and the
fragment shader renders connected triangles accordingly. Because
the grid is completely connected, there is no need to calculate a
splat size and the Jacobian matrix need not be computed.

4.2 Occlusion errors
Image-warping potentially leaves holes in the produced images
caused by occlusion in the warped source images. An example has
been given in Figure 2, and Figure 7 depicts what these errors look
like in a practical application. Errors caused by holes are percep-
tually very noticeable, especially in animated scenes, and should
be minimized as much as possible. A post-processing step can be
applied after warping to first find hole pixels and then resolve or
fill them. In the past, a number of hole-filling strategies have been
proposed [9]. The problem with these methods is that not all hole

pixels are found correctly, and the methods for resolving the holes
that are found do not work well for dynamic scenes and a GPU
implementation. Therefore, we now describe a novel way of both
detecting and resolving holes in dynamic scenes.

4.2.1 Detecting holes
To detect hole pixels, we must first define what constitutes a hole
pixel. We distinguish between three types of holes:

• Level-0 holes are those destination pixels where no pixels
warp to, i.e. pixels that are left blank in the final image. These
are the classic holes found by methods as described by Mark
et al.[9].

• Level-1 holes are pixels where an object is visible, but not the
correct object. This case occurs frequently in dynamic scenes,
or when using multiple client views, when a part of geometry
is missing in the warped image due to an occlusion error and
part of some different geometry warps into this gap, behind
the geometry that should have been there.

• Level-2 holes are pixels that do show the correct object, but
not the correct part of it. For rigid object transforms this case
occurs infrequently.

Level-0 holes can easily be detected by scanning the warped out-
put image and marking every pixel that does not have some flag set
to indicate it is the destination of a warped pixel. Detecting level-
1 and level-2 holes requires more effort. The governing idea is to
compare a warp map consisting of object IDs and depth of warped
pixels to a reference map of which IDs and depth should be at those
locations. If the object IDs in the two maps do not match, then we
flag the pixel as a level-1 hole. If they do match, but the warped
pixel is further away than the depth of the bounding box, up to a
threshold, we have found a level-2 hole. In this way, level-0 holes
will always be found because their object ID of zero does not occur
in the scene graph.

Our implementation outputs per-pixel object IDs and depth for
every warped pixel into a separate buffer making up the warp map.
Per-pixel object IDs are directly available from the regular shared-
scene-graph warping, so this step is trivial. Next, we construct the
reference map. To obtain a perfect reference map, we would have
to render the entire scene, so we use an approximation instead. To
achieve this, we start by pre-computing a kd-tree for every object in
the scene. Building this kd-tree currently takes a couple of seconds
for models consisting of millions of polygons and is performed on-
the-fly when a model file is loaded; however, the kd-tree could also
be pre-computed once in advance and stored on disk. The kd-tree
gives us a convex-hull bounding-box hierarchy of increasing res-
olution, with leaf nodes consisting of small subsets of the geom-
etry. We now render a convex-hull approximation for each object
by rendering all the bounding boxes at a specific resolution in the
corresponding kd-tree. Rendering several thousand of these bound-
ing boxes can be achieved in about one or two milliseconds us-
ing hardware instancing, so this quickly gives us an approximated
reference map of object IDs and depth. Because of the nature of
image-warping and occlusions, hole pixels always have a larger
depth value (further away from the viewer) than the correct geom-
etry would have. Therefore, we can detect holes by comparing the
warp map to the approximated reference map made up of convex-
hull bounding boxes.

As an optimization, we always re-draw the entire background
quad after warping to solve many common holes. A hole-detection
optimization is also possible here. If the approximated reference
map tells us that a pixel is a background pixel, then this must be
so due to the convex hull nature of the kd-tree bounding boxes.
Therefore, if the warped pixel also turns out to be a hole, we can

safely skip it, since it must be a background hole that will be filled
anyway by redrawing the background quad. This reduces the num-
ber of candidate holes found significantly. The same approach is
not possible when only scanning for level-0 holes, since there is no
distinction between holes and background then.

A problem with the described hole detection implementation is
that it will detect some amount of false-positives, i.e. pixels that
are flagged to be holes, but in reality are not. This happens most
frequently at the edges of objects for the level-1 holes, and at sharp
depth edges for level-2 holes. The reason is that the bounding boxes
cover a larger portion of screen-space than the actual geometry, and
these pixels receive incorrect object IDs and depth from the ap-
proximated reference map. Therefore, for performance reasons, we
restrict the algorithm to finding level-1 holes only, and comparing
object IDs only, as this reduces the amount of false-positives. Note,
however, that detecting false positives only costs us performance,
and not image quality, after trying to resolve these holes.

4.2.2 Resolving holes

In the previous section it was described how to find a bitmap of can-
didate hole pixels. Now we will resolve the found holes by directly
rendering in the missing geometry on the image-warping server
using the shared-scene-graph geometry. The idea is to shoot rays
through the hole pixels, trace those rays through the pre-computed
kd-tree to find the intersected leaf nodes, and to re-render these
complete leaf nodes that form a super-set of the intersected geome-
try. Rendering entire leaf nodes, which in our implementation con-
sist of approximately 1K polygons, avoids the need to test every
face in the node to find an exact intersection, which is too slow in
practice. However, it does cause more polygons to be redrawn, but
this can usually be done much quicker on a GPU.

To resolve holes we need to download the hole map to the CPU.
To reduce the size of data, we test blocks of 4x4 pixels for holes
on the GPU and combine the output of these 16 tests into a sin-
gle 16bit unsigned integer texture. The hole map now becomes so
small that it can be downloaded to the CPU in a fraction of a mil-
lisecond. Next, we iterate over the 16-bit integer hole map on the
CPU, searching for integers that are not equal to zero, indicating
at least one of the pixels in the corresponding 4x4 block is a hole
pixel. This saves many comparisons for the generally sparse hole
map. A straight-forward approach would be to test every pixel in
the block and trace a ray through it if that pixel’s bit is set, indicating
it to be a hole; however, this requires many rays to be traced, de-
grading performance. Therefore, we only trace a single ray through
the center of the 4x4 block of pixels. The corresponding rays for
the other potential hole pixels in the block are so close to this cen-
ter ray that they usually intersect the same leaf nodes. Since these
leaf nodes are to be re-rendered anyway, it usually suffices to trace
only the single center ray. This approach may cause us to miss the
right geometry, leaving the hole unresolved, but it greatly improves
performance. Next, we determine the leaf nodes in the kd-tree that
the center ray intersects, and store the indices of these leaf nodes in
a unique set, ensuring that we never re-render the same leaf node
twice.

Due to the structure of the kd-tree, intersected leaf nodes are
found in front-to-back order along the ray; however, this does not
guarantee that the first-found intersected leaf node contains the cor-
rect geometry to resolve the hole. It is possible for the ray to hit
the bounding box for the geometry contained in the leaf node, but
not to hit the actual geometry itself. This is often the case at object
boundaries and sharp depth edges. In that case, other geometry in
leaf nodes further away is actually visible in the place of the hole.
To be absolutely certain we re-render the right geometry, we would
need to re-render all the intersected leaf nodes along the ray. An-
other optimization is to only re-render the first few hit leaf nodes.
Again, this may cause the correct geometry to be missed, failing to

Figure 6: Visualization of the post-warping reconstruction pass on
the server. Green area: no starting position available. Red area:
starting position available but no iso-surface found during the binary
search.

resolve the hole. We found that re-rendering the first three hit leaf
nodes generally provides good quality.

5 ISO-SURFACE RENDERING

In the context of volume rendering, iso-surface rendering is a com-
mon task: to find and render the iso-surface within a volume data
set for a given iso-value. Both steps can be done separately or in
a direct manner. The Marching Cubes algorithm [7] is able to ex-
tract the iso-surface by traversing a volume voxel by voxel. The
iso-surface can be stored as a polygonal mesh and then be rendered.
Another technique is to use (direct) iso-surface ray-casting. By ray-
casting a volume in screen space, the detected iso-surface along
each ray can be rendered directly. Direct iso-surface ray-casting
can be implemented on programmable GPUs [18]. The compu-
tational cost for ray-casting depends on screen size, volume size,
the searched iso-value and the actual voxel data. For small and
medium sized volumes up to 2563 voxels, iso-surface ray-casting
can be done in less than 16ms (60Hz) on current graphics hard-
ware. Rendering larger volume data sets is still too expensive to
achieve interactive frame rates.

We investigated ways to integrate iso-surface ray-casting within
our image-warping architecture in a natural way. Our first approach
is to extended the image-warping architecture for low-latency iso-
surface rendering, analogous to the low-latency polygonal render-
ing. As a second approach, we propose a modified warping archi-
tecture that aims for better iso-surface reconstruction on the server
side. We will now describe these two approaches in turn.

The first approach is a client-side extension, where the client ren-
ders and stores iso-surface information instead of polygonal sur-
face information. This is done by ray-casting the volume in a frag-
ment program. For each fragment, a ray traverses the volume at a
fixed sampling distance in front-to-back direction and searches for
a given iso-value. If two consecutive samples along the ray indicate
that the iso-surface lies in-between them, the ray segment is re-
fined using binary search to find the sampling position that matches
the iso-value best. Whenever an iso-surface is found, the gradient
is computed and interpreted as surface normal. The surface nor-
mal is then stored along with the object-ID and depth in a client
buffer. The surface information stored in each client view is similar
to the surface information which would be stored in the polygo-
nal warping-architecture; therefore, we have the possibility to warp
and reconstruct the extracted iso-surfaces in the same way for both
polygonal data and volume data. This means that the server does
not need to be modified at all in order to do the warping, deferred
shading and reconstruction work.

The second approach aims for a better reconstruction of the iso-
surface on the server side. It is currently only implemented for a
single volume in a world-in-hand scenario, without the benefit of a
full scene graph. As there is only one object, the volume, no object-
IDs are needed. We modified the previously described volume ray-

Multi-GPU
640x480 800x600 1024x768 1280x960

Warp Upd. Warp Upd. Warp Upd. Warp Upd.
Point 5.8 212 9.0 214 14.7 218 23.1 222
Quad 10.2 212 15.9 214 25.9 218 41.0 222
Mesh 15.7 212 24.5 214 40.3 218 63.2 222

Single-GPU
Point 9.2 900 11.8 1150 16.3 1586 25.9 2325
Quad 14.5 1426 20.1 1883 30.3 2857 44.5 4319
Mesh 48.7 654 76.0 655 123.5 659 193 672
Reg. 207.0 207.1 207.4 207.9

Table 1: Frame rates for single- and multi-GPU implementations that
warp two views into a stereoscopic image; hence, image-warping
needs to performed four times. Occlusion artifacts are neither de-
tect nor resolved. All data are in milliseconds (60Hz corresponds to
16.6ms available time). The bottom row shows the time required for
a regular stereoscopic renderer to produce the same images. For
each resolution, the first column shows the time required for warp-
ing on the server, while the second column represents the time be-
tween fresh buffer updates arriving at the server from the client. The
pipeline of a single GPU is quickly congested under heavy warping
loads; in combination with the scheduling overhead, this leaves little
time for new client updates to be rendered. (Intel Core2 Quad Q9950
2.83Ghz + 2x NVidia GeForce GTX 260)

casting on the client and the warping mechanism on the server in
the following way. The client’s ray traversal stops at the point when
the binary search would begin to refine the sampling position. At
this point, the client stores the depth at this sampling position. The
server now warps the depth information from the client view into
the depth buffer of the actual view, without performing any shading.
After this warping step is done, the newly filled depth buffer con-
tains either a valid volume position, or no information at each pixel.
In a second pass, the bounding box of the volume is rendered, and
the depth buffer is bound to a texture unit and used as a look-up for
a valid starting position for the binary search, which is now done
on the server side (see Figure 6). This post-warping reconstruction
pass enables us to search in the volume for the iso-surface in a short
range along the ray, similar to the method proposed by Magnus et
al.[8]

There are three benefits to this second approach. First, we are
able to reconstruct the iso-surface without traversing the volume
from the volume entry point. Second, we are able to fill small holes
that tend to open up during warping at the silhouettes by slightly
enlarging the point-size during the warping of the starting positions
on the server. Third, warping the starting positions for the deferred
binary search into the actual view saves traversal steps on the server.

6 RESULTS

6.1 Frame rate

We have tested the performance of the multi- and single-GPU im-
plementation of the warping architecture on a system consisting of
of an Intel Core2 Quad Q9950 2.83Ghz and two NVidia GeForce
GTX 260 video cards connected over a PCIe 2.0 16x bus. For the
single-GPU implementation one of these video cards was disabled.
The test scene consisted of the 28M polygon Stanford Lucy angel
model orbited by twelve torus knots. Table 1 shows that a regu-
lar stereoscopic renderer would takes 207ms to render this scene in
stereo. We will use the output of this regular renderer as error-free
reference images, to compare the quality of the output produced by
image-warping.

We implemented three different image-warping algorithms for
our architecture: point splat, quad splat and mesh-based reconstruc-
tion. In general, we found the perceived quality of point splats and
quad splats to be roughly equal, with quad splats showing slightly
better quality in smooth shaded regions. The quality of the mesh-

based approach appeared to be better than either point or quad
splats, although it resulted in slightly too much image blurring. The
additional blur may have given a false sense of better image qual-
ity, which is not equal to the reference. This was illustrated in Fig-
ure 5. For each of these reconstruction methods, the server’s image-
warping frame rates are given in milliseconds per frame in Table 1
for various resolutions, both for single- and multi-GPU implemen-
tations. In all cases stereoscopic image-warping using two client
views is performed. Note, to achieve a 60Hz frame rate, image-
warping must be performed in less than 16.6ms. From these data
we can deduce that mesh-based reconstruction is too slow to be
practically used currently, as is quad-based splatting for higher res-
olutions. The performance of point splatting is higher than the other
reconstruction methods, while resulting in almost the same image
quality. Therefore, we use point splatting exclusively throughout
this paper; although, in the future, the other techniques may become
feasible. Using point splatting we can guarantee a 60Hz frame rate
for stereoscopic resolutions up to 1024x768, both for single- and
multi-GPU implementations. Performance was found to be linear
in the number of warped pixels.

Every second column in Table 1 gives the time between consec-
utive client frame updates that arrive at the server. While there is no
strict performance threshold here (such as 16.6ms for the server),
the longer it takes for new client frames to arrive as a source for im-
age warping, the larger the image warping errors become. For the
multi-GPU implementation these updates times are stable and are
equal to the rendering time (207ms) plus the time taken to perform
asynchronous, background data transfers. However, for the single-
GPU implementation the update times vary greatly. This is due to
the sharing of a single GPU for both warping and client rendering
and the implied scheduling and context switching. Since only a
short time is available for client rendering, the relative impact of
the overhead of the context switch becomes larger. It can be seen
that the larger the server’s warping load becomes, and the more
closely it fills the allotted 16.6ms per frame, the less time available
to render new client frames. Therefore, the ratio between server
and client frames is increased, resulting in an increase of warping
errors.

6.2 Image quality

For the evaluation of the image quality produced by our architec-
ture, we use a sample scene consisting of the 28M polygon Stan-
ford Lucy angel model, orbited by twelve torus knots. All objects
rotate about their own Y-axis at 60 deg/s, where each torus knot ro-
tates in opposite direction. The torus knots rotate about the angel
at 20 deg/s. The camera is tilted upwards by ten degrees. A sam-
ple frame of this animation is shown in Figure 7. We artificially
fixed the client’s frame rate to 6Hz, resulting in a 10:1 server:client
frame ratio, i.e. ten frames are warped for every client frame update.
This is possible because we use off-line rendering and can run the
client and server in a special synchronized mode where both wait
for each other according to a given fixed ratio. In all cases point
splatting was used as the image-warping algorithm, and two client
views were warped to the left-eye image of a stereoscopic pair.

We distinguish between two types of errors: occlusion errors and
sampling errors. The former are caused by occluded geometry and
are the most perceptually disturbing kinds of errors, while the latter
are caused by small errors in shading, splat-size calculations and
overlapping splats. In practice, sampling errors are not very notice-
able, unless the scene is still and observed very closely. To evalu-
ate image quality, we compare warped images to directly rendered
reference images. Furthermore, we compare the warped depth to
a reference depth map to detect the difference between occlusion
and sampling errors. When the depth of a warped pixel lies fur-
ther away than a set threshold from the depth of the corresponding
reference pixel, it is marked as a hole pixel. Note, when a warped

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 101 201 301

% Sampling errors % Occlusion errors (holes)

Figure 8: The percentage of pixels that constitute occlusion or sam-
pling errors for each frame of a 360 frame animation of the 28M poly-
gon scene. Figure 7 depicts frame number 42, which exhibits a near-
maximum amount of occlusion errors in the sequence. This frame
will be used as a sample frame throughout this paper.

pixel is closer to the viewer than the depth of the reference, it can
not be a hole pixel and so it is marked as a sampling error. This
kind of sampling errors occurs frequently at depth edges, where the
splat-size is too large and covers a few pixels behind it. To de-
tect sampling errors, we choose to convert the both images to the
Lab perceptual color space and compare them per-pixel. If the dis-
tance in Lab space between two corresponding pixels is larger than
a threshold value of 20 units, the pixel is marked as sampling error.
This threshold is used to avoid marking small differences that are
hard to perceive as errors.

An example frame where the detected occlusion errors are shown
in red and the sampling errors in blue is shown in Figure 7. Quan-
titative data is plotted in Figure 8. The chosen sample frame #42,
and this complete 360 frame scene animation, will be used for the
rest of this results section. Note, this is a particularly bad frame that
shows near-maximum occlusion errors.

6.2.1 Hole detection
To evaluate the hole-finding methods described in Section 4.2.1, we
compare the pixels that were identified by these methods as holes
to the map of reference holes. This reference map is constructed
in the way described in Section 6.2, using a reference and warped
depth map. Figure 9 shows the hole maps found for frame #42. The
left image depicts the reference holes in a warped image where no
hole filling is applied. To better illustrate the results, we did not
redraw the background quad here, so holes in the background are
also visible. The middle image depicts the holes found by a level-0
hole finding method (see Section 4.2.1), which has been a popular
method of detecting holes in the past [9]. This method only finds
holes where no pixels have been warped to. Since any pixel that is
not reached by a fragment is necessarily a hole, the method never
finds false-positives. However, the method fails to find any level-1
type of hole, which occur frequently in the animation. The right im-
age depicts the holes identified by the level-1 hole finding method.
Correctly identified holes are shown in green, where dark green in-
dicates the subset of pixels that is classified as a background hole.
Since we re-draw the background quad anyway, it is not required
to ray trace these hole pixels. A few background holes remain that
are not classified as such. False-positives, i.e. non-hole pixels iden-
tified as holes, are depicted in yellow and occur most frequently at
the edges of objects, as expected.

The percentage of holes correctly identified by the two meth-
ods is plotted in Figure 10 for the 360 animation frames. Here we
compare the percentages of correctly identified holes that are not
background holes. The level-1 method is capable of finding most
of the holes in the animation, except for a small number of level-2

Figure 7: (left) A reference image produced in approximately 207ms by a regular stereoscopic render for a 28M polygon scene. Only the left-eye
view is shown, as will be the case throughout this paper. (center) The same scene produced by image-warping in only 14ms. (right) Errors in
the warped image. Occlusion errors, or holes, are depicted in red and sampling errors in blue.

Figure 9: (left) Reference holes in red for a warped image where no hole filling is applied, including background holes. (center) Holes correctly
detected by a level-0 hole finding algorithm are shown in bright green, while holes that were not found are shown in red. (right) Holes found by
our level-1 hole finding algorithm. Green indicates a hole is correctly found, where the dark green sub set represents pixels correctly identified
as background holes. False-positives are depicted in yellow. Holes that were not found are depicted in red; however, this occurred for only a few
individual pixels in the shown frame.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

10

20

30

40

50

60

70

80

90

100

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

2
5

7

2
6

5

2
7

3

2
8

1

2
8

9

2
9

7

3
0

5

3
1

3

3
2

1

3
2

9

3
3

7

3
4

5

3
5

3

level-0 % holes found level-1 % holes found level-0 % pixels tested level-1 % pixels tested

Figure 10: (left axis) Percentage of holes found correctly for the level-
0 (blue) and level-1 (red) hole finding methods, excluding background
holes. The level-0 method fails to find many holes, while the level-
1 method finds most of the holes. (right axis) The percentage of
pixels identified as candidate non-background holes. While the level-
1 method (purple dotted) finds more holes, it actually scans fewer
pixels than the level-0 method (green dotted).

holes. The level-0 method performs poorly in identifying holes. Al-
though the level-1 method finds more holes and a number of false-
positives, it actually scans fewer pixels than the level-0 method due
to the background-hole optimization. This is because the level-0
method has no way to distinguish between background holes and
other types of holes, so it has to scan all of them. We conclude that
for our purposes the level-1 method shows superior performance in
identifying holes, and we use it as the algorithm of choice.

6.2.2 Hole filling

Given a map of candidate hole pixels, we can re-render the first
number of leaf nodes that are hit in back-to-front order along the
ray, as was described in Section 4.2.2. We have evaluated the num-
ber of holes that can be resolved correctly in this way and the num-
ber of polygons that need to be re-rendered. For the hole map we
used the output of our level-1 hole finding method, which was de-
scribed in Section 4.2.1. Figure 11 shows the sample frame #42
with hole filling applied for the first, the first three and all inter-
sected leaf nodes. The larger the number of intersected leaf nodes,
the larger the number of polygons that need to be re-rendered. This
is plotted in Figure 12. The percentages of hole pixels that were
correctly resolved are plotted in Figure 13. It can be seen that
re-rendering the first three leaf node intersection along the ray re-
sults in a reasonable trade-off between the number of resolved holes
and the number of re-rendered polygons; most of the holes are re-
solved, while re-rendering only a small percentage of the original
28M polygons. For illustration, we also plotted the number of re-
solved holes using a level-0 hole finding method in Figure 13. This
shows the importance of good hole finding, as it forms a baseline for

Figure 11: Example of hole-filling. Green pixels depict correctly filled holes, while red pixels depict holes that were not filled. Blue represents
remaining sampling errors. (left) Resolving holes by re-rendering the first leaf node intersection; some holes remain. (center) Re-rendering the
first three intersection resolves most holes (right) Re-rendering all intersection resolves all hole pixels that were correctly identified.

0

1

2

3

4

5

6

1 101 201 301

first ray hit first 3 ray hits all ray hits

Figure 12: Millions of polygons re-rendered by the three hole-filling
strategies for each frame of the animation. the original scene con-
sists of 28M polygons. We found that the first three leaf node inter-
sections provide a good trade-off between achieved quality and the
number of polygons re-rendered.

0

10

20

30

40

50

60

70

80

90

100

1 101 201 301

level-1 ray 1 % solved level-1 ray 1-3 % solved level-1 all rays % solved level-0 all rays % solved

Figure 13: Percentage of holes resolved for the three hole-filling
strategies for each frame of the animation. Many pixels identified as
holes are not correctly filled when only re-rendering the first leaf node
intersection found. However, re-rendering the first three intersections
resolves most of the holes. When re-rendering all the intersections,
every identified hole is resolved and only the holes that were not
found are left. In comparison, the dotted line shows resolved holes
when using a level-0 hole finding method that re-renders all intersec-
tions.

the number of reference holes than can be resolved: holes that are
not found can not be resolved, no matter how many leaf node inter-
sections we re-render. Finally, these results show that it is possible
to create very high quality images using image-warping techniques
and good hole filling, depending on the available time.

The average frame times on a multi-GPU system for stereoscopic
warping using these hole-fillings methods are approximately 65ms,
78ms and 92ms, for the re-rendering of the first hit leaf, the first
three hits, and all hits, respectively. There are a number of rea-
sons for this lower performance. The kd-tree is generated using
a simple mid-point split, which is known to result in sub-optimal
ray tracing performance. A tree build using a surface area heuristic
would increase ray tracing performance significantly. Furthermore,
ray tracing is done sequentially on just a single CPU core, and for
each pixel independently. Using multiple cores or a GPU ray tracer,
in combination with amortized or packet ray tracing, would further
improve performance (a good overview of ray tracing techniques
is given by Wald et al. [21]). One final optimization could be to
start ray tracing at the depth found in the occlusion map. Due to
the convex hull nature of the rendered bounding boxes, no inter-
sections can possibly occur in front of this depth. One issue that
remains is the amount of geometry that needs to be re-rendered.
If this amount is too high, we won’t be able to achieve a 60Hz
frame rate without falling back to level-of-detail methods for the
re-rendered geometry, which may be a viable alternative. Another
option would be to implement a completely GPU-based ray tracer
that can quickly re-render individual pixels, avoiding the need to
re-render entire leaf nodes. However, while we can not currently
maintain a 60Hz frame rate when using the described hole-filling
methods, we still produce an almost-error-free stereoscopic image
about three times faster than a regular stereoscopic renderer would
(70ms versus 200ms, see Table 1). This result by itself may justify
the use of image-warping techniques in some situations.

6.3 Latency

We evaluated the latency for both single- and multi-GPU image-
warping implementations and a stand-alone regular renderer for ref-
erence using a method introduced by Steed [17]. The architecture
was implemented on an Intel Q6600 2.4 Ghz quad-core processor
system using an Nvidia GeForce 8800 GTX for the client GPU and
a stereo-enabled Nvidia Quadro FX5600 for the server GPU. In
the case of a single-GPU, both client and server used the NVidia
Quadro FX5600. The stereoscopic display consisted of an iiyama
Vision Master Pro 512 22 inch CRT monitor operating at 120Hz in
order to achieve 60Hz per eye. For input we used a Polhemus Fas-
trak 6 DOF input device that generates tracking reports at 120Hz.
Both the image-warping server and the reference system rendered
the scene as normal for the left and right eye and then cleared the

Reference Multi-GPU Single-GPU
Faces lat. σ time lat. σ time lat. σ time
64M x x 577 58.9 2.6 14.1 93.8 4.0 27.6
32M 780 14.2 289 61.1 2.5 14.3 95.6 4.8 27.6
16M 409 12.3 145 62.2 2.4 14.6 94.4 4.6 27.4
8M 220 8.4 72.9 58.6 2.8 15.4 96.2 2.3 27.4
4M 113 5.3 37.0 65.4 5.4 16.9 95.0 3.1 27.1
2M 68.5 0.5 18.8 74.0 3.5 19.8 89.9 3.5 27.3
1M 48.5 3.5 9.6 71.9 5.1 19.7 95.0 4.4 27.1

Table 2: Latency, standard deviation of latency and time required
to warp, all in milliseconds, for a reference renderer and both our
single- and multi-gpu image-warping implementations. In all cases
a stereoscopic image is produced from two client views and no hole
filling is performed. The reference latency for 64M faces could not be
measured because it was larger than half the period of the pendu-
lum used for measuring, introducing aliasing frequencies. (Intel Core2
Quad Q6600 2.4Ghz + Nvidia GeForce 8800GTX + Nvidia Quadro FX5600)

display in order to render a small sphere at the position of the input
device for latency measurements. The reference system sampled
the input device just before rendering the scene, while the server of
our architecture re-sampled the input device prior to warping using
the previously described algorithms. The scene consisted of various
amounts of polygons.

The acquired results are listed in Table 2. This shows the aver-
age latency acquired over several sampling runs of the experiment,
as well as the standard deviation over those samples. It can be seen
that the latency for the image-warping server is low and almost con-
stant, regardless of the rendering load. The single-GPU’s latency is
somewhat higher due to longer warping times, but still constant.
Both low and constant latency are desirable properties for an in-
teractive system and enable the use of further predictive filtering
methods [13]. The reference renderer’s latency is much higher and
depends on number of polygons in the scene and the frame rate.
Furthermore, the standard deviation of the reference is also much
higher, indicating non-constant latency that would be hard to pre-
dict. When the number of polygons is reduced to about 4M and
lower, the multi-GPU latency increases slightly. This is because
client frames are updated almost every frame now, and the frequent
asynchronous data transfers and context switches between the warp
and upload thread start affecting warping performance. This has no
effect on a single-GPU because no data is transferred. For small
scenes it is probably better to use direct rendering; however, the
data shows that when more than two million polygons are to be
rendered, image-warping methods can reduce the latency.

6.4 Iso-surface rendering

We have implemented both iso-surface warping approaches that
were described in Section 5 on a single GPU system and have mea-
sured the performance when rendering four different volumes: the
256x256x512 Carp, 492x492x442 Present, 512x499x512 Christ-
mas tree and the 832x832x494 stag beetle volumes. All of these
are 8-bit volumes. Figure 14 shows sample renderings of these test
volumes at different iso-values.

For each volume and setup, we recorded drawing times for the
image-warping client and server and a reference implementation
that does a direct iso surface ray-casting for an animation of 20 sec-
onds. The test system consisted of an Intel Core-i7 CPU 2.93GHz,
12GB RAM, and an NVidia Quadro FX 5800 with 4GB VRAM.
Table 3 shows the performance results for our first approach com-
pared to direct iso-surface rendering using the iso-values from Fig-
ure 14 for a monoscopic resolution of 1024x768. Table 4 shows
the performance results for our second approach compared to di-
rect iso-surface rendering using the iso-values from Figure 14 for
a monoscopic resolution of 1024x768. Finally, Figure 15 gives a
close-up of the better reconstruction during the post warping pass

Figure 14: Direct renderings of the test volumes at different iso-
values.

volume iso-surface warping direct
dt σ c. dt σ dt σ

carp 0.28 16.2 0.9 51.3 9.0 33.1 1.2
carp 0.73 16.2 0.9 56.5 9.8 35.3 5.8
pres.0.07 27.3 7.7 181.0 47.8 48.7 15.7
pres.0.33 32.8 1.1 204.2 26.6 76.5 24.0
ctre.0.02 16.3 1.6 192.6 13.6 74.7 22.5
beet.0.18 17.9 4.7 170.5 45.3 115.7 38.5

Table 3: Drawtimes for iso-surface warping in a Single-GPU imple-
mentation compared to direct iso-surface ray-casting for the different
test runs of our first approach at a resolution of 1024x768: server
(dt) and client (c. dt) drawtimes along with standard deviations (σ),
all timings are in milliseconds. (Intel Core-i7 2.93GHz + NVidia Quadro FX
5800)

compared to our first approach.
These results show that iso-surface rendering can benefit from

our warping-architecture analogous to polygonal rendering. While
we cannot guarantee a fixed frame rate of 60Hz, as the polygonal
warping-architecture can, iso-surface warping can still provide us
with lower latency. Compared to direct ray-casting, our first method
can accelerate iso-surface rendering by a factor of two to six, de-
pending on iso-value and volume size. Deferred binary search and
gradient computation causes additional load on the server, but still
gives better frame rates than our reference implementation. The
benefit of this method is an improved image quality compared to
direct iso-surface warping.

7 DISCUSSION

An interesting question is for which scenes our image-warping ar-
chitecture is useful. For scenes containing many more than 10 mil-
lion triangles and a display resolution of only one million pixels, we
run into a sampling problem and thus aliasing occurs. Each pixel
receives contributions from many triangles, which should be inte-
grated above the pixel area. To a certain degree this can be achieved
by over-sampling and anti-aliasing techniques, but for very large
scenes this is not possible. What is needed are output-sensitive and
display-resolution-sensitive techniques, such as occlusion culling

volume iso-surface warping direct
dt σ c. dt σ dt σ

carp 0.28 16.2 0.7 88.7 18.5 33.1 1.2
carp 0.73 16.2 1.4 117.8 16.5 35.3 5.8
pres.0.07 27.3 7.7 181.0 47.8 48.7 15.7
pres.0.33 32.8 1.1 204.1 26.6 76.5 24.0
ctre.0.02 33.0 1.7 438.1 50.9 74.7 22.5
beet.0.18 32.9 4.2 197.8 49.2 115.7 38.5

Table 4: Drawtimes for iso-surface warping in a single-GPU imple-
mentation compared to direct iso-surface ray-casting for the different
test runs of our second approach at a resolution of 1024x768: server
(dt) and client (c. dt) drawtimes along with standard deviations (σ),
All timings are in milliseconds. (Intel Core-i7 2.93GHz + NVidia Quadro
FX 5800)

Figure 15: (left) Close-up of the stag beetle. Reconstruction using
point-based warping in our first approach. (right) Deferred binary
search and gradient computation.

and level-of-detail approaches, which generate triangle sets match-
ing the display resolution. Future graphics hardware is likely to be
able to render such intelligently decimated scenes at 60Hz. How-
ever, the ever increasing shading quality, as well as the compu-
tationally expensive dynamic level-of-detail and occlusion culling
techniques, may limit the frame rate below 60Hz for some time.
Thus, our architecture remains beneficial in all cases where a con-
stant high frame rate and low latency cannot be guaranteed other-
wise.

There are a number of trade-offs between image quality and
the architecture’s end-to-end latency. Different choices for the de-
scribed algorithms may result in better perceived quality at the ex-
pense of longer rendering times and, consequently, higher latency.
One example is the amount of sampling errors after warping. Three
ways to render warped pixels were discussed: screen-aligned point
splats, quadrilateral splats and and a mesh-based reconstruction
method. Point splats have the highest performance but result in
increased sampling artifacts, whereas mesh-based reconstruction
generally resulted in the best image quality but was significantly
slower. Which sampling algorithm to use depends on the exact ap-
plication requirements; however, we believe that the increase in per-
formance for point splats outweigh the loss of image quality com-
pared to the other two methods.

Another trade-off exists for occlusion errors. Objects that are
visible from the server’s viewpoint but not from any client view-
point will result in an occlusion error in the warped image. Since
hole-filling algorithms can be expensive, the server should strive to
generate as few holes as possible to begin with. Therefore, in order
to avoid clipping objects that enter the camera space, the client view
should have a larger field-of-view than the server camera. How-
ever, increasing the FOV results in smaller rendered object sizes
and fewer warped pixels per object. This effect is almost equiva-
lent to reducing the client resolution and reduces the overall qual-
ity of warping. Another good way to reduce occlusion errors is to
warp multiple client views. This can be achieved by placing the
client cameras in such a way that a large part of the scene is visible
from different directions. However, this could result in the client
views to be far away from the server view, resulting in large re-

quired warping distances and, consequently, larger errors. Using
multiple client views also implies a direct performance reduction
due to an increase of pixels to be warped, and an increase in shared
pixel data. Furthermore, for multiple client views to be effective,
intelligent camera placement strategies are required [16] that come
with different performance characteristics.

Different algorithms require different amounts of pixel data to
be shared between the client and server. For example, the layered
depth images technique [14] provides a way to reduce occlusion
errors, but requires much additional per-pixel data. Depending on
the architecture’s hardware, this may or may not be a bottleneck.
A single-GPU implementation will not be affected much, since no
data is transferred. For the multi-GPU case we have used asyn-
chronous data transfers to reduce the impact of transfers; however,
the transfers are still not entirely free as was seen in Table 2. Fur-
thermore, accessing large amounts of data may introduce extra per-
formance penalties in the form of cache misses, depending on the
access pattern. Therefore, before increasing the per-pixel data re-
quirements, these issues should be considered carefully.

Another trade-off occurs for the presented method of detecting
and resolving occlusion artifacts. Resolving a larger number of oc-
clusion errors correctly also required a larger number of polygons to
be redrawn, in turn reducing performance. In this way, image qual-
ity can be increased depending on the available processing time.
Another factor is the size of the leaf nodes in the kd-tree. Larger
leaf nodes contain more geometry and require more polygons to be
redrawn; however, smaller leaf nodes require more expensive ray
tracing. A similar trade-off exists for hole detection; with bound-
ing boxes at a higher resolution in the kd-tree, fewer false positives
are detected, and fewer rays need to be traced, but more bounding
boxes need to be rendered to construct the reference map. These
problems may be partially remedied by using adaptive, dynamic
resolutions for the leaf nodes and bounding boxes, but this has not
been investigated.

One aspect that we have not discussed is the method used to
compare image quality between the reference application and our
image-warping architecture. We chose to do a simple frame-by-
frame comparison using a threshold in the Lab perceptual color
space; however, many other ways are possible. Perceptual differ-
ences between images can be obtained using programs such as the
visible differences predictor (VDP) [2]. We experimented with us-
ing VDP for our image comparisons, but found that the reported
differences did not match well to the perceived errors when using
our system. Furthermore, we are dealing with animations and not
still images; therefore, a different perceptual model, for example
one including temporal frequency sensitivities, should be used. Oc-
clusion errors are perceived to be more disturbing than sampling
errors because they cause rapid flicker in animations; a fact that
can not be detected by classic image-comparison methods. Find-
ing a good comparison method for animation sequences that can
pin-point disturbing errors would help a great deal in increasing the
image quality of real-time warping systems.

The end-to-end latency of our system is around 60ms, which is
already quite low. We have not yet experimented with using predic-
tion on the tracker data that is fed into the scene graph. Prediction
based on a Kalman [5] filter could be very effective in creating a
system with almost no perceivable latency, which might be a good
trade-off for some image quality in many application domains.

8 CONCLUSION

We have shown a real-time image warping architecture for dynamic
scenes that can be used to guarantee a 60Hz stereoscopic display
rate up to a certain display resolution on current hardware. In
this way, latency was significantly reduced at the expense of some
reduction of image quality. We have quantified certain types of
errors with respect to image quality, and discussed trade-offs be-

tween an increase of image quality and a reduction of latency. A
novel method of detecting and resolving hole artifacts was also pre-
sented. Furthermore, the use of image-warping in combination with
iso-surface rendering was investigated. An implementation of the
architecture was described for both a single- and a multi-GPU sys-
tem; the most desirable hardware design for our approach would
be a multi-GPU architecture with shared memory, which currently
does not exist. Although we did not perform a formal study, the
preliminary impressions of users of the architecture — where vari-
ous large, static models could be interactively examined in a world-
in-hand fashion using 6-DOF input devices — were positive, espe-
cially with respect to the low latency and the improved interactivity.
We believe that our real-time image-warping architecture will be
an excellent choice for all kinds of interactive graphics applications
dealing with large scenes.

REFERENCES

[1] P. J. Bex, G. K. Edgar, and A. T. Smith. Multiple images appear when
motion energy detection fails. Journal of Experimental Psychology:
Human Perception and Performance, 21:231–238, 1995.

[2] S. Daly. The visible differences predictor: an algorithm for the as-
sessment of image fidelity. In Digital images and human vision, pages
179–206. MIT Press, 1993.

[3] S. R. Ellis, M. J. Young, B. D. Adelstein, and S. M. Ehrlich. Dis-
crimination of changes in latency during voluntary hand movement of
virtual objects. In Human Factors and Ergonomics Society, 1999.

[4] T. Hübner, Y. Zhang, and R. Pajarola. Multi-view point splatting. In
Proc. ACM GRAPHITE, pages 285–294, 2006.

[5] R. E. Kalman. A new approach to linear filtering and prediction prob-
lems. ASME Journal of Basic Engineering Vol. 82, pages 35–45, 1960.

[6] R. Kijima and T. Ojika. Reflex hmd to compensate lag and correction
of derivative deformation. In Proc. IEEE VR, page 172, 2002.

[7] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolu-
tion 3d surface construction algorithm. SIGGRAPH Comput. Graph.,
21(4):163–169, 1987.

[8] T. K. Magnus, T. Klein, M. Strengert, S. Stegmaier, and T. Ertl. Ex-
ploiting frame-to-frame coherence for accelerating high-quality vol-
ume raycasting on graphics hardware. In In: Proceedings of IEEE
Visualization 05, pages 223–230. IEEE, 2005.

[9] W. R. Mark. Post-Rendering 3D Image Warping: Visibility, Recon-
struction, and Performance for Depth-Image Warping. PhD thesis,
University of North Carolina at Chapel Hill, 1999.

[10] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping.
In Symposium on Interactive 3D Graphics, pages 7–16, 180, 1997.

[11] L. McMillan and G. Bishop. Plenoptic modeling: An image-based
rendering system. Computer Graphics, 29:39–46, 1995.

[12] M. R. Mine. Characterization of end-to-end delays in head-mounted
display systems. Technical report, 1993.

[13] M. Olano, J. Cohen, M. Mine, and G. Bishop. Combatting rendering
latency. In Proc. ACM SI3D, pages 19–ff., 1995.

[14] J. W. Shade, S. J. Gortler, L.-W. He, and R. Szeliski. Layered depth
images. Computer Graphics, 32:231–242, 1998.

[15] F. A. Smit, R. van Liere, S. Beck, and B. Froehlich. An image warping
architecture for vr: Low latency versus image quality. In Proc. IEEE
Virtual Reality (VR), pages 27–34, 2009.

[16] F. A. Smit, R. van Liere, and B. Froehlich. A programmable display
layer for virtual reality system architectures. In IEEE Transactions on
Visualization and Computer Graphics (TVCG), 2009 [in press].

[17] A. Steed. A simple method for estimating the latency of interactive,
real-time graphics simulations. In Proc. ACM VRST, pages 123–129,
2008.

[18] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible
volume rendering framework for graphics-hardware-based raycasting.
International Workshop on Volume Graphics, 0:187–241, 2005.

[19] J. Stewart, E. P. Bennett, and L. McMillan. Pixelview: a view-
independent graphics rendering architecture. In Proc. ACM HWWS,
pages 75–84, 2004.

[20] J. Torborg and J. T. Kajiya. Talisman: commodity realtime 3D graph-
ics for the PC. In Proc. ACM SIGGRAPH, pages 353–363, 1996.

[21] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G.
Parker, and P. Shirley. State of the art in ray tracing animated scenes.
In STAR Proc. of Eurographics 2007, pages 89–116, 2007.

